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Abstract: Considerable data are available regarding the molecular genetics of the tobacco mosaic virus.
The disease caused by the tobacco mosaic virus is still out of control due to the lack of an efficient
functional antagonist chemical molecule. Extensive research was carried out to try to find effective
new anti-tobacco mosaic virus agents, however no study could find an effective agent which could
completely inhibit the disease caused by the virus. In recent years, molecular docking, combined
with molecular dynamics, which is considered to be one of the most important methods of drug
discovery and design, were used to evaluate the type of binding between the ligand and its protein
enzyme. The aim of the current work was to assess the in silico anti-tobacco mosaic virus activity
for a selection of 41 new and 2 reference standard compounds. These compounds were chosen to
examine their reactivity and binding efficiency with the tobacco mosaic virus coat protein (PDB
ID: 2OM3). A comparison was made between the activity of the selected compounds and that for
ningnanmycin and ribavirin, which are common inhibitors of plant viruses. The simulation results
obtained from the molecular docking and molecular dynamics showed that two compounds of
the antofine analogues could bind with the tobacco mosaic virus coat protein receptor better than
ningnanmycin and ribavirin.

Keywords: anti-tobacco mosaic virus; molecular docking; molecular dynamics; ningnanmycin;
ribavirin; antofine analogues

1. Introduction

Plant diseases caused by viruses are causing severe economic damage to the agricultural
industry and seriously affect its development [1–4]. The tobacco mosaic virus (TMV; To-
bamovirus genus) is one of the most common destructive phytopathogens [5,6]. It infects more
than 400 crops that have economic importance, including tobacco, vegetables, and ornamental
flowers [7]. The TMV is known as plants cancer and causes fruit and leaf deformation, plant
dwarfing, and a reduction in seed germination rates [8,9]. The complete protection of plants
against TMV infection presents a difficult challenge, since no efficient antiviral reagent has
not yet been found. Ribavirin and ningnanmycin are widely used as antiviral reagents against
TMV infection [10,11]. Ningnanmycin and ribavirin have a moderate control effect (50−60%
at 500 µg/mL) against the TMV [12,13]. Clearly, the curatives rate of these antiviral reagents
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is unsatisfactory, and therefore considerable attention was paid towards the screening, design,
synthesis, and use of new compounds that have potential biological activity [14]. Some
progress has been made with the design and use of effective antiviral agents to protect plants
against specific diseases. For example, zinc oxide nanoparticles were found to be effective
to protect tomato plants against the tomato mosaic virus [15]. In addition, salicylic acid and
melatonin act as antiviral agents to protect eggplant against alfalfa mosaic virus without posing
a danger or being hazardous to the environment [16].

Many attempts were made to design and synthesize new and efficient anti-TMV
agents [17–22]. New anti-TMV agents should be designed to have low toxicity, rapid degra-
dation in the environment, and a unique mode of action. Many natural products–based
agrochemicals were assessed for their use as anti-TMV agents. Research has continued to
find potential alternative pesticides that do not pose a hazard to the environment [23–27].
Few in silico studies related to the TMV have been conducted [28–30]. For example, a series
of ureas and thioureas containing heterocyclic compounds (e.g., pyrimidine and piperazine
moieties) were studied to investigate their TMV inhibitors. The molecular docking and
molecular dynamics simulations were used to understand the interaction between the TMV
coat protein and the synthesized compounds. A good agreement was found between the in
silico analysis and the experimental results [28]. However, there is an urgent need to find a
new anti-TMV agent that is capable of preventing such a disease.

The current study aimed to assess the in silico anti-TMV activity of 43 compounds of
antofine analogue, including ningnanmycin (1) and ribavirin (2). The selected compounds
were reported to have varied anti-TMV activity [9,14,24–27,31]. The chemical structures of
the compounds are shown in Table 1. The reactivity of these compounds and their binding
with the tobacco mosaic virus coat protein (TMV-CP) were simulated and compared with
standard anti-TMV agents (e.g., ningnanmycin 1 and ribavirin 2) using the Gaussian 09
software with the B3LYP/6-31G basis set [32] and the molecular operation environment
(MOE) software [33].

Table 1. The inhibition rate (%) of the antofine analogues 1–43 against TMV and their smiles.

