
����������
�������

Citation: Phan Bui, K.; Nguyen

Truong, G.; Nguyen Ngoc, D. GCTD3:

Modeling of Bipedal Locomotion by

Combination of TD3 Algorithms and

Graph Convolutional Network. Appl.

Sci. 2022, 12, 2948. https://doi.org/

10.3390/app12062948

Academic Editor: Claudio

Belvedere

Received: 18 February 2022

Accepted: 11 March 2022

Published: 14 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

GCTD3: Modeling of Bipedal Locomotion by Combination of
TD3 Algorithms and Graph Convolutional Network
Khoi Phan Bui 1,* , Giang Nguyen Truong 1 and Dat Nguyen Ngoc 2

1 School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi 100000, Vietnam;
trgiang071098@gmail.com

2 Department of Computer, Control and Management Engineering, Sapienza University of Rome,
00185 Roma, Italy; datnguyen.roma@gmail.com

* Correspondence: khoi.phanbui@hust.edu.vn; Tel.: +84-913-525160

Abstract: In recent years, there has been a lot of research using reinforcement learning algorithms to
train 2-legged robots to move, but there are still many challenges. The authors propose the GCTD3
method, which takes the idea of using Graph Convolutional Networks to represent the kinematic
link features of the robot, and combines this with the Twin-Delayed Deep Deterministic Policy
Gradient algorithm to train the robot to move. Graph Convolutional Networks are very effective in
graph-structured problems such as the connection of the joints of the human-like robots. The GCTD3
method shows better results on the motion trajectories of the bipedal robot joints compared with
other reinforcement learning algorithms such as Twin-Delayed Deep Deterministic Policy Gradient,
Deep Deterministic Policy Gradient and Soft Actor Critic. This research is implemented on a 2-
legged robot model with six independent joint coordinates through the Robot Operating System and
Gazebo simulator.

Keywords: GCTD3; GCN; TD3; ROS; reward function; bipedal robot

1. Introduction

This article aims to improve the reinforcement learning (RL) algorithm in discovering
the locomotion of the bipedal robot by adding some kinematic constraints to the algorithm.
The GCTD3 algorithm using Graph Convolutional Network (GCN) [1,2] exploits the robot’s
graph-like structure to enhance the Twin-Delayed Deep Deterministic Policy Gradient (TD3)
algorithm in the design locomotion of a bipedal robot. In addition, thanks to the neural
network input aggregated from previous states and a reward function built, based on two
human walking states, the balance of the robot body is improved significantly during the
robot’s movement.

Reinforcement Learning is one of the most favored methods for recent robot learning
fields; it results in robots that are autonomous and flexible in performing several specific
tasks. Although the application in practice of reinforcement learning algorithms to real-
world robots is still difficult and challenging [3], there are still some applications that are
implemented in practice, especially in the field of robotics [4–9]. In the recent decade,
reinforcement learning has been applied to leg-robots in a variety of ways [10–14]. For
example, the model-free method [12] does not use or simplify a dynamic model and also
does not use information about the kinematics and center of mass of the robot. With the
physics-based locomotion problem [14], a model was learned based on a real physical
model, where the human’s walking and kicking skills are processed, stored and adapted in
the robot’s locomotion. The model-based methods [11,13] were applied when the robot’s
configuration was known, or the robot was modeled to find the joint movements based
on the calculation of the value function. The disadvantages of the methods are the large
amount of computation and were more attentive to the physical design of the robot than
on the kinematic parameters and constraints between the joints.

