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Abstract: In the life sciences, automation solutions are primarily established in the field of drug
discovery. However, there is also an increasing need for automated solutions in the field of medical
diagnostics, e.g., for the determination of vitamins, medication or drug abuse. While the actual metro-
logical determination is highly automated today, the necessary sample preparation processes are still
mainly carried out manually. In the laboratory, flexible solutions are required that can be used to deter-
mine different target substances in different matrices. A suitable system based on an automated liquid
handler was implemented. It has been tested and validated for the determination of three cannabi-
noid metabolites in blood, urine and saliva. To extract ∆9-tetrahydrocannabinol-D3 (∆9-THC-D3),
11-hydroxy-∆9-tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-∆9-tetrahydrocannabinol
(THC-COOH) from serum, urine and saliva both rapidly and cost-effectively, three sample prepara-
tion methods automated with a liquid handling robot are presented in this article, the basic framework
of which is an identical SPE method so that they can be quickly exchanged against each other when
the matrix is changed. If necessary, the three matrices could also be prepared in parallel. For the
sensitive detection of analytes, protein precipitation is used when preparing serum before SPE and
basic hydrolysis is used for urine to cleave the glucuronide conjugate. Recoveries of developed
methods are >77%. Coefficients of variation are <4%. LODs are below 1 ng/mL and a comparison
with the manual process shows a significant cost reduction.

Keywords: automation; liquid handling; sample preparation; biological matrices; micro solid-phase
extraction; SPE; cannabinoid determination; LC-MS; cost reduction

1. Introduction

In contrast to industrial applications, automation solutions in life science applications
are not yet widespread. The development of automated systems has long been driven
by the pharmaceutical industry’s need for faster and more efficient drug discovery. A
large proportion of fully automated systems are already in use here. In contrast, the
automation of classic laboratory processes is still in its infancy. Metrological processes
are usually highly automated. Extensive sample preparation processes are often used to
ensure optimal separation of the target substances from the surrounding matrices and
to protect the analytical devices used from contamination. These sample preparation
methods include extractions, centrifugations, purifications, changing the composition of
solvents or derivatizations. If compounds are to be determined in biological matrices,
additional methods, e.g., for the separation of proteins, may be required. The preparation
and processing of samples are still usually performed manually today. On the one hand,
this limits the number of samples that can be processed, but on the other hand, personnel
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is also brought into contact with sometimes dangerous or infectious materials. Due to the
repetitive activities, there are also problems regarding work ergonomic issues.

The applications that are becoming increasingly important include the determination
of ∆9-tetrahydrocannabinol (THC) and its metabolites in different biological matrices.
THC is the most commonly used drug of abuse [1], and the increasing use of (synthetic)
cannabinoids as therapeutic agents, for example, in cancer and pain therapy [2,3], as well
as the trend of using cannabinoids in cosmetics and food lead to an increased need for
suitable detection methods [4].

Depending on the aim of the investigation, different matrices, such as blood, serum or
plasma, urine, saliva and hair can be used for the quantitative determination of cannabis
metabolites. The choice of the matrix depends on the type of possible sampling (invasive/non-
invasive) and the detectability/half-life of the analytes in the respective matrix, which
is primarily determined by the metabolism of THC. The three primary metabolites are
∆9-tetrahydrocannabinol (THC), 11-hydroxy-∆9-tetrahydrocannabinol (THC-OH) and 11-
nor-9-carboxy-∆9-tetrahydrocannabinol (THC-COOH).

∆9-tetrahydrocannabinol acid A (THCA-A), which occurs naturally in hemp, is con-
verted to ∆9-tetrahydrocannabinol by decarboxylation when smoked and is absorbed
by the body, where it exerts its intoxicating effects. THC is metabolized in the liver by
cytochrome P-450 enzymes into 11-hydroxy-∆9-tetrahydrocannabinol, which is also psy-
choactive [5,6]. Oxidation produces the third metabolite commonly used to detect cannabis
use, 11-nor-9-carboxy-∆9-tetrahydrocannabinol. THC-COOH is not psychoactive and is
glucuronidated and excreted by a phase 2 metabolism in the kidneys [7,8].

According to this metabolic pathway, saliva is mainly used for the detection of ∆9-
THC, since the metabolites THC-OH and THC-COOH enter saliva through the mucous
membranes only in low concentrations (<0.5 ng/mL) [9,10] whereas the THC concentration
in saliva shortly after inhalation of a cannabis cigarette can be up to 1000 ng/mL [11]. There-
fore, saliva is mainly suitable for detecting the just preceding cannabis consumption [12,13].
Besides THC, mainly THC-COOH is detectable in plasma. Both metabolites are bound
to plasma proteins. The high lipophilicity of THC and THC-OH causes the high tissue
mobility and subsequent storage of the analytes in the adipose tissue, and at the same
time lowers the concentration of the metabolites in the body fluids and enables the long
detectability of previous cannabis use due to the gradual release of the stored cannabinoids
from the adipose tissue [14–16].

