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Featured Application: This research is mainly used for intrusion detection against physical pro-
cess logic attacks that industrial robotic arms may be subject to, and the establishment of
response mechanisms.

Abstract: The automation and intelligence of industrial manufacturing is the core of the fourth
industrial revolution, and robotic arms and proprietary networked information systems are an
integral part of this vision. However, with the benefits come risks that have been overlooked, and
robotic arms have become a heavily attacked area. In order to improve the security of the robotic arm
system, this paper proposes an intrusion detection method based on a state classification model. The
closure operation process of the robotic arm is divided into five consecutive states, while a support
vector machine based on the particle swarm optimization algorithm (PSO-H-SVM) classifies the
operation state of the robotic arm. In the detection process, the classifier predicts the operation state
of the robotic arm in real time, and the detection method determines whether the state transfer meets
the logical requirements, and then determines whether the intrusion occurs. In addition, a response
mechanism is proposed on the basis of the intrusion detection system to make protection measures
for the robotic arm system. Finally, a physical experiment platform was built to test the intrusion
detection method. The results showed that the classification accuracy of the PSO-H-SVM algorithm
reached 96.02%, and the detection accuracy of the intrusion detection method reached 90%, which
verified the effectiveness and reliability of the intrusion detection method.

Keywords: security; robotic arm system; PSO-H-SVM; intrusion detection; physical process logic attack

1. Introduction

With the rapid development of various fields such as network technology, commu-
nication technology, hardware and manufacturing, mankind has ushered in the fourth
industrial revolution, and we are already enjoying its fruits. In particular, automation is the
key development direction of industrial manufacturing, involving a number of areas such
as robotics, the Internet of Things and artificial intelligence [1]. Among them, the robot is
an indispensable piece of equipment in the entire link; through their study, it can be found
that the manufacturing industry has become more and more intelligent in recent years, and
the industrial robotic arm has played an irreplaceable role in this process. Industrial robotic
arms play a major role in various fields such as manufacturing, assembly and aerospace,
and have become an integral part of the industrial field. In the process of operation, they
can improve efficiency, reduce costs and minimize personnel safety issues [2–4].

Traditional robotic arm systems are only used in closed operating environments and
mainly rely on operators to operate, and only act as independent workstations. However,
with the development of communication networks and related hardware, robotic arm sys-
tems have started to become networked [5], forming smart factories. The entire production
system that relies on robotic arms is becoming more and more open, so cyber-physical
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security for robotic arm systems is of vital importance. The security research of robotic arm
systems can effectively respond to possible threats and make the next step when a security
breach is created [6].

As attacks against robotic arm systems are intensively studied, the current attacks
may involve protocol attacks, sensor data attacks and control system attacks. For example,
in [7], Li. et al. performed a data logic attack on the EtherCAT communication protocol of a
heavy-duty industrial robotic arm, mainly targeting the data packets between the control
system and the actuator or between the sensor and the control system, by reordering,
dropping or delaying the protocol packets to break the data logic of the communication
protocol. This attack can seriously damage the operation state of the robotic arm. In [8],
Kim et al. proposed a sensor attack on mobile robots, using Global Positioning System
(GPS) spoofing to interfere with GPS sensor readings and gyroscope sensing data spoofing
through acoustic noise, ultimately leading to the crash of the unmanned aerial vehicle.
In [9], Jeong et al. analyzed the vulnerabilities of the robot operating system (ROS), and
they included an insufficient ROS authentication scheme, a ROS bag replay attack, service
hijacking, etc., for which if the ROS is attacked using malware, then the control data can
be tampered with, causing damage to the control system. Meanwhile, the damage caused
by targeted attacks covers both physical and network domains [10], and attacks on the
network or protocols will cause damage to the network domain; attacks on the control
system, such as tampering with instructions or sensing data, control data spoofing attacks,
etc., will not affect the network domain, but will most likely cause physical damage or even
personnel damage with unimaginable consequences. Nowadays, there is a wide range of
research on intrusion detection for information-physical systems, covering power systems,
industrial production systems and remote-control systems [11–14] these intrusion detection
methods serve as important references in building the security system of robotic arms. The
security of robotic arm systems is also being studied through different aspects, with some
researchers having established a dynamic model of the robotic arm for fault diagnosis and
isolation [15,16], as well as adding some defensive measures against threats from external
attacks through the design process of the robotic arm [17,18]. In [19,20], rule-based and
estimation-based methods were used to detect the anomalies of the robotic arm.

A summary of the literature reveals that not enough attention has been paid to the
security of the physical process of the robotic arm. If an attacker intercepts the data of the
robotic arm operation process and completes a logical state analysis, the control data of
the wrong logical state is injected in the intrusion process for the purpose of damaging
the physical process logic. However, detection methods based on data range anomalies
cannot detect such attacks and can cause significant damage to the physical domain.
Machine learning methods are also used in the intrusion detection of robotic arms [21,22].
In summary, based on the factors that have less security analysis regarding the physical
process logic of the robotic arm, and the increasingly widespread use of machine learning
methods in intrusion detection algorithms, this paper constructs an intrusion detection
method for physical process logic attacks on robotic arms through a machine learning-based
approach, designed to ensure the stable and safe operation of robotic arm systems. The
main contributions of this paper are summarized as follows:

• The intrusion detection model for hierarchical support vector machines is estab-
lished based on the particle swarm optimization algorithm (PSO-H-SVM) and
response mechanism.

• The composition of the robotic arm system based on the EtherCAT protocol and the
logical attack of the physical process are analyzed.

• A physical experiment platform is built to test the performance of the established
intrusion detection model and verify its effectiveness.

