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Abstract: Intraoperative Computer Tomographs (iCT) provide near real time visualizations which
can be registered with high-quality preoperative images to improve the confidence of surgical
instrument navigation. However, intraoperative images have a small field of view making the
registration process error prone due to the reduced amount of mutual information. We herein
propose a method to extrapolate thin acquisitions as a prior step to registration, to increase the field
of view of the intraoperative images, and hence also the robustness of the guiding system. The
method is based on a deep neural network which is trained adversarially using self-supervision
to extrapolate slices from the existing ones. Median landmark detection errors are reduced by
approximately 40%, yielding a better initial alignment. Furthermore, the intensity-based registration
is improved; the surface distance errors are reduced by an order of magnitude, from 5.66 mm
to 0.57 mm (p-value = 4.18× 10−6). The proposed extrapolation method increases the registration
robustness, which plays a key role in guiding the surgical intervention confidently.

Keywords: generative adversarial networks; volume extrapolation; self-supervision; volume registration

1. Introduction

Over the past years, the use of medical imaging in computer aided interventions has
become more and more popular, supporting clinicians in their workflow and thus reducing
the procedural associated risks [1].

This paper is focused on increasing the trustworthiness of liver needle therapies
such as Radiofrequency Ablation (RFA) or biopsy, where real time imaging plays a main
role in guiding the intervention confidently. Although it is well known that there is a
trade-off between radiation dose, acquisition time and image quality, during such surgical
interventions all procedures must be carried out as quickly and accurately as possible. A
possible solution to this problem is to intraoperatively acquire thin images-that provide
low—resolution visualizations of a small liver region—and register them with complete
high resolution preoperative images [2].

Registration is a technique used to align two images with respect to the patient’s
internal structures. Formally, having a reference and a template image R, T : Rd → R,
registration objective is to find a transformation ϕ : Rd → R such that R ≈ T ◦ ϕ [3].
Therefore, registration techniques are employed to retrieve high resolution preoperative
information such as lesion location and appearance and aggregate it with the thin intra-
operative images revealing the real-time needle localization, thus increasing navigation
confidence. Based on the operands, there are multiple types of registration including
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slice-to-volume, projection-to-volume, volume-to-volume, etc. [4]. Herein we focus on the
latter, aiming to boost the performance of two Computer Tomograph (CT) volumes rigid
registration. Two volumes can be registered using a feature-based approach, an intensity-
based approach or a combination of the two techniques. In feature-based registration, a
set of corresponding features (e.g., landmarks, center of mass, etc.) are used to compute
the transformation ϕ to register a volume (called the moving or template volume, T) to the
space of the other volume (fixed or reference volume, R) [5]. The intensity-based approach
can be formulated as an optimization problem, seeking the best set of parameters for the
transformation ϕ to minimize a predefined distance measure: argminϕ[D(R, T ◦ ϕ)] [3,6].
However, this approach is not robust due to the potential presence of local minimums
caused by image artifacts and sub-optimal distance metrics. Combinations of the two
approaches might be used to improve registration accuracy and robustness (e.g., using
intensity-based registration as a refinement step for the feature-based registration).

To the best of our knowledge, registration of thin images has been overlooked so
far. Since all the registration techniques are highly dependent on the amount of mutual
information (common data presented by both images from different perspectives), analysis
of thin images is very challenging due to their reduced field of view (FOV). However, during
surgeries low-resolution thin CT slabs are acquired to mitigate the patient’s exposure
risk. In this context, despite performing an initial alignment based on center of mass
or geometric center, intensity-based registration is prone to failure given to the distinct
fields of view of the operands. To reliably retrieve the corresponding high resolution
preoperative data, a feature-based approach must be considered. However landmark
detection algorithms might also be affected by the thin volume quality thus yielding a poor
registration performance.

We therefore propose a method to extrapolate thin CT slabs, generating additional
slices from the few existing ones, hence providing enhanced context information required
by registration algorithms to work robustly.

Artificial intelligence in medical applications has received significant attention from
the scientific community over the past few years. Due to their potential to model complex
problems based on large datasets of examples, deep learning algorithms are nowadays
employed for solving a wide variety of tasks such as regression, classification, segmentation
and image generation [7,8]. Generative adversarial networks (GANs) [9] are a state of the
art method for solving tasks such as synthetic image generation [10–12], segmentation [13],
super-resolution [14], denoising [15,16], style-transfer [17,18] and inpainting [19,20].