However, most ingested THC, approximately 80–90%, is excreted within the first
5 days, in the form of its metabolites THC-OH and THC-COOH [17]; 65% is excreted in the
feces (mainly THC-OH) and 20% (mainly THC-COOH) is excreted in the urine [15,18]. To
facilitate excretion, some of the metabolites are glucuronidated, which leads to an increase
in the lipophilic metabolites’ water solubility [16].

Accordingly, urine and feces are also suitable for detecting THC consumption, as they
contain the metabolites of THC. A disadvantage of urine compared to saliva is that urine
sampling is usually not performed under visual control to maintain privacy, so there is a
risk of sample falsification, for example, by exchanging samples or diluting the sample [19].
This problem does not exist when saliva is used. Specimen delivery can be performed
directly under the supervision of the specimen collector [20]. A significant advantage of
urine and saliva is the non-invasiveness of sample collection, which is not present when
using blood, plasma, or serum.

Quantification of THC and metabolites is currently predominantly performed by
liquid chromatography mass spectrometry (LC-MS) [21] or liquid chromatography tandem
mass spectrometry (LC-MS/MS) [22–30], as analysis times are short and no derivatization
is required compared to the previously used gas chromatography mass spectrometry
(GC-MS) [5] or gas chromatography tandem mass spectrometry (GC-MS/MS) [31–33].

However, the quicker analysis time for quantification also implies that sample prepa-
ration is increasingly becoming the limiting factor in reducing overall analysis time. Con-
sequently, there is great interest in performing sample preparation methods in an auto-



Appl. Sci. 2022, 12, 2838 3 of 19

mated manner to increase efficiency. Automation increases throughput, staff availability in
times of skill shortages due to hands-off times and reduces errors due to manual sample
handling [19].

1.1. Serum, Plasma, Whole Blood

For the purification of serum, plasma, and whole blood samples for the quantifica-
tion of THC and metabolites, the most commonly used methods are protein precipitation
(PPT) [22], solid-phase extraction (SPE) [24], the combination of PPT + SPE [8,21,27,29,32],
liquid-liquid extraction (LLE) [25,28,30,31] and online solid-phase extraction [26] are
used. Sample preparation can be performed manually [8,27,29,33], partially automated or
fully automated.

Toennes et al. manually diluted serum samples and added the internal standard [24].
The subsequent SPE was automated using the GX-274 ASPEC from Gilson Inc. (Middleton,
WI, USA). Jagerdeo et al. also automated the extraction step in the form of an online
SPE [26]. The preparatory protein precipitation, including centrifugation, concentration,
pH adjustment and recentrifugation are performed manually. Full automation of all
sample preparation steps, including protein precipitation with centrifugation and final
evaporation, was presented by Andersen et al. using a Tecan EVO 200 [21]. Another fully
automated method using the Tecan EVO 200 was proposed by Kristoffersen et al. [28].
In the presented method, whole blood samples are automatically prepared by supported
liquid extraction (SLE).

1.2. Urine

SPE [10,34–38], LLE [39,40] and SLE [35,41,42] are used most frequently for urine
purification in cannabinoid determination. A general increase in sensitivity is achieved
in many methods by a concentration step using evaporation [10,36,37,41–44], while to
specifically increase sensitivity for THC-COOH, electrospray ionization is performed in
negative mode [45], or by a combination of surface-activated chemical ionization and
electrospray ionization [46]. A specific goal in urine sample preparation is to break the
bond between glucuronide conjugate and compound, which can be performed by enzy-
matic hydrolysis with beta-glucuronidase [40] or basic hydrolysis, e.g., with NaOH or
KOH, before extraction [10,16,38,47–50]. For optimal cleavage of the glucuronide con-
jugate of THC, THC-OH and THC-COOH, tandem hydrolysis (alkaline and enzymatic)
has been proposed [3,34,45]. In addition to the numerous manual sample preparation
methods [10,37,38,42,47,51], there are only a few fully automated methods. Similar to
serum sample preparation, semi-automated methods are already more established, where
the extraction step after hydrolysis is taken over by a liquid handler [36,40,52] or replaced
by online extraction [48,49]. Examples of full automation include the Prep and Shoot
approach proposed by Cabrices et al. in which enzymatic hydrolysis and dilution were
performed using the Gerstel MultiPurpose Sampler [53], or the methods of Gundersen et al.
and the applications of Biotage and Tecan [41,43] in which the sample preparation steps
of hydrolysis, SLE or SPE, and evaporation are performed using the Tecan Freedom Evo
100 liquid handling system.

1.3. Saliva

For the extraction of THC and metabolites from saliva, SPE [10,54–56], LLE [57,58],
SLE [19,59] or MEPS (Microextraction by packed sorbents), which are immobilized in a
syringe [60] are used. In some methods, a PPT with centrifugation is additionally performed
before the extraction [60–62] or a dilution is performed [54]. Coulter et al. also performed
basic hydrolysis prior to the SPE to cleave off the glucuronide conjugate [56]. Sample
preparation is mostly performed manually [10,56–58,60–63]. Choi, Badawi and Choncheiro
et al. use automated extractions with the Gilson AspecXL or the Zymark Rapid Trace. The
subsequent evaporation step is again performed manually [54,55,64]. Only in the sample
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preparation method presented by Valen et al. both, SLE and the subsequent evaporation
are fully automated on the Tecan Freedom EVO 200 [19].