The rest of the paper is organized as follows: Section 2 describes the related work. In
Section 3, an intrusion detection method based on machine learning is given to classify
the real-time operational state of the robotic arm by PSO-H-SVM, to determine whether it
conforms to the logical state of the physical process and thus performs intrusion detection.



Appl. Sci. 2022, 12, 2765 3 of 19

Section 4 describes the components of the robotic arm system and data acquisition and
processing, and presents possible logical attacks on the physical process of the robotic
arm. Finally, the intrusion detection method is evaluated based on a physical experimental
platform to verify the effectiveness of the method. In Section 5, the methods proposed in
this paper are discussed and summarized.

2. Related Work

With the widespread use of robotic arms, their security issues are also receiving more
and more attention. Research on intrusion detection technology for robotic arms is the most
critical, effective intrusion detection method to better protect the system, but attack and
defense have always been an inseparable whole. Therefore, although. many scholars study
how to attack, their purpose is not to promote destruction, but to prepare better protection
methods. Pang et al. [23] designed a method for a two-channel false data injection attack
on a controller and sensor, where the controller and sensor are injected with false data
and the detector finds it difficult to detect the anomaly, making the attack more stealthy;
a Kalman-filter-based compensation is proposed for the delay generated by the attack.
Clark et al. [24] proposed a malicious attack on the machine learning strategy of a robot
system, where the target is indirectly attacked by being forced to deviate from what it has
learned through Q-learning algorithms. However, if the sensor data are detected, the attack
may be exposed and thus lacks stealth. Li et al. [25] designed a two-loop covert attack on an
industrial control system, using least squares support vector machines to construct a covert
attack with an attack loop and a covert loop, and verified the effectiveness of the covert
attack with a PLC system. Khojasteh et al. [26] investigated a learning-based attack method
to estimate the dynamics of a system through a nonlinear Gaussian process-based learning
algorithm that attacked the control policy. Zhao et al. [27] used subspace recognition
technology to propose an attack method based on wrong data injection. The target of the
attack was the state estimation error, and the coding matrix was used to detect the attack.
However, it does not apply to distributed data systems.

From some of the attack methods described above, it is not difficult to find that attacks
can cause a lot of damage once they are successful, so many scholars have studied intrusion
detection methods based on different approaches. Hector et al. [28] provided a design
solution for a security trigger on a robotic arm that uses the torque tolerance error of the
robotic arm to detect anomalies, and considers a security threat as having arisen when the
error between the expected value and the true value is greater than a threshold value relative
to the expected value; it also develops resilient security measures that allow the robotic
arm to operate safely in the home position when anomalies are detected. This one security
trigger is universal for the intrusion detection of robotic arms. Tang et al. [29] studied
the tracking control security of robotic arms, considered malicious DOS attacks, made a
description for their attack frequency based on their physical and duration characteristics,
and built a hybrid model to detect the attacks. Hong et al. [30] proposed an integrated
anomaly detection method for hosts and networks based on a robotic arm system to detect
attacks at both the application and network layers. Khaitan et al. [31] proposed a security
detection method based on different indicators of integrated circuits for different levels of
security risks for robots; this intrusion detection method can have a good defensive effect
on the attacks proposed in [32], guaranteeing the safe operation of robots. Zhou et al. [33]
designed a layer-by-layer defense framework centered on a secure network architecture,
secure industrial network protocols, secure control systems and secure physical processes,
to achieve an acceptable level of security risk and ensure the stable operation of the
system. The advantage of this framework is its faceted defense and better security results.
In [34], a multi-model-based anomaly intrusion detection method was also proposed to
detect anomalies in the system from the multiple perspectives of communication models,
task models, resource models and control data flow models, and to classify alarms after
anomalies are detected. Hidden Markov classifiers are also constructed to distinguish
between anomalies and faults, due to the different handling of system anomalies and faults.
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Similarly, with the widespread use of machine learning and deep learning, researchers
have introduced intelligent algorithms into intrusion detection methods with good results,
making learning-based intrusion detection methods mainstream. Akpinar et al. [35] pro-
posed a learning-based intrusion detection method for the EtherCAT protocol, where an
attack vector is created based on real-time data and a support vector machine training
model is used to perform anomaly detection, which is used to detect anomalies in the
communication protocol. In [36], the authors further classified the protocols into four
categories by classifying the various features of the protocols. They produced 16 events
in the 4 categories for anomaly detection, and the genetic algorithm-based support vector
(GA-SVM) machine demonstrated good detection results. Qiu et al. [37] investigated an
anomaly detection method based on Bayesian networks that can detect an attack on a
robotic arm and distinguish whether it is an attack from the physical or network domain.
Maushart et al. [38] used deep belief networks to detect certain known attacks in robotic
arm systems, especially denial of service attacks and spoofing attacks. Narayanan et al. [39]
applied the one-class support vector machine (One-Class SVM) to the joint angle anomaly
detection of the robotic arm, and introduced the concept of the tolerance envelope to train
supervised learning models, both with good results.

In summary, although there are many intrusion detection methods that can be used
for robotic arm security, most of them analyze the communication model and data flow
but lack a security analysis of the physical model itself. The physical process logic (PPL)
attack occurs during robotic arm operation, that is, by overwriting the normal control data
with the wrong state control data, which may cause the robotic arm operation system to
be disrupted. This attack occurs if the joint state data at each moment of detection do
not detect an abnormality, and although it is often the case that there is no abnormality
observed in the data, the state disorder can cause serious damage to the physical domain.
So, for this situation, this study aims to detect whether there is any abnormality in the
logic of the physical process of the robotic arm, so as to ensure the safety of the robotic arm
operation process.