Compd Structure Smiles Inhibition Rate (%) Ref

1
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2. Materials and Methods
2.1. Molecule Library Preparation

The inhibition rates (%) of 43 compounds of antofine analogue including ningnan-
mycin (1) and ribavirin (2) (500 µg mL−1) under investigation against TMV were collected
from the literature [9,14,24–27,31] and are summarized in Table 1 along with their smiles.
Compounds 1–43 had the highest anti-TMV activities in these studies, with anti-TMV
activities ranging from 38 to 85 g mL−1. The structures of the compounds involved in the
current study were optimized, and their global reactivity descriptors were estimated using
the density functional theory (DFT) method with the B3LYP/6-31G basis set through the
Gaussian 09 [32,34]. The convergent value of maximum force, root-mean-square (RMS)
force, maximum displacement, and RMS displacement were set by default and achieved
“YES”. All the values were positive after the calculation of the vibrational frequencies of
the compounds. The results indicated that the 43 compounds have stable confirmations.
The affinity of the optimized structures was investigated using the MOE software [33]. The
simulations were performed several times and the variations were marginal.

2.2. Receptor Preparation

The accumulation of TMV coat protein (CP) within chloroplasts can influence photo-
synthesis in infected plants by inhibiting photosystem II [35]. Likewise, in TMV replication,
one or more of the viral proteins direct the assembly of virus replication complexes (VRCs)
in association with the host-derived membranes [36]. The CP improves the movement
of protein (MP), increases the VRC size, and facilitates the replication and spread of the
TMV [37]. TMV-CP was considered to be an initiating viral assembly. Therefore, the TMV-
CP was selected as an important binding site for antiviral agents. The three-dimensional
crystal structure of TMV-CP (PDB ID: 2OM3) [38] was downloaded from the Research
Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) database [39].
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The receptor protein was prepared by leaving water (solvent) molecules within the
active site to ensure the formation of a hydrogen bond between the ligand and the target
using the MOE software. The missing bonds in the protein structure, which were broken
through X-ray diffraction, were corrected, and the protein was protonated. Following
optimization using the assisted model building and energy refinement (Amber 10): Ex-
tended Hückel Theory (EHT) force, the molecular docking of the TMV-CP with the selected
compounds was conducted [40].

2.3. Global Reactivity Descriptors

The correlation between specific theoretical parameters and the inhibitive performance
of the antofine analogues were investigated in silico. Therefore, some of the molecular
properties of the antofine analogues that describe the global reactivity were calculated
using the Gaussian 09 software at B3LYP/6-31G [32]. The parameters calculated were
the highest occupied molecular orbital energy (EHOMO), the lowest unoccupied molecular
orbital energy (ELUMO), the energy gap (∆E = ELUMO − EHOMO), the global electrophilic-
ity index (ω = µ2/2η), the chemical potential (µ = [ELUMO + EHOMO]/2), the chemical
hardness (η = [ELUMO − EHOMO]/2), the chemical softness (s = 1/2η), the nucleophilicity
(N = EHOMO (Nucleophile) − EHOMO (tetracyanoethylene, TCE)), the ionization potential
(IP = −EHOMO), and the electron affinity (EA = −ELUMO) [41].

2.4. Molecular Docking

The MOE software [33] was used to perform molecular docking and scoring calculations.
The resolution for the crystal structure of the TMV-CP (PDB ID: 2OM3) was 4.4 Å. The
receptors were selected as rigid and ligands as flexible for the docking simulation. The root-
mean-square distance (RMSD) in the range of 1.5–3.0 and the energy score of ca. −7 Kcal/mol
were considered as the criteria for the result obtained from the molecular docking [42,43].
Details of the three-dimensional crystal structure (2OM3) of TMV-CP are shown in Table 2.

Table 2. Details of the three-dimensional crystal structure (PDB ID: 2OM3) of TMV-CP.

TMV-CP 3D Structure of TMV-CP

Code 2OM3
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Method Electron Microscopy
Resolution 4.40 Å

Number of residues 158

The binding site residues used as inputs for receptor grid generation during induced-
fit docking included Gln36, Thr37, Gln38, Arg41, Thr42, Gln45, Arg46, Phe87, Asp88, Thr89,
Arg90, Asn91, Arg92, Glu95, and Val114.