Due to the increasing demand for the determination of THC and its metabolites, there
is a need to develop suitable systems that allow fully automated sample preparation. The
goal is primarily to develop flexible concepts that allow adaptation to different matrices
and ideally also to different applications and target substances to be detected without major
changes to the overall system. Minor adaptations of the required methods (e.g., labware,
pre-connection of a PPT) are unavoidable due to the different and complex composition
of matrices for sensitive detection of analytes but should be considered in the system
concept. Solid-phase extraction-based methods are becoming increasingly important in
sample preparation. The procedures can be easily automated. By choosing suitable solid
phase materials, adaptation to different target substances is easily possible. Thus, we
describe the development and validation of a flexible system based on a Biomek i7 liquid
handling platform.

2. Materials and Methods
2.1. Chemicals and Reagents

The following compounds were purchased from Merck KGaA (Darmstadt, Germany):
11-nor-9-carboxy-∆9-THC-D3, 11-hydroxy-∆9-THC-D3, ∆9-THC-D3, 11-nor-9-carboxy-∆9-
THC, 11-hydroxy-∆9-THC, 11-nor-∆9-THC-9-carboxylic acid glucuronide solution, zinc
sulfate solution, Artificial Saliva for Pharmaceutical Research, and Sigmatrix Urine Diluent.
We used porcine serum samples obtained from the State Office for Agriculture, Food Safety
and Fishing (LALLF, Rostock, Germany) as serum samples. Methanol and formic acid in
LC-MS grade, acetonitrile in gradient grade quality, and acetic acid 100% were obtained
from Carl Roth GmbH (Karlsruhe, Germany). Ammonium formate solution was purchased
from Agilent Technologies (Santa Clara, CA, USA). High purity water was obtained using
a Milli-Q system (Merck Millipore, Darmstadt, Germany).

For the preparation of the internal standard, a stock solution containing 10 mg/mL of 11-
nor-9-carboxy-∆9-THC-D3 and 11-hydroxy-∆9-THC-D3 in acetonitrile and a 10 mg/mL analyte
stock solution consisting of ∆9-THC-D3, 11-nor-9-carboxy-∆9-THC, and 11-hydroxy-∆9-THC
was first prepared. For validation of the urine sample preparation method, an additional
10 mg/mL of 11-nor-∆9-THC-9-carboxylic acid glucuronide was added to the analyte
solution. The stock solutions were used to prepare the internal standard solution according
to the dilution factor of each method. Stock solutions were stored in glass vials at −15 ◦C.
The internal standard solution was prepared daily from stock solutions. According to the
manufacturer, the analytes are stable for up to 4 weeks at different temperatures in the
range of −15 ◦C to 40 ◦C [65].

2.2. Instrumentation for Automatic Sample Preparation

A Biomek i7 workstation (Beckman Coulter Life Sciences, Indianapolis, IN, USA) was
used for sample preparation. For optimal preparation of serum, urine and saliva samples,
the workstation was complemented by a VSpin centrifuge (Agilent Technologies, Santa
Clara, CA, USA), an Incubator Shaker, a Static and Shaking Peltier for Biomek 4000 Fx
Nx (all INHECO Industrial Heating & Cooling GmbH, Martinsried, Germany), a Positive
Pressure Unit V4, a Self Refilling Quarter Reservoir and a 3D Tilting ALP (all amplius
GmbH, Rostock, Germany, see Figure 1).
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Figure 1. Integrated devices (a) Biomek i7 workstation (Beckman Coulter Life Sciences, Indianapolis,
IN, USA) with incubator (in front, white arrow; INHECO Industrial Heating & Cooling GmbH,
Martinsried, Germany) and centrifuge (back, black arrow; Agilent Technologies, Santa Clara, CA,
USA) (b) Positive Pressure Unit V4 (amplius GmbH, Rostock, Germany) (c) Self Refilling Quarter
Reservoir (amplius GmbH, Rostock, Germany) (d) Static Peltier ALP (INHECO Industrial Heating &
Cooling GmbH, Martinsried, Germany) (e) 3D Tilting ALP (amplius GmbH, Rostock, Germany).
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The integrated devices are accessible from at least one of the two gripper arms of the
Biomek i7 workstation (Beckman Coulter Life Sciences, Indianapolis, IN, USA), enabling
a fully automated sample preparation process. Serum, urine, or saliva samples were
provided in 1.5 mL vials (Eppendorf AG, Hamburg, Germany) in a custom designed
adapter (amplius GmbH, Rostock, Germany) provided with a fixation for the lids on the
deck. The standards were stored in 1.5 mL glass vials (Agilent Technologies, Santa Clara,
CA, USA) in a special aluminum adapter (amplius GmbH, Rostock, Germany) for cooling
and reduction of evaporation on the Static Peltier ALP and closed with a lid. The glacial
acetic acid required for the urine method was also stored in this adapter. 1.5 mL vials were
also used for protein precipitation and held in place in a centrifugable adapter (amplius
GmbH, Rostock, Germany). The choice of labware for hydrolysis was subject to the height
restriction of the incubator (max. 23 mm), the relatively high sample volume of 870 µL
and the goal of being able to process as many samples as possible simultaneously. The
48-well CellCulture Plate (Nunc/ThermoFisher, Waltham, MA, USA) was chosen as the
best solution to satisfy these three requirements. The Strata X-C µElution 96-well SPE plate
was used for the extraction. The eluate was collected in a 96-well Collection Plate (350 µL;
conical) (both plates Phenomenex, Torrance, CA, USA). Purified samples were provided in
the autosampler in 1.5 mL glass vials (Agilent Technologies, Santa Clara, CA, USA). Pipette
tips of 90, 230 and 1070 µL (Beckman Coulter Life Sciences, Indianapolis, IN, USA) were
used for liquid transfer.