3. Intrusion Detection Method and Response Mechanism

This section describes the relevant algorithms and methods used for intrusion detec-
tion. For the physical process logic attack mentioned above, a robotic arm physical process
anomaly detection method is designed. Before detection, the classifier of the operating
state of the robotic arm is first constructed, and the classification model of the hierarchical
support vector machine based on the particle swarm optimization algorithm (PSO-H-SVM)
is trained with the data set. As a result, the classifier with the expected effect is obtained.

In the process of detection, the real-time joint data of the robotic arm is processed into
feature vectors for the input of the classifier, and the operation state of the robotic arm is
predicted in real-time using the PSO-H-SVM algorithm, which in turn detects whether the
state transfer of the robotic arm satisfies the normal physical process logic in the robotic
arm physical process anomaly detection method. If an intrusion is detected, the response
mechanism is triggered to protect the robotic arm system; otherwise, the next set of data is
detected. The working block diagram of the intrusion detection mechanism is shown in
Figure 1.

Figure 1. The whole process of the intrusion detection mechanism.
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3.1. Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) is an iteration-based algorithm in which particles
have only two attributes, velocit and position. Each particle gradually moves towards the
position of the optimal solution during each iteration until all particles have completed
the iteration and the optimal solution is found [40]. Assuming that the space of solutions
is an n-dimensional space, then each particle is considered as a candidate solution to
this n-dimensional search space, and each particle has memory. During each iteration,
the particle updates the optimal position based on the calculated fitness value, and also
updates the global optimal position based on the optimal positions of all particles in the
particle swarm [41]. Assuming that there are m particles forming a particle swarm in an
n-dimensional target search space, the iterative formulation of the algorithm is as follows:

Vg+1
i = ω·Vg

i +C1·rand1·
(

pbestg
i −Xg

i

)
+C2·rand2·

(
gbestg−Xg

i

)
(1)

Xg+1
i = Xg

i +Vg+1
i (2)

where, Vg
i = (vi1, vi2, · · · , vin), i = 1, 2, · · · , m is the velocity of the ith particle in the gth

generation of the particle swarm; Xg
i = (xi1, xi2, · · · , xin), i = 1, 2, · · · , m is the position of

the ith particle in the gth generation of the particle swarm; ω is a non-negative number and
is the inertia weight; C1 and C2 are learning factors, also known as acceleration constants,
representing the importance of the particle optimum and the global optimum; rand1 and
rand2 are random numbers between 0 and 1; pbestg

i is the historical optimum solution
of the ith particle in the gth generation of the particle swarm; and gbestg is the global
optimum solution in the gth generation of the particle swarm.

The parameter ω in the algorithm mentioned above is the inertia weight, and the size
of this parameter affects the local and global search capability of the algorithm. When the
inertia weight is set relatively large, the algorithm has good global search capabilities and
does not easily fall into the local optimum solution, but it is likely to miss the optimal point,
resulting in oscillation around the optimal value; when the inertia weight is set relatively
small, the algorithm has good local search capabilities, which can improve the accuracy
of the solution, but it easily falls into local optimum. Shi, Y. et al. [42] proposed the linear
decreasing inertia weight (LDIW) method, and applied it in experiments to achieve better
results. The formula of the LDIW method is as follows:

ωg = ωmax −
g− (ω max−ωmin)

gmax
(3)

where, ωg is the value of the inertia weight when the algorithm is updated to the gth
generation; ωmax, ωmin are the maximum and minimum values of the inertia weight,
respectively; g is the current iteration step number; and gmax is the maximum iteration
step number.

In the optimization process of the algorithm, the particle swarm is first initialized;
then the fitness values of all particles are calculated according to the fitness function and
compared, and the individual optimal solution and the global optimal solution are updated
if they are better; secondly, the current inertia weight ω is updated according to the LDIW
method, and the velocity and position of the particles are updated using the current inertia
weight value. Finally, the iteration ends when the end condition is satisfied and the optimal
solution is solved.

3.2. Hierarchical Support Vector Machine Based on PSO Algorithm

Support vector machines (SVM) started out by solving binary classification prob-
lems, and later, as the problems became more complex, SVM needed to be extended
to multi-classification problems [43]. There are generally two classification methods for
multi-classification problems: one is to combine multiple binary classifiers to complete a
multi-classification task, the other is to modify the objective function directly by combining



Appl. Sci. 2022, 12, 2765 6 of 19

the parameter solutions of multiple classification surfaces into one optimization problem.
A one-time solution is performed, but this latter method has too many parameters in the
optimization process and the training speed is slow, so it is generally not used. Combinato-
rial binary classifier methods include one-versus-rest SVM (1-v-r SVM), one-versus-one
SVM (1-v-1 SVM) and hierarchical SVM (h-SVM).

In this paper, the h-SVM approach is used, and assuming that there are k categories to
be classified, then the h-SVM will construct k− 1 classifiers to complete the classification
task. First, all k categories are divided into two categories, and then subcategories are
divided step by step until each individual category is divided [44]. In this paper, the
operating states of a robotic arm are classified into five categories using the joint angle,
velocity, acceleration and the closing angle of the end gripper as the feature vectors. Those
five categories are: operating to the grasping point, performing grasping action, operating
to the placing point, performing placing action and resetting the arm, and the corresponding
state labels are state 1, state 2, state 3, state 4 and state 5. Then, 4 classifiers need to be
constructed to classify the 5 types of operation states. Since all categories are firstly divided
into two categories and then divided in turn, the problem faced is that there are many ways
to build h-SVM. For example, it is possible to divide state 1 and state 2 into a category
separate from state 3, state 4 and state 5, and also state 2 and state 4 into a category
separate from state 1, state 3 and state 5, and the same principle applies to the next level of
classification. Different construction methods will have different classification effects, so it
is crucial to construct a reasonable h-SVM model.