Image interpolation, also known as image completion or inpainting [21], aims at
filling missing regions within an image with coherent and realistic content based on the
surrounding information. Thus, in image interpolation, the field of view is well defined. In
contrast, image extrapolation [22–24] is a more challenging task since the field of view has
to be extended by hallucinating coherent and realistic content outside the boundaries of
the existing information.

In this paper, we introduce an extrapolation methodology based on a generator net-
work which increases the field of view of thin intraoperative CT volumes, and improves
the accuracy and robustness of a subsequent registration process. To prove the efficiency of
the proposed method we focus on the liver area and assume that a thin acquisition would
have a thickness of approximately 5 cm. However, this can be easily adjusted for other
thicknesses or use-cases.

The paper is organized as follows: Section 2 provides an overview of the proposed
methods, including details regarding data, network architecture, optimization and quantifi-
cation strategies. Section 3 presents the results from a task oriented perspective. Strengths
and limitations of this study are discussed in Section 4, including the next steps towards
the adoption of our method in real world applications and Section 5 presents some
overall conclusions.
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2. Materials and Methods

In this section we introduce a self-supervised approach for extrapolating axial slices,
thus enhancing the context information required by the registration algorithms to obtain
a good alignment. Due to the lack of real intraoperative data, we synthesize thin images
by extracting approximately 5 cm thick sub-regions (see Section 2.1) from full CT field of
views (Figure 1a).

(a) Thin intraoperative image. (b) Full preoperative image.

Figure 1. Examples of CT images: The thin image (a) displays a reduced field of view (thickness)
with respect to the z axis, as compared to the full preoperative image (b).

As depicted in Figure 2, given a CT volume f : Rd → R we first use an uniform
distribution to build a binary mask m : Rd → {0, 1} to randomly remove 75% of the
information through a voxel-wise multiplication, thus yielding an image g : Rd → R. We
further refer to this image as the grid image, which is defining the extrapolation extent.
Next, we simulate a thin acquisition t : Rd → R by extracting a region of interest (ROI)
out of the grid image and then employ a deep neural network to restore the missing
information, thus extrapolating the thin slab across z direction.

Figure 2. Schematic overview of the workflow. The data are stochastically processed at training time
to create a self-supervised learning framework.

2.1. Dataset

The dataset consisted of 1400 high resolution CT images, each of which provided
a complete visualization of the liver. Furthermore, from each of these images we only
considered an ROI determined by the liver bounding box with respect to the z axis (further,
we refer to this as the full image). To generalize the model, we stochastically set the
thickness of the full image to the height of the liver bounding box, adding ±25 mm in each
direction. All these images have a constant resolution of 512 × 512 in the x-y plane, with a
voxel spacing of 0.8 mm, while the mean resolution for the z-axis is of 179.2 voxels (ranging
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from 24 to 796, with a mean voxel spacing of 1.49 mm). All the images were resampled to a
spacing of [3,3,1.5] mm. Further, to create an isotropic grid of size 128 × 128 × 128 voxels,
either padding or cropping was performed. To avoid numerical instability and arithmetic
overflow when computing the variance, we normalized our data using the Welford’s online
algorithm [25].

The data were employed to develop a self-supervised learning framework, automati-
cally creating input-output pairs from the ground-truth images: at training time, a quarter
of the full volume FOV was randomly extracted simulating an intraoperative volume of
varying thickness, as depicted in Figure 3. Further, a deep neural network was employed
when reconstructing the original volume, thus extrapolating the thin slab across the z-axis.

Figure 3. Thickness distribution of the training input data.

We randomly split the data into a training set representing 80% of the data and a
testing set representing the remaining 20% of the data. Additionally, we used 100 CT pairs
for quantifying the registration performance.

2.2. Proposed Method

We trained our extrapolation network (also referred to as generator) within an adver-
sarial framework, optimizing it to “fool” another neural network (called critic or discrimi-
nator) regarding the authenticity of generated samples.

As depicted in Figure 4 the generator network first performed a repetition of the
thin slab across the z-axis, increasing the thickness of the input with a factor of four, thus
defining the target FOV of the extrapolated image. This repetition adapts the encoder’s
feature maps to the decoder’s dimensions such that we can take advantage of the long
term skip connections propagating the information through the network. Moreover, this
strategy is beneficial in terms of expanding the receptive field of view at the bottleneck,
thus using the limited amount of real information efficiently.

The rest of the generator is a variation of U-net, where each block consists of a sequence
of convolution, activation function and instance normalization layers [26]. In the encoder
part, downsampling was performed using 2-strided convolutions, until a receptive field of
view of 255 × 255 × 255 voxels was obtained at the bottleneck. Nonlinearities are provided
by LeakyReLU activations, while the decoder employs ReLUs. Upsampling was performed
through interpolation layers followed by 1-strided convolutions.