2.3. Automated Sample Preparation

All sample preparation steps were performed using the Biomek i7 Workstation. The
work steps for the serum, saliva and urine matrices are summarized in Figure 2. A separate
method was created for each matrix, but the basis of the three methods is a solid-phase
extraction using the Strata X-C µElution Plate (Phenomenex, Torrance, CA, USA).

Saliva samples were loaded directly onto the SPE plate without further sample prepa-
ration methods. For the purification of urine samples, additional hydrolysis was performed
prior to SPE to cleave off the glucuronide conjugate, whereas, for serum samples, protein
precipitation was performed to precipitate the proteins present in the serum.

For protein precipitation, 500 µL MeOH from the Self Refilling Quarter Reservoir (see
Figure 1) and 200 µL 0.2 M ZnSO4 to improve protein aggregation from an additional 40 mL
reservoir are pipetted with the Span-8 Pipetting Head into 1.5 mL glass vials provided for
protein precipitation (see Figure 2). Subsequently, the aluminum adapter was transported
from the Static Peltier ALP to the 3D Tilting ALP, which was tilted 10◦ and the standard
was aspirated. The aim of tilting was to enable the robot to empty vials with valuable
liquids as completely as possible. An alternative was 1.5 mL High Recovery Vials (Agilent
Technologies, Santa Clara, CA, USA), which were used in the urine and saliva method
to expedite the pipetting process but are only suitable to provide small sample volumes
(in our case 50 µL internal standard). The serum sample was added last, to allow rapid
in-pipette mixing during the previous transfer steps without clogging. For optimal mixing
and dissolution of plasma protein-bound analytes, the vials are shaken on the Shake
Peltier ALP for 1 min at 1500 rpm orbital rotation; then transported to the centrifuge and
centrifuged for 4 min at 3000 rpm. At the same time, the solid phase extraction cycle starts
with the conditioning and equilibration of the sorbent bed, so that after centrifugation
the supernatant can be removed directly and transferred to the SPE plates. A similar
procedure was used for basic hydrolysis in the preparation of urine samples. After adding
800 µL urine, 50 µL internal standard and 20 µL NaOH and loading the incubator with the
hydrolytic sample filled Greiner 48 well plate, the SPE process starts during the 15-min
incubation time. At the end of the incubation at 60 ◦C, the 48 well Greiner plate was
removed by the second gripper arm of the Biomek i7 workstation and the basic hydrolysate
was neutralized by the addition of 195 µL of glacial acetic acid, which was stored in the
refrigerated aluminum adapter on the Static Peltier ALP, as were the standards. For saliva,
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50 µL of internal standard was added directly to the already applied 400 µL saliva sample
in the wells of the Strata X-C µElution Plate.
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After the Load step, the sorbent was washed in two steps each with 200 µL of 0.1 N
Acetic Acid in H2O and 200 µL of 0.1 N Acetic Acid in acetonitrile. The purified analytes
in the sorbent bed were eluted by a 2-fold transfer of 2% Acetic Acid in acetonitrile with
25 µL each for serum samples and 55 µL for saliva and urine samples to increase recovery.

Between all liquid transfers, positive pressure is applied to the Strata X-C µElution
plate using the Positive Pressure Unit V4.
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In preparation for injection with the LC-MS autosampler, samples eluted into an MTP
plate were transferred to 1.5 mL glass vials with micro vial inserts to complete sample
preparation, containing either 25 µL (serum) or 40 µL (saliva; urine) eluate. Finally, water
was added to the eluate to correspond with the mobile phase. The deck layouts created
with the Biomek software for the preparation of 96 serum, urine and saliva samples are
shown in Figure 3.
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Figure 3. (a) Deck layout serum (b) Deck layout urine (c) Deck layout saliva (A) Adapter for
Eppendorf Vials (B) Adapter for Protein Precipitation (C) Aluminum Adapter for Internal Standards
(D) Strata X-C µElution 96-well SPE plate and 96-well elution plate (E) Aluminum adapter with
1.5 mL vials for dilution (F) Tip boxes (G) Reservoirs.
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The pipetting and transport parameters of the Biomek i7 Workstation were carefully
optimized for each transfer step to achieve the highest possible reproducibility and accu-
racy of results and to ensure the highest possible process reliability. An example of this
optimization is the greatly reduced aspiration speed for gentle removal of supernatant after
centrifugation of serum samples or when pipetting viscous samples.