2.5. Molecular Dynamics Simulations

The Nosé–Poincaré–Andersen (NPA) method is a real-time Hamiltonian formulation of
isothermal–isobaric molecular dynamics simulation based on a Poincaré time transformation
of the Nosé–Andersen Hamiltonian [44]. It was used to evaluate the MD of ligands [44]. The
optimized system setting included the use of the MMFF94x force field, sphere shape, water
as a solvent, six margins, and deletion of the existing solvent with a distance of more than
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4 Å. During the NPA calculations, the system was equilibrated at 300 K for 100 ps then run for
1500 ps with the time steps 0.002, and the constraints were applied on light bonds.

3. Results and Discussion
3.1. Global Reactivity Descriptors

Analysis of density functional theory descriptors gives more information about the
characteristics of stability, electrophilicity, and nucleophilicity of the compounds. Therefore,
the global reactivity descriptors were calculated for the 43 compounds under investiga-
tion using the DFT method with the B3LYP/6-31G basis set. The results obtained are
summarized in Table 3.

Table 3. The HOMO and LUMO energy, energy gap (∆E), and reactivity indices (η, S, µ,ω, and N) of
the 43 compounds under investigation.

Compd HOMO (eV) LUMO (eV) ∆E (eV) a η (eV) a S µ ω (eV) N (eV)

1 −6.38 −1.63 4.75 2.37 155.96 −4.00 3.38 2.28
2 −6.96 −1.29 5.66 2.83 130.71 −4.12 3.00 1.70
3 −5.23 −0.72 4.51 2.25 164.20 −2.97 1.96 3.43
4 −5.31 −0.86 4.45 2.23 166.34 −3.08 2.14 3.35
5 −5.27 −0.81 4.46 2.23 166.05 −3.04 2.07 3.38
6 −5.04 −0.93 4.11 2.06 180.08 −2.99 2.17 3.61
7 −5.21 −0.67 4.54 2.27 163.26 −2.94 1.91 3.45
8 −5.38 −0.88 4.50 2.25 164.66 −3.13 2.17 3.28
9 −5.50 −0.96 4.54 2.27 163.25 −3.23 2.30 3.16

10 −5.17 −0.78 4.40 2.20 168.38 −2.98 2.01 3.49
11 −5.10 −0.84 4.26 2.13 173.79 −2.97 2.07 3.55
12 −5.17 −0.71 4.46 2.23 166.14 −2.94 1.94 3.49
13 −5.32 −0.85 4.46 2.23 165.86 −3.08 2.13 3.34
14 −5.16 −0.75 4.41 2.21 167.83 −2.95 1.97 3.50
15 −5.10 −0.87 4.24 2.12 174.80 −2.99 2.10 3.55
16 −5.21 −0.79 4.42 2.21 167.42 −3.00 2.04 3.44
17 −5.55 −1.11 4.44 2.22 166.64 −3.33 2.50 3.10
18 −5.37 −1.03 4.34 2.17 170.47 −3.20 2.36 3.28
19 −5.52 −1.51 4.02 2.01 184.41 −3.51 3.08 3.13
20 −5.52 −1.02 4.50 2.25 164.46 −3.27 2.37 3.14
21 −4.94 −0.87 4.06 2.03 182.20 −2.90 2.07 3.72
22 −5.55 −0.96 4.60 2.30 161.10 −3.25 2.30 3.10
23 −5.34 −0.92 4.42 2.21 167.58 −3.13 2.22 3.32
24 −5.39 −0.93 4.45 2.23 166.23 −3.16 2.24 3.27
25 −5.50 −0.93 4.56 2.28 162.22 −3.22 2.27 3.16
26 −5.30 −0.94 4.36 2.18 169.81 −3.12 2.23 3.36
27 −5.27 −0.84 4.43 2.21 167.17 −3.06 2.11 3.39
28 −5.37 −0.82 4.54 2.27 163.00 −3.09 2.11 3.29
29 −5.39 −0.87 4.52 2.26 163.96 −3.13 2.17 3.27
30 −5.42 −0.90 4.53 2.26 163.59 −3.16 2.21 3.23
31 −5.25 −0.82 4.42 2.21 167.35 −3.03 2.08 3.41
32 −5.29 −0.84 4.45 2.22 166.48 −3.06 2.11 3.37
33 −5.34 −0.91 4.43 2.21 167.17 −3.13 2.21 3.31
34 −5.38 −0.93 4.45 2.22 166.43 −3.16 2.24 3.28
35 −5.55 −1.13 4.42 2.21 167.47 −3.34 2.53 3.10
36 −5.57 −1.15 4.42 2.21 167.52 −3.36 2.55 3.09
37 −5.51 −1.07 4.44 2.22 166.74 −3.29 2.44 3.15
38 −5.53 −1.09 4.44 2.22 166.72 −3.31 2.46 3.13
39 −5.29 −0.83 4.46 2.23 166.03 −3.06 2.10 3.37
40 −5.38 −0.93 4.45 2.22 166.43 −3.16 2.24 3.28
41 −5.34 −0.90 4.44 2.22 166.69 −3.12 2.20 3.31
42 −5.42 −0.88 4.55 2.27 162.85 −3.15 2.18 3.23
43 −5.65 −1.26 4.39 2.20 168.54 −3.45 2.71 3.01