Think of the configuration of the classifier of the h-SVM as a tree. Starting at the top
level of the tree, if the number of categories in the left and right subtrees of each tree node
is not balanced, then it is called a “skewed tree”; if the number of categories in the left
and right subtrees of a tree node is equal, then it is called a “normal tree”; the rest of the
structure is somewhere in between. The more the tree shape is oriented like a “normal
tree”, the better the classification effect will be. Secondly, starting from the top level of
the tree, it is necessary to make the accuracy of the classifier at the upper level as high as
possible, that is, the two subclasses are as distinguishable as possible [45].

Following the above two principles, the structure of the h-SVM shown in Figure 2 was
constructed, and the tree type is more inclined towards being a “normal tree”. Classifier 1
classifies state 2 and state 4 and state 1, state 3 and state 5 into two classes, with state 2 and
state 4 indicating that the grabbing and placing actions are more separable from the other
three states. Similarly, classifier 2 classifies state 2 with state 4, classifier 3 classifies state 3
with state 1 and state 5 and classifier 4 classifies state 1 with state 5.

Figure 2. Schematic diagram of the structure of the h-SVM classifier.

The core of SVM lies in the kernel function, which maps the low-dimensional data into
a high-dimensional space. The performance of a classification mainly depends on the choice
of kernel function and the setting of hyperparameters. The universal Gaussian radial basis
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function (RBF) is chosen as the kernel function in this paper, and the hyperparameters have
the penalty coefficient C and the parameter gamma, which comes with the RBF function.
The size of the penalty factor C affects the generalization ability of the model, and the
size of the gamma affects the number of support vectors, which in turn affects the speed
of training and prediction. To further improve the classification accuracy of the h-SVM
model, the particle swarm optimization algorithm mentioned in Section 3.1 is used for
optimization, and the hyperparameters are optimized using PSO while training for each
classifier. The chosen fitness function is the sum of the number of classification errors in
each category, and the formula is as follows:

fv =
i=k−1,j=k−1

∑
i=0,j=0

confusion_matrix[i][j], i 6= j (4)

where, fv is the fitness value; confusion_matrix[i][j] is the value of the ith row and jth
column of the confusion matrix; and k is the number of categories.

The pseudo-code for the overall workflow of the hierarchical support vector machines
based on PSO (PSO-H-SVM) model is shown in Algorithm 1. Each particle is a two-
dimensional data point, respectively C and gamma, and the position of each particle
represents a set of optimization parameters. The global optimal solution is used in the
iterative process to assign values to the two hyperparameters for model training, and the
confusion matrix is calculated after each training session, followed by the calculation of the
fitness value. The individual optimal solution and the global optimal solution are updated
if the optimization conditions are met. After updating the velocity and position of the
particles, the next iteration is performed until the optimization is completed by finding a
set of optimal solutions, after which the model is used to predict the test set and calculate
the accuracy of the model.

Algorithm 1 Hierarchical Support Vector Machine Based on PSO Algorithm

procedure optimizing each classifier in H-SVM using PSO algorithm
Input: X, Y // X is the eigenvector, Y is the result label
for classifier_i in (k − 1) do

particle_init = [(random(), random())*m] // m is the number of particles
g = 0
while g < gmax do

for i in m do
position = particle_init[i]
SC = SVC(kernel = ‘RBF’, C = position[0], gamma = position[1]).fit(X, Y) // Creat SVM
CM = confusion_matrix(Y_true, SC.predict(X)) // Calculate the confusion matrix
fv = sum(CM[i][j]) (i 6= j) // Calculate the fitness value
if pbest_fv > fv and gbest_fv > fv then

Update individual and global optimal solutions
w = wmax − itrea*(wmax − wmin)/gmax // Update inertia weight
Update the position and velocity of each particle

C, gamma = gbest_position[0], gbest_position[1]
Combine classifiers and calculate accuracy
Output: The values of C, gamma and accuracy

3.3. Intrusion Detection and Response Mechanism

In Section 3.2, a classification method for the operating state of the robotic arm is
proposed, and the physical process logic detection and response mechanism is proposed
based on the PSO-H-SVM model classification. As shown in Figure 3, the intrusion detection
module and the response mechanism module are embedded in the robotic arm control
system for securing the robotic arm system.
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Figure 3. Robotic arm system based on detection and response.

In the robotic arm control system, the robot operating system (ROS) is run on the
control terminal for motion planning of the robotic arm trajectory. The target pose of the
robotic arm is input into the motion planning interface of the ROS when the robotic arm
is performing the operation, and after the planner performs the trajectory planning [46],
the inverse solver performs the inverse kinematic solution of the trajectory points to solve
the joint position of each joint of the robotic arm. The joint position is sent as a control
command to the actuator of the robotic arm to complete the operation task, and the actual
joint position, speed and acceleration are fed back to the ROS while the robotic arm is in
motion. The robotic arm in this paper is a 7-DOF robotic arm, with a redundant degree
of freedom and more flexible movements that help the operation process avoid obstacles
to complete the task. The robotic arm is mainly composed of mechanical links, control
unit hardware, drivers, and sensors to complete a series of functions from controlling to
driving to actuating and sensing data feedback. The composition of the robotic arm system
is described in detail in Section 4.1 below. In this paper, an intrusion detection module
and a response mechanism module are embedded in the robotic arm control system. The
intrusion detection process will be carried out before the data are sent down to the robotic
arm to prevent the attack from causing serious damage to the robotic arm system. The
data are sent down to the robotic arm when no abnormality is detected, and the response
mechanism is triggered to protect the robotic arm system when an abnormality is detected.
The intrusion detection module detects the physical process logic of the robotic arm to
determine whether the physical process of the robotic arm conforms to the normal logic
during the operation, and if an abnormality is detected, the response mechanism module
is triggered.