In this context, the calibration required for the quantification of the samples was
also pipetted by the Biomek i7 Workstation in order to exclude possible deviations in the
pipetting volume, for example, due to deviating handling of slightly running or viscous
liquids and a deviating transferred liquid volume from the beginning.

Achieving the highest possible overall concentration factor was the objective when
choosing method parameters but especially the volume parameters (see Figure 2) were
subject to several restrictions.

In protein precipitation, the maximum possible volume was limited to 1.5 mL (due to
the 1.5 mL vials suitable for centrifugation). A higher ratio of organic solvent to sample
results in more stable protein aggregation. This has a direct impact on the removal of
the supernatant. To ensure a high concentration rate, a maximum sample volume should
be transferred to the sorbent bed without any protein aggregate contaminations. A total
volume of 950 µL including a 200 µL serum sample was found to be most suitable (as
previously shown in [66]). Volumes used for hydrolysis were determined based on very
similar constraints.

For the saliva method, the final 400 µL load volume was found to be the best option
between maximizing the load volume and not overloading the sorbent bed. Again, elution
was performed using the smallest volume possible. For serum, a total elution volume of
50 µL acetonitrile was sufficient for complete elution of analytes, whereas in the saliva and
urine method the double addition of 55 µL acetonitrile was necessary. The final mixing
step of eluate and water was identified as a trade-off between the maximum volume
withdrawable from the plate and the minimum filling level of 1.5 mL vials required in the
autosampler. Since a higher volume was used for eluting urine and saliva samples, this
was also used and transferred (e.g., for multiple injections).

2.4. Liquid Chromatography Conditions

The chromatographic system consisted of a 1260 Binary Pump, a 1290 Multisampler
and a TCC SL column oven from Agilent Technologies (Santa Clara, CA, USA). The column
used was the Zorbax Extend C18, Rapid Resolution HAT, 2.1 × 50 mm, 1.8-micron, 600 bar
from Agilent Technologies (Santa Clara, CA, USA). The column temperature was 50 ◦C at
a constant flow of 0.4 mL/min. Mobile phase A consisted of 5 mM ammonium formate
in water containing 0.1% formic acid and mobile phase B consisted of 5 mM ammonium
formate in methanol containing 0.1% formic acid. A gradient elution with the following
composition was used: 0–0.1 min 65% B, 0.1–5.5 min 65–95% B, 6–6.5 min 95% B, and
6.5–10 min 95–65% B to ensure column re-equilibration. The injection volume was 10 µL.

2.5. Mass Spectrometry

Mass spectrometry was performed using a Q-TOF G6540A (Agilent Technologies,
Santa Clara, CA, USA). Ionization was performed using an Agilent Jetstream electrospray
ion source in positive mode. The following optimized ionization parameters were used:
desolvation gas temperature was 350 ◦C, drying gas flow was 13 L/min, sheath gas
temperature was 325 ◦C, and sheath gas flow was 11 L/min. The Capillary Voltage, Nozzle
Voltage and the two applied Fragmentor Voltages were 4500 V, 500 V and 120/150 V,
respectively. For the Reference Mass Correction, m/z 121 and 922 were used. Agilent
MassHunter Data Acquisition and Quantitative Analysis software were used to perform
and analyze the measurements.
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2.6. Method Validation

The methods were validated using the parameters of linearity, stability, recovery, within-
laboratory precision, measurement precision, limit of detection and limit of quantification [67,68].

Short-term temperature stability was checked for a period of 24 h by multiple injections
of a prepared analyte solution stored in glass vials at room temperature. To determine
recovery, 25 samples were processed and analyzed according to the sample preparation
method. Within-laboratory precision was investigated by preparing 10 samples each
on 5 different days. To determine the measurement precision, a sample was measured
25 times. Since the elution volume of 50/110 µL is not sufficient for injecting the sample
25 times, the sample was pooled from 25 samples.

For the determination of the limit of detection and limit of quantification, 10 samples
were prepared in which the sample matrix was replaced by water and only the internal
standard was added during sample preparation. The analytical limit of detection and limit
of quantification was calculated from the mean of the blank value added to three and ten
times the standard deviation, respectively. The method detection limit was calculated from
the analytical detection limit by dividing by the dilution or concentration factor of the
sample preparation method and describes the real detectable concentration in a sample. In
analogy, the method quantification limit is calculated by dividing the analytical limit of
quantification by the dilution or concentration factor. The dilution factor was 0.56 for the
serum sample preparation method, concentration factors were 2.05 for the urine sample
preparation method and 1.82 for the saliva sample preparation method.

2.7. Evaluation under Economic Criteria

In order to be able to provide a statement about the economic efficiency of the methods,
the costs per sample were calculated and compared with the costs for the manual execution
of the sample preparation. For this purpose, the investment costs for the purchase of
the equipment, the operating costs and the time required to perform the methods were
determined. A more detailed description of the calculation method can be found in [66].

3. Results
3.1. Validation Results

The results of the automated pipetted calibration are shown in Figure 4. The calibra-
tion curves are linear and show coefficients of determination of R2 > 0.999. In addition,
chromatograms and spectra for the analytes under the respective calibration curve are
shown as examples in Figure 4. Samples are stable for the 24 h period required for sample
preparation and analysis. Peak area size is not undergoing significant changes in accordance
with the manufacturer’s specifications. According to Christophersen and Kneisel et al., the
material of the container, plastic and polypropylene or glass is more crucial for the recovery
of the analytes, as they are lipophilic and adhere to the walls of polypropylene and plastic
containers [69,70].