Note: ∆E: energy gap, η: chemical hardness, S: chemical softness, µ: chemical potential,ω: electrophilicity, and
N: nucleophilicity.
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Table 3 shows that all compounds have a similar trend in all descriptors except for
21 and the reference compounds 1 and 2. Affinity (A = −ELUMO) and potential ionization
(I = −EHOMO) are related to one-electron orbital energies of HOMO and LUMO, respec-
tively. They can be used to measure electronegativity and hardness. Compound 21 has the
lowest potential ionization (4.94 eV) while the reference compounds 1 and 2 have the larger
affinity (1.63 eV and 1.29 eV, respectively). Therefore, compound 21 acts as a good electron
donor (the strongest nucleophile, N = 3.80 eV) while the reference compounds 1 and 2 act
as good electron acceptors (the strongest electrophiles;ω = 3.38 and 3.00 eV, respectively).

The ∆E is used to measure the chemical reactivity and the kinetic stability of molecules.
A large ∆E gap indicates high kinetic stability, low reactivity, and a poorly polarizable
molecule (i.e., a weak reactivity). The lowest ∆E value was observed for compounds 19 and
21 (4.02 and 4.06 eV, respectively), and the highest ∆E was seen for the reference compounds
1 and 2 (4.75 and 5.67 eV, respectively). Such a result indicates that compounds 19 and 21
are highly polarizable and therefore develop a high reactivity. The high chemical hardness
and low chemical softness are indicators of the overall stability of the system. The lowest η
was observed for compounds 19 and 21 (2.01 and 2.03 eV, respectively), while the reference
compounds 1 and 2 showed the highest chemical hardness as 2.37 and 2.83 eV, respectively.
On the other hand, compounds 19 and 21 showed the highest chemical softness (S = 184.41
and 182.20), and the reference compounds 1 and 2 showed the smallest S values (155.96
and 130.71, respectively). Clearly, compounds 19 and 21 are the softest and most reactive
molecules compared to the others.

The electronic chemical potential (µ) reflects the charge transfer from a system with
a high electronic chemical potential to another with a lower µ. Compound 21 has the
highest µ (−2.90 eV), while the references 1 and 2 have the lowest values as −4.00 eV and
−4.12 eV, respectively. According to these results, 21 can exchange electron density with
the environment efficiently and better than other compounds.

In terms of nucleophilicity, organic molecules can be classified as strong (N > 3 eV),
moderate (2.0 eV ≤ N ≤ 3.0 eV), and marginal nucleophiles (N < 2.0 eV) [41,45]. The
biological activity of the antofine analogues can be predicted using the electrophilicity
(ω) and nucleophilicity (N) indexes. In addition, electrophilicity (ω) provides important
information about the reactivity of organic compounds that are involved in polar reactions
(ω > 2.0 eV) [41,45]. The results obtained indicated that compound 21 (N = 3.72 eV) is
the strongest nucleophile, while the reference compounds 1 and 2 (ω = 3.38 and 3.00 eV,
respectively) are the strongest electrophiles.

3.2. Molecular Docking

The 43 selected compounds were docked into the binding site of the TMV-CP (PDB
ID: 2OM3) to assess their abilities to inhibit the disease caused by the virus. The results
obtained are summarized in Table 4.