In the process of completing the entire closure operation of the robotic arm, the control
instructions can be executed in the following order:

• Step 1: The initial position of the robotic arm
• Step 2: Move towards the target object position and reach the target object
• Step 3: Execute the grasping action
• Step 4: Move towards the placement position and reach the placement position
• Step 5: Execute the placing action
• Step 6: Reset the robotic arm.
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The first and last of the above six execution sequences can be classified as the same
state, and the robotic arm is reset by running it back to the initial position, so its motion
state can be divided into five categories, namely: running to the gripping point, executing
the gripping action, running to the placement point, executing the placement action, and
resetting the robotic arm. cs is used to represent each state, S is used to represent the state
collection, and SDS is used to represent the state scheduling collection, where S contains
all the running states and the SDS state scheduling collection contains all the normal state
scheduling. For example, cs[1]→ cs[2] means transferring from state 1 to state 2, which
conforms to the physical process logic. If cs[3]→ cs[1] means jumping from state 3 to
state 1, which does not conform to the physical process logic, this state scheduling does not
exist in SDS. The expressions of cs and S are as follows:

cs[i] = {cv[i][j]|i = 1, 2, · · · , k, j = 1, 2, · · · , m}, i = 1, 2, · · · , k (5)

S ={cs[i]|i = 1, 2, · · · , k} (6)

SDS ={cs[i]→ cs[j]|j− i = e, e = 0, 1} (7)

where, cv[i][j] is the ith eigenvalue in the ith state; cs[i] is the ith state, that is, cv[i][j]
synthesizes state i; k is the number of all states; m is the number of eigenvalues indicating
each state; and e is the difference of state values, taking only the two values of 0 and 1. The
state eigenvalues are the joint-related parameters expressing each state, containing 23 sets
of eigenvalue information on position, velocity, acceleration of the 7 joints, and the closing
angle of the gripper joints.

The pseudo-code for the intrusion detection algorithm is shown in Algorithm 2. The
physical process intrusion detection module is to detect whether the operation state of
the robotic arm is abnormal during the entire closure operation. If the state transition
does not exist in the SDS during the operation of the robotic arm, it means there is an
abnormality. The intrusion detection module is the first to build a state classifier, in the
normal operation of the robotic arm, that completes the closure operation process and
collects the joint position, joint speed, joint angular velocity and the closing angle of the
jaws of each path. The collected data will be pre-processed to produce data sets, with all the
data divided into five categories of states according to the actual operating conditions and
marked with the corresponding labels. The PSO-H-SVM model mentioned in Section 3.2 is
trained based on the dataset, and the model is saved for later state classification when the
model training achieves the expected effect of state classification. In the real-time intrusion
detection of the running robotic arm, the real-time running joint data are collected, and the
data are pre-processed and inputted into the classification model to classify the current
running state, and to judge whether the state transfer is in line with the situation in SDS. If
it is in line, then detection of the next set of real-time data should continue; if not, it means
that an abnormality is detected, and the response mechanism should be triggered to carry
out security protection measures for the robotic arm.

The response mechanism is an integral part of the intrusion detection system and is
used to safeguard the system from malicious users [47]. The response mechanism module is
triggered when a physical process logic anomaly is detected, and the response mechanism
includes alarms, robotic arm protection measures, and logging functions. Among them,
the alarm function is to display an alarm message at the detection terminal after detecting
an abnormality: {Alert: An abnormality in the system, the transfer of state x-> state x is
illegal, please check!}. This prompts the operator that an abnormality has occurred, and for
them to manually intervene in the control of the robotic arm. The protection measure of
the robotic arm is to continuously send the current control command of the joint position
to keep the robotic arm in its current position and from no longer running. The measures
used in engineering are generally to make the robotic arm power down and shut down;
compared to the proposed method in this paper, the advantage is that there is no need
to shut down the entire system, as the operator still has access to the robotic arm, which
can be further secured. The logging function is to record abnormal information and state
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transition information when an abnormality is detected for subsequent analysis by the
operator. The integrated application of the above intrusion detection module and response
mechanism module can effectively detect physical process logic anomalies and mitigate
damage caused by an intrusion, safeguarding the safety of personnel and robotic arms.

Algorithm 2 Physical Process Logic Intrusion Detection

procedure Detect exception and return alert
Input: Joint_data // The eigenvector of joint position, velocity, etc.
pre_state = state 1
detection_value = True // Detection result
SC = load_SVM() // Load the created classifier
while detection_value == True do

Joint_data = data_capture() // Obtaining joint data
cur_state = SC.predict(Joint_data)
if pre_sate->cur_state not in SDS then

// Print error messages and trigger the response mechanism
Debug.log(alert)
Start (response_ mechanism)
detection_value = False

log(normal)
pre_state = cur_state

Output: detection_value is True or False

4. Experiments and Evaluation of Results
4.1. System Components

The industrial robotic arm operating system is an intelligent control system that exists
for automated production lines. As shown in Figure 4a, the robotic arm operating system
consists of a control terminal, a control software system, a 7-DOF robotic arm and the
EtherCAT communication protocol. The physical model of the 7-DOF robotic arm is shown
at the bottom of Figure 4a, which is composed of mechanical links, control unit hardware,
drivers and sensors. The mechanical link is the actuating unit of the system.