The results of the validation are shown in Tables 1–3. The recoveries for ∆9-THC-D3,
THC-OH and THC-COOH from serum range from 94.28% to 104.15% with coefficients
of variation between 0.44% and 3.11%. The methodological limits of detection and quan-
tification are 0.156 ng/mL and 0.176 ng/mL for ∆9-THC-D3 from serum, 0.349 ng/mL
and 0.384 ng/mL for THC-OH and 0.896 ng/mL and 0.987 ng/mL for THC-COOH, re-
spectively, and are thus higher than the analytical limits of detection and quantification
because dilution occurs during sample preparation and is not compensated during SPE.
The coefficient of variation of the measurement precision is less than 0.53%.
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Table 1. Results of Method Validation Cannabinoid Determination from Serum.

Serum
∆9-THC-D3 THC-OH THC-COOH

Range Range Range

No. of
Samples

Mean
Value

[%]

CV
[%]

Min
[%] - Max

[%]

Mean
Value

[%]

CV
[%]

Min
[%] - Max

[%]

Mean
Value

[%]

CV
[%]

Min
[%] - Max

[%]

Recovery 25 101.21 0.86 100.12 - 104.15 99.54 1.51 96.41 - 101.45 100.65 0.52 99.69 - 101.75

Within-
laboratory
Precision 1

10 94.28 2.73 98.38 2.99 101.28 1.61

Within-
laboratory
Precision 2

10 101.01 0.51 100.42 0.44 100.79 0.62

Within-
laboratory
Precision 3

10 100.66 0.58 99.93 0.96 100.62 1.52

Within-
laboratory
Precision 4

10 99.11 1.24 103.11 0.80 102.25 3.11

Within-
laboratory
Precision 5

10 102.74 2.00 101.29 2.05 100.72 1.84

Measurement
Precision 25 101.21 0.30 99.08 0.53 101.25 0.43

LOD 10 0.087 0.196 0.503

LOQ 10 0.099 0.215 0.554

LOD (method) 10 0.156 0.349 0.896

LOQ (method) 10 0.176 0.384 0.987

Table 2. Results of Method Validation for Cannabinoid Determination from Urine.

Urine
THC-D3 THC-OH THC-COOH

Range Range Range

No. of
Samples

Mean
Value

[%]

CV
[%]

Min
[%] - Max

[%]

Mean
Value

[%]

CV
[%]

Min
[%] - Max

[%]

Mean
Value

[%]

CV
[%]

Min
[%] - Max

[%]

Recovery 25 83.86 3.64 77.54 - 87.53 91.09 1.85 88.91 - 94.53 83.54 35.7 79.04 - 92.66

Within-
laboratory
Precision 1

10 96.02 2.97 88.46 1,03 77.85 1.66

Within-
laboratory
Precision 2

10 90.09 2.22 86.43 2.46 80.53 2.78

Within-
laboratory
Precision 3

10 85.34 2.82 90.97 1.74 84.09 3.89

Within-
laboratory
Precision 4

10 98.24 3.42 88.91 1.60 83.84 2.51

Within-
laboratory
Precision 5

10 99.64 2.92 85.95 2.03 84.96 2.76

Measurement
Precision 25 99.95 1.22 87.52 0.83 87.01 1.59

LOD 10 0.081 0.232 0.482

LOQ 10 0.228 0.571 1.089

LOD (method) 10 0.040 0.113 0.235

LOQ (method) 10 0.111 0.279 0.531
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Table 3. Results of Method Validation for Cannabinoid Determination from Saliva.

Saliva
THC-D3 THC-OH THC-COOH

Range Range Range

No. of
Samples

Mean
Value

[%]

CV
[%]

Min
[%] - Max

[%]

Mean
Value

[%]

CV
[%]

Min
[%] - Max

[%]

Mean
Value

[%]

CV
[%]

Min
[%] - Max

[%]

Recovery 25 98.15 3.85 89.62 - 104.85 103.22 1.36 100.68 - 105.47 104.08 2.48 98.22 - 108.34