The molecular docking score of the 43 compounds varied from −5.29 to −7.93 kcal/mol,
and the RMSD ranged between 0.71 and 2.83 Å. The ligand binds best with a specific receptor
when RMSD is close to 2 Å with an energy score that ≤−7 kcal/mol [42,43]. These two
values were used as criteria to validate the molecular docking results. Table 5 shows the
results obtained for only the compounds that gave valid molecular docking scores.
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Table 4. Molecular docking score and RMSD of the 43 compounds under investigation.

Compd Score
(kcal/mol) RMSD (Å) Compd Score

(kcal/mol) RMSD (Å)

1 −6.98 2.83 25 −6.25 1.36
2 −5.29 2.07 26 −6.39 1.70
3 −6.30 1.21 23 −6.59 1.96
4 −6.16 1.43 24 −6.60 1.72
5 −6.73 1.03 27 −6.41 0.71
6 −6.41 2.05 28 −6.05 1.50
7 −6.07 1.24 29 −6.30 1.52
8 −6.40 1.16 30 −5.86 1.89
9 −6.24 2.04 31 −6.49 1.26
10 −6.18 1.67 32 −6.35 1.59
11 −6.28 2.27 33 −6.72 0.71
12 −6.26 1.34 34 −6.71 1.63
13 −6.08 2.43 35 −6.49 1.59
14 −6.28 1.22 36 −6.59 1.01
15 −6.65 1.66 37 −6.70 1.08
16 −6.39 1.41 38 −6.58 1.91
17 −6.37 1.90 39 −7.07 1.66
18 −6.72 1.64 40 −6.72 2.78
19 −6.66 1.51 41 −6.40 1.22
20 −6.73 2.30 42 −6.32 1.67
21 −7.93 2.37 43 −6.23 1.52
22 −7.25 2.31

Table 5. Molecular docking score, RMSD, and binding affinity for the compounds showed valid
molecular docking scores with 2OM3.

Compd Score
(kcal/mol)

RMSD
(Å)

Bonds between Atoms of Compounds and Residues of Active Site of 2OM3

Compd
Atoms

Receptor
Atoms

Receptor
Residues Interaction d (Å)

E
(kcal/mol)

Total E
(kcal/mol)

1 −6.98 2.83

N OG1 Thr42 H—D 3.01 −0.8

−37.59
O OE1 Gln38 H—D 2.80 −2.1
O NH2 Arg90 H—A 3.08 −2.7
N NH1 Arg90 H—A 3.00 −2.3

2 −5.29 2.07
O OE1 Gln38 H—D 2.86 −2.3 −26.92O N Asn91 H—A 3.16 −1.9

3 −6.30 1.21 — — — — — — −31.46
4 −6.16 1.43 — — — — — — −31.92
6 −6.41 2.05 6-ring NH1 Arg92 π-cation 3.52 −1.1 −33.66

17 −6.37 1.90 O N Asn91 H—A 3.11 −1.3 −32.72
18 −6.72 1.64 N NH2 Arg90 H—A 3.15 −5.4 −36.16

19 −6.66 1.51
N OE1 Gln38 H—D 3.26 −1.0 −34.24O N Asn91 H—A 3.19 −1.0

20 −6.73 2.30 — — — — — — −32.50

21 −7.93 2.37

O NE Arg92 H—A 3.14 −3.0

−44.72
O NH2 Arg92 H—A 3.01 −2.3
O NH2 Arg90 H—A 2.92 −1.2
N NH2 Arg90 H—A 3.31 −2.3

22 −7.25 2.32
O NE Arg92 H—A 3.00 −3.7

−39.90O NH2 Arg92 H—A 3.20 −0.8
O NH2 Arg90 H—A 3.02 −1.3

23 −6.59 1.96 N NH2 Arg90 H—A 3.26 −2.0 −35.28
24 −6.60 1.72 O N Asn91 H—A 3.13 −1.3 −35.19
38 −6.58 1.91 N OD1 Asn91 H—D 2.87 −4.5 −33.62

d: distance, H—D: hydrogen doner, and H—A: hydrogen acceptor.
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Compounds, 1, 21, and 22 showed the highest docking scores of −6.98, −7.93, and
−7.25 kcal/mol, respectively (i.e., they have the highest inhibitory potential). Compound
21 docked with a binding affinity of −44.72 kcal/mol, which is the highest compared with
the others and interacted with Arg90 and Arg92. Compound 22 docked with a binding
affinity of −39.90 kcal/mol and interacted with Arg90 and Arg92. Compound 1 docked
with a binding affinity of −37.59 kcal/mol and interacted with Thr42, Gln38, and Arg90.
The docking binding affinities were lower for the other compounds.