Figure 4. (a) The robotic arm operating system component. (b) Control software system.

The control unit hardware is an electronic governor that performs the function of
controlling the motor; the driver provides power output to the robotic arm; and the
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sensor provides feedback data such as joint angle, speed and current, etc. The EtherCAT
communication protocol is implemented as a master-slave structure, where the master is
responsible for sending down the control data, receiving the sensor data from the slave,
and loading all slave data in the downstream packet, while the slave unloads its own
relevant data after receiving it, loads the feedback data and sends it to the next slave [48].
The control terminal mainly performs the human–computer interaction function, and is
responsible for processing the operation instructions issued by the operator and receiving
the data fed by the sensors.

The control software system is shown in Figure 4b. The control system is built based
on the Linux operating system, mainly using the robot operating system (ROS) as the
operating platform to complete the motion planning task of the robotic arm, which realizes
the intelligent operation of the robotic arm. For the whole system, the operation point
that the robotic arm needs to reach in the operation process is input into the ROS system,
and the ROS plans the movement of the target point through the move_group function
package. Firstly, all the paths that can reach the target point at the end are planned, then
the planner will select the optimal path among these executable paths and extract its path
points according to the control cycle. Finally, the inverse solver performs the inverse
solution on the path points to find out the desired position of each joint, and connects
with the communication interface through robot controllers to send the desired position
data of the joints to the robotic arm through the EtherCAT communication protocol. In the
whole control process, the sending of control data and the feedback of sensing data form
a closed-loop control, and the control terminal waits for the arrival of the next command
after the execution of the command sent by the operator is completed. According to the
above elaborated composition of the robotic arm operating system, the physical experiment
platform is completed based on this system architecture, as shown in Figure 5.

Figure 5. Physics experiment platform.

4.2. Data Collection and Processing

In the experiments, we collected the joint state data during the real-time closure
operation of the robotic arm, which was used as the training data set for the machine
learning model mentioned in Section 3.2. In the whole process of data collection, the robot
arm completes the closure operation process in real time, that is, it starts to run from the
initial position, grabs and places the target object in the designated position, and finally,
the robot arm resets and returns to its initial position; the control terminal subscribes to the
joint status data in real time to ensure the authenticity and availability of the collected data.

In the experiment, we chose a sampling frequency of 200 Hz, that is, a sampling
period of 5ms, to acquire a set of joint state data on the robotic arm. The method of data
collection was to subscribe to the/joint_state_publisher message topic by writing a topic
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subscription program through the ROS control terminal. This topic publishes the joint
state data structure under sensor_msgs.msg, which contains information such as the joint
position, joint speed, motor current value and time stamp of each joint of the robotic arm.
In order to show the data of the subscription terminals more visually, we created a table
as shown in Table 1, and due to space limitation, only two sets of data are shown. After
subscribing to the message data of this topic, we chose to store the joint position, joint speed
and current value of the motor in the data structure as JSON format files for later data
processing. In the experiment, a total of 10 paths of the complete closure operation process
were collected, and the 5 states were stored as 5 data files in the whole closure workflow.
Then the tags of the corresponding state data files were marked out, and finally, all the
joint state data and the corresponding tags were integrated to complete the production
of the training data set. In order to verify the authenticity and usability of the data, the
collected joint data were played back in the experiment, the robotic arm executed some of
the collected joint data, and the experiment proved that it can complete the task of grasping
and placing the target object.

Table 1. Example of data from a subscription terminal.

No. Attribute Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7

1

Position
(rad) 0.743 0.969 −0.396 0.510 −0.545 0.492 −1.152

Velocity
(rad/s) −0.218 −0.291 0.288 −0.314 0.297 −0.316 0.330

Current
(A) 4.314 5.067 0.112 4.131 2.928 0.546 0.957

2

Position
(rad) 0.396 1.122 −0.287 0.472 −0.318 0.576 −0.827

Velocity
(rad/s) −0.237 −0.300 0.279 −0.316 0.274 −0.324 0.336

Current
(A) 4.565 4.850 0.140 4.183 2.776 0.502 0.907

All data retained 3 decimal places.

In order to have a better training effect, we processed the collected data. The units for
joint position and joint speed as collected through the ROS terminal are radians (rad) and
rad/s. The data are generally small, and in order to have a better model training effect, the
unit was converted from the radian system to the angle system.

The joint acceleration value is used in the feature vector; however, at the control
terminal, we only collected the joint velocity value, and the joint acceleration value needs
to be calculated when performing data processing. However, the process of velocity data
acquisition will be affected by noise, and if the data are not processed, that will affect
the accuracy of the acceleration calculation. So, in this paper, the zero-phase low-pass
Butterworth filter was used to filter the noise of the velocity data, and this filter uses a
10 Hz cut-off low-pass frequency. The acceleration value was calculated after noise filtering
of the velocity data, and the formula is as follows:

Ac =
vt2−vt1

t2− t1
, t2− t1 > 0 (8)

where, Ac is the joint acceleration value; vt2 and vt1 are the velocity values at the moment of
t2 and t1, respectively; and the sampling period is 5 ms in the experiment, so t2− t1 = 0.005.

The above process completes the data acquisition and data processing work, which
are fully prepared for the subsequent model training and intrusion detection experiments.
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4.3. Physical Process Logic Attack

Nowadays, all attacks against robotic arms are mainly focused on vulnerabilities in the
operating system and communication nodes. Since the operation of the robotic arm mainly
relies on control data and feedback sensor data, attacks against control data and sensor data
are, in some effect, equivalent to sensor failure or actuator failure in the physical domain,
respectively [10]. After the control data are planned by the ROS, they are packaged as
EtherCAT data packets for distribution. The data packaging junction is easily damaged by
an attacker who can overwrite the normal control data with false data for data packaging
and distribution. An attack on the control data can easily cause confusion in the robot
operation and result in a physical domain attack, which can have serious consequences.