Within-
laboratory
Precision 1

10 106.48 3.02 99.67 1.45 104.33 1.94

Within-
laboratory
Precision 2

10 99.27 2.90 103.31 1.32 103.38 2.76

Within-
laboratory
Precision 3

10 99.36 3.74 107.73 1.79 108.29 2.66

Within-
laboratory
Precision 4

10 103.02 3.97 106.68 2.22 104.53 3.12

Within-
laboratory
Precision 5

10 107.08 2.69 106.63 2.69 108.62 2.70

Measurement
Precision 25 100.45 0.50 101.62 0.41 100.59 0.78

LOD 10 0.068 0.596 1.712

LOQ 10 0.149 1.405 4.086

LOD (method) 10 0.037 0.328 0.942

LOQ (method) 10 0.082 0.773 2.247

The recoveries for ∆9-THC-D3, THC-OH and THC-COOH from urine range from
77.54% to 99.64% with coefficients of variation between 1.03% and 3.89%. The method
detection and quantification limits are 0.04 ng/mL and 0.111 ng/mL for ∆9-THC-D3 from
urine, 0.113 ng/mL and 0.279 ng/mL for THC-OH, and 0.235 ng/mL and 0.531 ng/mL
for THC-COOH, which are lower than the detection and quantification limits from serum
due to the concentration factor of the urine method. The coefficients of variation of the
measurement precision are 0.83% for THC-OH, 1.59% for THC-COOH and 1.22% for ∆9-
THC-D3, indicating a slight impairment of the measurement by matrix components still
originating from urine or substances introduced during hydrolysis. This is also supported
by the slightly lower recoveries from urine, as the recoveries of ∆9-THC-D3, THC-OH
and THC-COOH from saliva are also higher than from urine with a range of 89.62% and
108.62% and coefficients of variation between 1.36% and 3.97%. Overall, recoveries from
saliva are the highest, indicating slight analyte losses due to previous protein precipitation
or hydrolysis. However, these are not serious, stating a satisfactory performance of protein
precipitation and bond breakage of THC-COOH and its glucuronide conjugate by basic
hydrolysis. The coefficient of variation of the measurement precision of ∆9-THC-D3,
THC-OH and THC-COOH from saliva is less than 0.78%. The methodological limits of
detection and quantification are 0.037 ng/mL and 0.082 ng/mL for ∆9-THC-D3 from saliva;
0.328 ng/mL and 0.773 ng/mL for THC-OH; and 0.942 ng/mL and 2.247 ng/mL for THC-
COOH, and are thus the highest limits of detection and quantification for THC-OH and
THC-COOH, despite the concentration factor, indicating increased baseline noise, which
may be due to the lack of an additional sample preparation method before SPE.

Overall, the high recoveries demonstrate that automated extraction of ∆9-THC-D3,
THC-OH and THC-COOH from the three matrices works well using a similar SPE method.
The low limits of detection and quantification indicate that the use of specialized break-up
and preparation techniques for the more complex matrices enables the sensitive detection
of analytes. The effect of optimizing the method and pipetting parameters of the liquid
handling workstation is demonstrated by the low coefficients of variation < 4%.
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3.2. Results of Economic Evaluation

With the developed automated sample preparation methods, up to 96 samples (serum,
saliva, urine) can be processed in parallel per run and deck. Depending on the cycle time of
the method, this results in a maximum number of samples that can be processed per year,
which is 72 T samples/year for serum and urine and 192 T samples/year for saliva (see
Table 4). Depending on the level of operating and investment costs, the costs per sample
are calculated. Costs for automated determination of ∆9-THC-D3 and metabolites from
serum are 7.59 €/sample, from urine 6.65 €/sample for urine and 5.93 €/sample for saliva.

Table 4. Results of economic evaluation.

Serum Urine Oral Fluid

Lab
Technician Biomek Lab

Technician Biomek Lab
Technician Biomek Unit

No. of samples
per run 96 96 96 96 96 96 [unit]

Operating costs 1,095,758.29 € 546,602.36 € 1,058,167.50 € 478,749.00 € 1,104,136.61 € 1,107,571.18 € [€]

Annual
depreciation

(10 years)
0.00 € 39,637.46 € 0.00 € 40,079.86 € 0.00 € 29,727.16 € [€]

Annual imputed
interest 0.00 € 1981.87 € 0.00 € 2003.99 € 0.00 € 1486.36 € [€]

Total costs per
year 1,095,758.29 € 588,221.69 € 1,058,167.50 € 520,832.85 € 1,104,136.61 € 1,138,784.70 € [€]

Turnaround time 5.63 7.20 5.95 7.09 4.88 2.43 [h]

No. of samples
per year 100,800 72,000 96,000 72,000 115,200 192,000 [unit]

Cost per sample 10.87 € 7.59 € 11.02 € 6.65 € 9.58 € 5.93 € [€]

Net present value
(NPV) 166,056.24 € 1,533,671.83 € −16,585.04 € 2,167,508.14 € 1,247,705.42 € 8,920,346.90 € [€]

Payback period 0 1.95 never 1.48 0 0.31 [years]

For comparison purposes, the number of samples per year obtained with manual
methods is calculated. Findings indicate that a laboratory technician can prepare more
serum or urine samples per year than the automated setup (serum manual/automated:
100.8 T/72 T; urine manual/automated: 96 T/72 T).

For Saliva, the Biomek i7 can process more samples/year than a lab technician
(192 T/115.2 T). Decreased costs per sample for automation (5.93 €/9.58 €) are a direct
result of it.

For serum and urine, costs per sample in the automated method (7.59 € and 6.65 €)
are less expensive than with the manual method (10.87 € and 11.02 €), despite the lower
number of units. This is due to the higher total costs of the manual methods per year
(serum m/a: 1.095 T/546 T and urine m/a: 1.058 T/478 T), where the cost driver is the
operating costs and in these the high staff costs.