We used similar blocks as in the generator to create a patch-discriminator [27] con-
ditioned on the grid image (Figure 2—g), which, besides the image to be discriminated,
was provided as an input. This image helped the critic to penalize the generator in regards
to finding the right extrapolation extent. Instead of outputting a single value, the critic
outputs a 8 × 8 × 8 feature-map on which each element discriminates 31 × 31 × 31 voxels
patches in the input.
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Figure 4. Network architectures; left—U-net like generator; right—patch discriminator. The first
layer of the generator performs a 4× repetition of the thin input to define the extrapolation extent.

2.2.1. Optimization Strategy

We trained the critic to distinguish between fake (ẽ) and real samples ( f ), thus maxi-
mizing the Wasserstein distance between the real (Pr) and fake (Pg) data distribution [28]:

Lcritic = Eẽ∼Pg [D(ẽ, g)]− E f∼Pr [D( f , g)] + λEê∼Pê [(|| 5ê (D(ê, g))||2 − 1)2] (1)

Equation (1) displays the objective function used to train the critic, where the third
term is a gradient penalty term used to improve the training stability [29].

Secondly, we trained the generator to produce images which are indistinguishable
from the real ones, thus minimizing Lcritic by optimizing:

Ladv = −Eẽ∼Pg [D(ẽ, g)] (2)

To further stimulate the generation of image details and consistent internal structures,
in addition to the adversarial component, we also used a feature loss [30] penalty. This
component aims at minimizing the L1 distance between features F extracted from real and
fake samples, respectively. The feature maps are provided by the third convolution layer of
a 3D network trained in brain tumor segmentation [31].

L f eat = Eẽ, f [||F(ẽ)− F( f )||1] (3)

As depicted in Figure 5, the grid information (volume g) was only used at training
time by the critic to constrain the generator to find the right position of the thin slab within
the target field of view.

The objective of the generator represents a weighted combination of the two terms of
Equations (2) and (3). The weights have been empirically chosen such that the components
take values in the same range: λadv = 1 and λ f eat = 1, which has been shown to lead to a
better performance of the model. When using a larger weight for the supervision signal, as
suggested in [27], the adversarial loss became unstable in the early stages of the training,
hindering an improvement of the generated images over time.

Lgen = λadvLadv + λ f eatL f eat (4)

Since the cost function used to train GANs stems from another neural network trained
jointly, the loss alone can be misleading when trying to identify the best performing model.
Therefore, for the current experiment, model selection was performed through a visual
inspection of the samples produced by the generator over time.
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Figure 5. Generator optimization workflow. A conditional GAN was employed in extrapolating thin
input volumes, expanding their FOV with a factor of 4.

2.2.2. Image Metadata Retrieval

Since our convolutional neural network (CNN) generator operates on voxel intensity
information only, we needed to perform an extra-step to retrieve the metadata of the
extrapolated images.

Intuitively, the extrapolated image will have the same spacing and orientation as the
thin one. However, the origin and dimension of the image changes due to the addition of
synthetic information. Determining the grid dimension of the expanded volume is straight
forward since we always quadruple the input field of view on the z-axis:

(dẽx, dẽy, dẽz) = (dtx, dty, dtz × 4) (5)

To compute the origin of the extrapolated volume, we first needed to determine thin
slab’s location within the extrapolation grid. In the current work, we addressed this issue
in the post-processing phase, performing an extra-registration step to determine the extent
of extrapolation as further described:

We overlapped the thin slab (sliding it across z direction) at each possible location of
the extrapolated volume, calculating the voxel-wise mean squared error (Figure 6—d1..k).
Next, we determined the extent extrapolation by picking the index which minimized this
penalty.

Figure 6. Position regression; left—thin slab t; right—extrapolated volume ẽ.

Further, the origin of the extrapolated image was calculated using the following
expression:

(oẽx, oẽy, oẽz) = (otx, oty, otz − argmini=1..k(di)× stz) (6)

where stz is the spacing of thin volume across z direction.
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In our tests, this simple registration step was always accurate because the extrapola-
tion network only had to copy the thin slab’s intensities into the output volume without
modifying them at all, hence generating relatively few errors.

2.3. Performance Quantification

One of the major challenges in image generation tasks is the lack of a goal standard
method to quantify the performance of the generative models. Hence, we herein propose
a goal oriented quantification method consisting in two tests: landmark detection [32,33]
and registration errors [34].