Compounds 20–22 have similar structures since they contain esters and long-chain
alkyl groups but have different substituents on benzyl rings. However, they had different
binding affinities. Compound 20 gave the lowest binding affinity among the three com-
pounds. It seems that the effect of the donor groups NMe2 and OCH3, attached at the para
position of the benzyl moiety within the skeleton of the molecules, caused 21 and 22 to
interact more significantly. Figure 1 represents the interactions of compounds 1 and 20−22
with 2OM3.
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3.3. Molecular Dynamics Simulations

The stability and dependable binding affinities of the docked receptor-ligand com-
plexes of the top four promising inhibitors, namely, compounds 1 and 20–22, were analyzed
further using the MD simulations. Figure 2 shows the stability of the four receptor–ligand
complexes with time. The four complexes showed the same trends and were stable in the
simulation process during the same period of time and fluctuated between 0 and 1500 s
before they stabilized.
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function of time.

Binding Free Energy Calculations

In the molecular mechanics generalized born surface area (MM/GBSA) calculations,
the affinity of one inhibitor binding to the receptor could be estimated using the snapshots
from a trajectory of the complex. The absolute binding free energies of 1 and 20–22, using
the MM/GBSA technique, are shown in Table 6.

Table 6. Calculated MM-GBSA binding energies (kcal/mol) for compounds 1 and 20–22 against
2OM3 over MD simulations.

Compd MM-GBSA

1 −42.14
20 −19.95
21 −33.71
22 −49.95

Compound 20 showed a relatively weak binding energy compared to the others. The
reported anti-TMV activities of compounds 1 and 20−22 were 69.3, 57.6, 55.3, and 50.0%,
respectively (Table 1). Clearly, the predicted binding free energy of these four compounds
was in good agreement with the inhibition results. Compound 22 showed a great binding
energy, while 1 and 21 showed moderate binding energy.

Generally, the molecular recognition of the ligand is important if the interaction energy
between a residue and a ligand is lower than −0.8 kcal/mol [46]. Compound 1 has a
favorable energy contribution (−1.5 to −3.1 kcal/mol) originating predominately from a
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Glu95 H-donor (−3.1 and −1.5 kcal/mol), whereas the other energy contributions originate
from an H2O H-donor (−0.3 to −2.3 kcal/mol) and H-acceptor (−1.1 to −2.2 kcal/mol).

Figure 3 shows that compound 22 has a favorable energy contribution of −1.6 to
−1.9 kcal/mol, which originates predominately from an Arg90 and Thr42 by an H2O
through H-acceptor (−1.9 and −1.6 kcal/mol). Compound 21 has interactions with an
Asp88 and Thr89 by an H2O through H-acceptor (−0.9 and −1.8 kcal/mol). Compound 20
has interactions with an Asn91 through H-acceptor (−1.4 kcal/mol) and an H2O through
H-acceptor (−0.9 kcal/mol) and pi-H (−1.4 kcal/mol).
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On the basis of the analysis performed, it appears that compound 21 interacted strongly
with the 2OM3 mainly through an Asp88 and Thr89, whereas compound 22 interacted with
2OM3 through an Arg90 and Thr42. However, compound 20 has a single interaction with
the 2OM3 through an Asn91.

4. Conclusions

The in silico anti-tobacco mosaic virus activity of 43 antofine analogues was assessed.
The docking results showed that compounds 20–22 that contain an ester group gave the
lowest energy score and good root-mean-square distance. These compounds showed good
binding results, particularly the ones containing an ester unit and a long-chain alkyl groups
along with an electron-donating substituent on benzyl moiety. These functional groups
facilitate the interaction with the active site of the tobacco mosaic virus coat protein (2OM3).
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