The NPV of automation is with 1.533 T for THC from serum, 2.167 T from urine and
8.920 T from saliva significantly higher than with the manual method with 166 T from
serum and 1.247 T from saliva. For manual urine sample preparation, the NPV is even
negative at −16 T, which means that a progressive loss is made with the method and
this method should not be performed manually. For saliva and serum, the NPV is also
comparatively low and close to the level of break-even. The highest automated NPV is
reached with the Saliva sample preparation method. In cases of an irrelevant matrix, THC
should be determined from saliva rather than from urine or serum.
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4. Discussions

In the sample preparation methods presented previously for the serum, urine and
saliva matrices, numerous semi-automated methods exist. The hurdle to complete automa-
tion is in many cases the subsequent evaporation step. We present a flexible system for
fully automated sample preparation in the determination of THC and its metabolites. The
system can easily be used for the determination in different matrices, such as serum, urine
or saliva. Due to the use of solid-phase extraction, we can avoid time-consuming and
error-prone evaporation steps.

Limits of detection and quantification for serum sample preparation methods using
LC-MS/MS ranges from 0.05–1.8 ng/mL for ∆9-THC, 0.18–3.2 ng/mL for THC-OH, and
0.05–2.8 ng/mL for THC-COOH [8,22,24,26–30]. The limit of detection and quantification
determined by Andersen et al. for ∆9-THC is 0.2 ng/mL and 0.5 ng/mL using LC-MS,
which is within the limits determined using LC-MS/MS [21]. The methodological limits of
detection and quantification obtained with our sample preparation method for serum are
0.156 ng/mL and 0.176 ng/mL for ∆9-THC-D3, 0.349 ng/mL and 0.384 ng/mL for THC-
OH, and 0.896 ng/mL and 0.987 ng/mL for THC-COOH and are, therefore, comparable to
the results reported in the literature.

The limits of detection and quantification for THC from urine reported in the literature
and previously introduced range from 0.1–22 ng/mL, for THC-OH from 0.2–25 ng/mL,
and for THC-COOH from 0.2–7.8 ng/mL [10,34,37,71,72]. With the urine sample prepara-
tion method presented here, method detection and quantification limits are 0.04 ng/mL
and 0.111 ng/mL for ∆9-THC-D3, 0.113 ng/mL and 0.279 ng/mL for THC-OH, and
0.235 ng/mL and 0.531 ng/mL for THC-COOH and are, thus, likewise within the range
reported in the literature.

An exception is THC-OH from saliva, for which the limit of detection we achieved
is 0.328 ng/mL, and the limit of quantification is 0.773 ng/mL, which is higher than the
limits of detection and quantification reported by Sergi et al. using MEPS with 0.12 ng/mL
and 0.4 ng/mL due to a higher concentration factor (2.5 compared to 2.05). The Substance
Abuse and Mental Health Services Administration (SAMSHA) recommend cutoff limits of
1 and 2 ng/mL for driving under the influence of drugs, alcohol, and medicines (DRUID).
The values can be reached by our automated method [61]. The same applies for the analytes
∆9-THC-D3 and THC-COOH, which are within the values reported in the literature of
0.005–5 ng/mL for ∆9-THC and 0.002–3.5 ng/mL for THC-COOH with methodological
LODs and LOQs of 0.037 ng/mL and 0.082 ng/mL and 0.942 ng/mL and 2.247 ng/mL,
respectively [10,62,63]. Therefore, we demonstrated that sensitive detection of the analytes
∆9-THC-D3, THC-OH, and THC-COOH is possible even without a final evaporation step
using the presented automated sample preparation methods for the matrices’ serum, urine
and saliva.

The specific use of SPE for concentration is achieved by using SPE plates with a very
low sorbent bed volume of 2 mg, which also requires a very small elution volume (at least
25 µL) for the elution of the retained analytes, thus avoiding additional dilution and then,
necessary evaporation and reconstitution. Furthermore, another advantage of reducing
the solvent volume is the reduction of toxic waste and solvent vapors, contributing to a
greener and healthier laboratory of the future.

The few fully automated methods use either SLE or SPE to prepare whole blood,
urine or saliva samples. The SLE technique is very fast with an average of 1.5 h sample
preparation time for 96 samples but shows low recovery values (23–51%) for THC [19,28,35].
In the SPE with previous PPT or hydrolysis, the recovery rates are higher (66–75%) [21,35]
but also the time required is significantly higher, e.g., 2 h 50 min for 15 samples [21].

5. Conclusions

The SPE method we used yields recoveries for ∆9-THC-D3 from serum, urine and
saliva ranging from 77.54% to 107.08% and the comparison of manual and automated meth-
ods showed that performing purification methods prior to SPE on the liquid handling robot
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results in the ability of the manual method to prepare more samples per year. Nevertheless,
the lower costs per sample for the automated system have shown that automation is advan-
tageous due to lower operating costs. The results of the validation with, for example, the
low coefficients of variation, also indicate a high quality of the sample preparation, which
further reinforces the benefits of automation. Consequently, one goal for future applications
might be the acceleration of processes on the robot to improve the methods’ efficiency.

An alternative potential of our methods is the possibility of automated, parallel
processing of different types of matrices, as the same SPE process was always used for
sample preparation, which could be of great importance, for example, in forensic cases.
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