As we want to perform a feature-based registration of two volumes based on a set of
corresponding landmarks, we must encourage accurate detection on the synthetic images.
Hence, we first evaluate our extrapolation models based on the euclidean distance between
the manual annotations and the landmarks detected on the thin, extrapolated and ground-
truth volumes, respectively.

For the registration test, the 100 additional CT pairs mentioned in Section 2.1 were used
as follows: we randomly extracted thin slabs from the fixed images and then employed our
models for extrapolation. Further, we compared the performance between the registration
of ground-truth fixed and full moving images, thin-fixed and full moving images and
extrapolated-fixed and full-moving images. We used two metrics for this evaluation:
surface distance and DICE, both computed on the liver masks, obtained by using the same
segmentation model employed for data preprocessing.

3. Results

Table 1 displays the structural similarity index (SSIM) and the peak signal to noise
ratio (PSNR) metrics for the train and test set, respectively. No significant differences were
observed between the performance of the two sets, indicating the good generalization
power of the generator.

Table 1. Image similarity results.

Mean (±std) [mm]

Metric Train Set Test Set

SSIM 0.726(±0.04) 0.719(±0.05)
PSNR 24.13(±2.19) 23.76(±2.26)

3.1. Landmark Detection Test

We ran a pretrained landmark detection model [33] on three variants of each test
image: full, thin and extrapolated. Next, we calculated the Euclidean distance between
each detected landmark and the corresponding manual annotation. The results are depicted
in Figure 7: the proposed method reduces the median detection error by approximately
40% (from 19.51 mm to 12.08 mm, p-value = 7.38× 10−37) while the interquartile range
(IQR) is reduced by more than a half, which means that our method increases landmark
detection robustness significantly (Table 2).

Since a quarter of the full volume thickness is always used as an input, each ex-
trapolated image should contain (1) that quarter of the FOV (we will refer to it as actual
information region) and (2) three quarters of extrapolated (hallucinated) information. All
detected landmarks were considered for the blue boxplots, including the ones detected in
the extrapolated region. On the other hand, the red boxplots display the detection error on
the actual information only, which is more relevant, since we only employed extrapolation
to provide more context for detection algorithms, rather than generating synthetic points
to be used for registration.
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(a) Train set. (b) Test set.

Figure 7. Detection errors. For the blue boxplots all detected landmarks were considered, while
the red boxplots only take into account landmarks detected on the region containing the actual
information.

Table 2. Landmark detection results on the test set.

Mean (±std) [mm]

Image All Detected Landmarks Landmarks Detected on Actual Info

Full volume 4.64(±8.02) 4.04(±7.05)
Thin volume 19.51(±43.0) 19.51(±43.0)

Extrapolated volume 18.62(±22.96) 12.08(±16.86)

3.2. Registration Test

Figure 8 displays the registration results of the full moving images with all three
variants of the fixed images-full, thin and extrapolated. The blue boxplots display the results
of landmark-based registration which is then used as an initialization for the intensity-based
registration, depicted in red.

As expected, the best performance was obtained when the full-moving images are
registered with full-fixed images (having a median SD of 0.20(±0.08) mm after intensity-
based registration), and the worst results were obtained when the full-moving images were
registered with thin-fixed images (5.66(±20.56) mm). However, we obtained a registration
performance comparable to the one corresponding to full-fixed images (0.57(±2.05) mm)
by using the proposed extrapolation method as a prior step, thus reducing the thin slab
registration error with a factor of 10 (p-value = 4.18× 10−6). The same holds true when
considering the DICE score (Figure 8b), which increased due to the extrapolation from 0.67
to 0.88 (median).

(a) Surface distance. (b) DICE score.

Figure 8. Registration results: landmark-based registration in blue, intensity-based registration in
red. Each figure has three groups: left—registration of full-fixed with full-moving images; middle—
registration of thin-fixed with full-moving images; right—registration of extrapolated-fixed with
full-moving images.
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Figure 9 displays a comparison between the registration of thin, full and extrapolated
images. While the first row presents a poor registration of the thin image, the third row
demonstrates the benefits of our approach, showing a much better overlap between the
extrapolated-fixed and full-moving images. However, the best performance was obtained
when aligning the full-fixed with the full-moving images (second row).

Figure 9. Registration example. The first row displays a poor alignment of the thin image, while
the third row displays an improved registration determined by the extrapolation. The middle row
presents a very accurate registration of the ground truth full image for comparison.