For the intelligent operation line, each robotic arm has a predetermined execution
trajectory and status to ensure the completion of the closure operation process. Physical
process logic (PPL) attacks occur during the operation of the robotic arm, that is, by
overwriting normal control data with control data of the wrong state, which may lead
to disorder in the robotic arm operation system and produce very serious damage in the
physical domain [23]. A robotic arm was built in the laboratory for the grasping and
placing of objects. By controlling the robotic arm, a round of closure grasping and placing
operations can be completed; that is, the robotic arm runs from the initial position to the
position where the item is placed, the gripper closes for grasping and then runs to the
designated position for placing, and then the gripper opens to place the item and runs to
the initial position.

The complete joint state data are collected during the whole operation process, and the
joint angle change of the whole process is made into a two-dimensional image, as shown in
Figure 6a. The horizontal coordinate “np” indicates the number of data points acquired,
the vertical coordinate “joint angle” indicates the joint angle of each joint of the robot arm
during operation, and the unit is the angle system. We can clearly observe each logical
state of the robotic arm. Each operating state is marked in the figure, where s1 indicates
running from the initial position to the position where the item is placed, s2 indicates that
the gripper is closed for grasping, s3 indicates running to the specified placed position,
s4 indicates that the gripper is open for placing the item, and s5 indicates running to the
initial position.

If the PPL attack is performed on the control data completed for planning, the attacker
uses any one state of data to overwrite the normal control data before the control data are
sent down during normal operation, which will lead to disorder in the logic state of the
robotic arm operation. The attack model description formula is as follows:

Normal state transfer : si+1= ei+1, i = 0, 1, · · · , 4 (9)

PPL attack state transfer : si+1 =

{
ei+random(−(i−1), 0), 1 ≤ i ≤ 4

ei+random(2,n−i), 0 ≤ i ≤ 3
(10)

where, si+1 is the next transfer state in the normal state, si+1 is the next transfer state in
the attack state, ei is the current running state, ei+x is x post-shift states of state i in the
state set, random(−(i− 1), 0) and random(2, n− i) are random integers in the range of
(−(i− 1), 0) and (2, n− i), and n is the total number of states, which has a value of five.

The attack generated as shown in Figure 6b is to run to the placement location without
executing the grab action, or to run to the home location after reaching the specified
placement location without executing the placement action, which can cause damage to
the physical domain. Some attacks can even cause the state to jump, resulting in a sudden
increase in joint speed and damage to the robotic arm. For the PPL attack described above,
if there is no effective intrusion detection mechanism, then it may bring huge security
problems and potential threats to the robotic arm system. Once a PPL attack occurs, it will
not cause a change in the protocol length, nor will it cause a change in the transmitted
packet traffic, and nor will it cause an alarm for abnormal control data. However, it will
lead to a serious operational accident with great damage to the robotic arm.
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4.4. Analysis of Results

In this subsection, we analyze the results of the hyperparameter optimization and the
classification effect of the proposed machine learning model PSO-H-SVM, and simulate the
intrusion behavior of the attacker on a physical experimental platform, testing the effective-
ness of the physical process logic intrusion detection method based on state classification
and the role of the response mechanism.

In this experiment, for the training dataset on robotic arm state classification, the
experimentally completed dataset in Section 4.2 is used. To improve the accuracy of the
classification model algorithm, the PSO-H-SVM classification model is proposed, multiple
hierarchical classifiers are constructed, and the penalty parameter C and the kernel function
parameter gamma are optimized by the PSO algorithm. The dataset is trained using the
traditional SVM, PSO-SVM and PSO-H-SVM algorithms. Finally, we evaluate the merit
of each machine learning model in terms of its classification accuracy [49], the accuracy
being the ratio of the number of correctly predicted samples to the number of all samples;
in order to calculate the accuracy, we need to know the true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) for each category, calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(11)

When training with the traditional SVM algorithm, default values are used for the
hyperparameters such that C = 1.0 and gamma = ‘auto’ ; for training with the PSO-
SVM algorithm, we use the SVC class from the scikit-learn library to perform multi-
categorization directly, set the attribute value of decision_function_shape to ‘ovo’, build
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a classifier between each two categories, and finally, predict the categories by the “vote
method”. The initialization parameters for the PSO algorithm are set as follows: the
number of individuals in the particle swarm is set to 120, the number of iterations is set to
20, the learning factors C1 and C2 are set to 2.0, the inertia weight is linearly decreasing,
the search range of C is set to [0.001, 15], the search range of gamma is set to [0.01, 1].
For the PSO-H-SVM algorithm, four classifiers are constructed in order to classify five
classes of operational states, and the four classifiers are optimized separately using the
PSO algorithm. The classifiers are combined to construct a hierarchical support vector
machine after parameter optimization is completed, and the initialization parameters in
this algorithm are set as above for the PSO algorithm.

The values of the hyperparameters and the classification accuracy of the traditional
SVM, PSO-SVM and PSO-H-SVM algorithms are shown in Table 2. The classification
accuracy of the traditional SVM algorithm reached 93.87%, the classification accuracy of the
PSO-SVM improved significantly to 95.04%, and finally, the accuracy of the PSO-H-SVM
algorithm improved further compared to PSO-SVM, to 96.02%. To further analyze the
performance of the PSO-H-SVM algorithm, we use the confusion matrix to evaluate the
classification effect of the algorithm. The confusion matrix obtained from the result of
classifying the operating state of the robotic arm using the PSO-H-SVM algorithm is shown
in Figure 7. It can be observed from the confusion matrix that state 1 and state 5 have the
highest classification accuracy at over 97%, and the rest of the states have an accuracy of
over 95%. By analyzing the accuracy rate, we can verify that the proposed PSO-H-SVM
model has a good classification effect.

Table 2. Hyperparameter values and accuracy of each algorithm.

Methods Classifier C Gammma Accuracy

SVM classifier1 1.0 ‘auto’ 93.87%

PSO-SVM classifier1 7.5592 0.0256 95.04%

PSO-H-SVM

classifier1 8.8983 0.0796

96.02%
classifier2 6.1910 0.0941

classifier3 9.2709 0.0707

classifier4 9.5290 0.0214
The Classifier item in the table represents the number of classifiers constructed by each algorithm.

Figure 7. Confusion matrix of classification results.
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Finally, we tested the physical process logic intrusion detection method on the physical
experiment platform, and used two metrics to measure the effectiveness of the intrusion
detection method throughout the testing process [50]. The first metric is the accuracy rate,
which is the sum percentage of the number of correct judgments of the normal state and
the attack state with the total number of tests; the second metric is the false detection
rate, which refers to the percentage of the number of times the normal state is incorrectly
judged as the attack state over the total number of times the normal state is judged. The
expressions of the accuracy rate and the false detection rate are as follows:

ACC =
NN + AA

Tnum
(12)

FAR =
NA

NN + NA
(13)

where, ACC is the accuracy rate; FAR is the false detection rate; NN is the number of times
the normal state is judged correctly; AA is the number of times the attack state is judged
correctly; NA is the number of times the normal state is judged as the attack state; and
Tnum is the total number of tests.

In the test experiment, the intrusion behavior of the attacker was simulated at the ROS
control terminal, and joint commands with abnormal physical processes were issued to the
robotic arm while performing the attack. For steps 1–6 of the closure operation presented
in Section 3.3, the possible attacks on the system are given in Table 3. For the previously
collected 10 paths, normal operations and attack experiments were conducted, resulting in
a total of 100 sets of experiments, of which 90 are sets of the robotic arm performing normal
instructions and 10 are sets of attack behavior. The experimental results were that 83 groups
were judged as normal behavior, of which 81 groups were judged correctly and 2 groups
were judged as normal behavior despite being attack behavior; 17 groups were judged as
attack behavior, of which 8 groups were judged correctly and 9 groups were judged as
attack behavior despite being normal behavior. According to Equations (12) and (13), the
accuracy rate of this intrusion detection method can be calculated as 90% and the false
detection rate as 10%. In the event of an attack, the terminal will prompt the operator to
detect an abnormality and display the joint state value that maintains the current position,
at which time the system is not powered down and the operator can intervene in the robotic
arm system to take the next protective measures.

Table 3. Attack behavior of the system.

No. Steps under Attack Attack Commands

1 Step 2 Execute the placement
command

2 Step 3 Execute the abnormal
movement command

3
Step 4 Execute the grab command

Step 4 Execute the reset command

4
Step 5 Execute the grab command

Step 5 Execute the reset command

In summary, the accuracy of the PSO-H-SVM classification model has reached 96.02%,
and the classification accuracy of each class of states based on the confusion matrix can be
observed to be more than 95%. For physical process logic attacks, the detection accuracy
of the intrusion detection method reaches 90%, which can effectively demonstrate that
the intrusion detection method based on the PSO-H-SVM state classification model and
response mechanism can effectively detect the physical process logic attack against the
robotic arm and mitigate the damage caused by the attack.
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5. Discussion and Conclusions

In this paper, the current security situation of industrial robotic arms is analyzed and
the possible physical process logic attacks on robotic arms during closure operations are
discussed. For physical process logic attacks, we have established an intrusion detection
method based on the PSO-H-SVM state classification model and response mechanism. The
PSO-H-SVM algorithm is an improvement on the traditional SVM algorithm, and the spe-
cific construction process of the algorithm model and its performance after improvement
are described in detail. The workflow of the intrusion detection method and response mech-
anism are also specifically described in the paper. Finally, we built a physical experimental
platform in the laboratory to verify the effectiveness of the intrusion detection method
proposed in the paper. The experimental results show that the PSO-H-SVM algorithm
achieves an accuracy of 96.02% for the classification of five classes of operating states of the
robotic arm; for the physical process logic attack, the detection accuracy of the intrusion
detection method reached 90%, which has a good intrusion-detection effect. In addition,
our proposed response mechanism is also verified in the experiment: when there is an
intrusion, the alarm, protection measures and log recording functions can operate normally,
which can effectively protect the robotic arm system from serious harm. Therefore, the
proposed response mechanism is effective.

Similarly, there are still some shortcomings in this paper: (1) The intrusion detection
method in this study is for specific application scenarios, and will be optimized for different
application scenarios at a later stage; (2) All the methods and tests in this paper are based
on experimental environments, and it is necessary to test them in real industrial operating
environments; (3) The operation of the robotic arm is a dynamic process, and the analysis of
the dynamics will be added in a later study to improve the accuracy of intrusion detection.

Nowadays, many scholars have extended their research on industrial control system
security to many aspects, among which the identification of internal faults and network
security attacks is one of the most important. In this paper, we mainly study the content
of intrusion detection, and at a later stage, we will also include research content on the
distinction between the faults and attacks of specific robotic arm systems in our work plan.
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