4. Discussion
4.1. Algorithm Selection

Before defining the method described in this paper, a number of experiments were
performed. At first, a 2D Wasserstein GAN with gradient penalty was employed in
extrapolating individual coronal slices, which were stacked together afterwards to create
a 3D volume. Although the generated 2D samples looked relatively realistic per se (see
Figure A1), the resulting 3D volumes had a significant inconsistency across the y direction,
leading to a poor detection and registration performance. We have tried to mitigate this
inconsistency by using a sequence of five consecutive frames as input to predict the middle
one, and by adding to the cost function of total variation loss across the y direction. No
substantial improvement was observed.

On 3D data we trained various settings of Least Squared GANs (LSGAN) [35] with
no success. The discriminator learned to distinguish fake samples within a few iterations,
providing very strong gradients, hence placing the generator into a mode collapse. To
mitigate this behavior we tried different strategies such as decreasing the size of the network,
Dropout regularization, Gaussian noise addition to layers and/or labels, occasionally
flipping the targets, addition of voxel-wise supervision loss component for training the
generator, etc. The 3D Wasserstein GAN with gradient penalty demonstrated more stable
behavior during the training, when used in conjunction with an extra-supervision loss,
such as voxel-wise mean squared error or a feature loss (Equation (3)). Although the
perceptual quality of the generated samples is much lower when compared to the 2D
counterpart (see Figure A2), the goal oriented metrics (landmark detection error and
registration performance) demonstrated a substantial improvement.
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4.2. Overall Discussion

We found that our method reduced the median landmark detection error by a very
large margin, thus leading to a superior feature-based registration. A better detection
yields a better initialization for the intensity-based registration, rendering the alignment
of extrapolated images comparable to the alignment of ground-truth images. Due to the
enhanced context available in synthetic images, the overlapping error denoted by the
median surface distance improved from 5.66 mm to 0.57 mm (p-value = 4.18× 10−6).

We note that the paper represents only a proof of concept that recent advances in gen-
erative networks can improve the robustness of computer aided interventions significantly
using augmented data.

The major challenge of image out-painting remains the determination of the expansion
size and direction. To expand the field of view of an image, Ref. [23] propose an extra
input for the network, which is a vector representing the padding to be applied in each
direction (top, left, bottom and right), hence defining an extrapolation grid. In [22], a binary
mask is used to remove 32 pixels from each side of an image, thus solving a symmetrical
extrapolation problem. However, our self-supervised learning approach does not require
such prior information since it wouldn’t be available in real world applications, but it
is limited to always quadrupling the thickness of the input. Therefore, to address other
use-cases, where the thickness of the intraoperative images is out of distribution with
respect to the training data (see Figure 3), the model must be retrained accordingly.

Another important aspect of our proposed method is the need for an extra-registration
step to determine the origin of extrapolated volumes. We are aware of the existence of other
(maybe more elegant) approaches, but we have chosen this simple strategy to preserve the
non-rigid properties offered by the fully convolutional networks, as well as to maintain
that the entire workflow is self explainable.

5. Conclusions

We proposed a method for improving the performance of intraoperative image regis-
tration by expanding the field of view of thin slabs, thus enhancing the context information
required for the matching process. We showed that our approach increased the detection
performance by a large margin. Therefore, the feature-based registration provided a much
better initialization for the intensity-based refinement step, which produced results compa-
rable to the ones obtained after aligning two high-resolution images having the same field
of view.
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Abbreviations
The following abbreviations are used in this manuscript:

RFA Radiofrequency ablation
CT Computer Tomograph
FOV Field of view
GAN Generative adversarial network
ROI Region of interest
CNN Convolutional neural network
IQR Interquartile range
SSIM Structural similarity index
PSNR Peak signal to noise ratio

Appendix A

Figure A1 displays some examples of extrapolated volumes using a 2D neural network,
trained to extrapolate individual coronal frames. Although the network produces relatively
plausible images across the extrapolation axis (middle), the resulting 3D volume displays
a significant inconsistency across the y direction, which can be seen in the axial (left) and
sagittal (right) views.

Figure A2 displays two examples of 3D extrapolation with the proposed approach,
where the thin input image is overlayed on the coronal and sagittal views. Extrapolated
volumes tend to be blurry and affected by noise, but in terms of structural consistency they
are superior to the ones generated with the 2D neural network.

Figure A1. 2D extrapolation examples. Left—axial view; Middle—coronal frame (extrapolation
axis); Right—sagittal frame.



Appl. Sci. 2022, 12, 2944 12 of 13

Figure A2. 3D extrapolation examples. Each example provides a comparison of the extrapolated
image (left) with the ground truth image (right). Top—axial view; Middle—coronal frame (extrapo-
lation axis); Bottom—sagittal frame.
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