Appl. Sci. 2022, 12, 2948. https://doi.org/10.3390/app12062948 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12062948
https://doi.org/10.3390/app12062948
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1287-8879
https://orcid.org/0000-0003-2600-8476
https://orcid.org/0000-0002-5842-9606
https://doi.org/10.3390/app12062948
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12062948?type=check_update&version=1

Appl. Sci. 2022, 12, 2948 2 of 15

Moreover, the traditional kinematic methods [15–17] were based on the kinematic
relationship between the joints, so there are some difficulties related to the motion trajectory
of the robot. The methods using the Denavit–Hartenberg matrix [15] and the Jacobi
matrix [16,17] represent the relative coordinates of the coordinate systems lying on the
joints, as well as their derivatives. The advantage of these methods is that they are easy
to implement, but are not flexible, with regular changes in gait in accordance with the
multifunctional actions of the robot. This means that the robot’s trajectory is always
changing. Meanwhile, the robot’s walking is controlled on the basis of the developed
motion trajectory, as well as the dynamic model of the robot. In work Ref. [18], a fuzzy
logic-based controller has been applied, eliminating the difficulties in calculating robot
dynamics. However, the control is still based on the pre-designed motion trajectory.

In our method, the robot’s walking is trained in two states, including (1) one leg
standing, one foot swinging, and (2) two feet touching the ground to switch roles. The
robot’s movement is based on such a change of state in accordance with the human gait.
The robot learns this through our built-in rewards function.

The actor-critic method [19] has many algorithms that are widely applied to deal with
the above problems such as [20–23]. The general idea of using this method is to learn a
policy by using the policy function and the value function simultaneously. In this research,
an extension of the TD3 [20] algorithm was proposed to include more information about
the connection between the joints of the robot in the training process. In fact, there are
many articles [20–25] using reinforcement learning algorithms such as TD3, DDPG and
SAC to find the desired angle values of the joints of the robot. However, their algorithms
only used the information about the velocity and angular value of the joints for training,
they did not take advantage of the graph topology and the binding relationship of the
humanoid robot, as in our method. Our method is compared with algorithms [20–22] in
Section 4, which shows the high efficiency of this method.

The authors were inspired by the fact that the robot’s joints have geometric relations,
for example, the knee joint is related to the thigh joint or the foot joint is related to the knee
joint, so that this paper uses GCN to represent the constraints of robot joints above and inte-
grate GCN into the reinforcement learning algorithm. In practice, Graph Neural Network
(GNN) often applies to problems in the field of chemistry [26,27] that require chemical
bonding between the molecules, or GNN is often used to recommend web-scale [28]. The
relationship between the joints of a bipedal robot has a similarity to the relationship be-
tween elements in chemistry. In several problems related to human joints, GCN achieved
high efficiency when applied to predict actions in a video after extracting points on the
human body into the form of a skeleton [29–32]. In the field of reinforcement learning, GCN
has been applied to the multi-agent problem where it finds out the relationship between
agents for cooperative tasks [33]. There has been no research using graph neural networks
for the robot walking problem before. The authors found that taking advantage of the
features obtained from GCN before putting these features into the reinforcement learning
algorithm gave better results than previous reinforcement learning algorithms.

This article contributes a method dealing with the robot locomotion problems for the
bipedal robot. Besides combining GCN with the TD3 algorithm to supplement the linking
information of the joints, this article also builds a suitable reward function to achieve high
efficiency. A two-legged robot model with six independent joint coordinates was also built
by the authors for the implementation process. The process of training the model as well as
testing the results is implemented through the Robot Operating System (ROS), which is
suitable and has many utilities for robot control [34–36]. Simulation is performed in the
Gazebo simulator [37,38] that can be easily combined with ROS. Simulation results obtained
after training are recorded in this link: https://youtu.be/t1MVmvCIWr0 (accessed on 30
January 2022) (Supplementary Material).

The content of this paper includes five sections: introduction, network architecture,
training process, evaluation and conclusion. The introduction section gives ideas and
proposes the GCTD3 method; the network architecture section aims to present in detail

https://youtu.be/t1MVmvCIWr0

Appl. Sci. 2022, 12, 2948 3 of 15

the theoretical basis of GCTD3 algorithm; the training process section depicts how to
implement the algorithm in ROS and Gazebo as well as our experience in training process;
the evaluation section is to compare our proposed method with other RL methods through
evaluation metrics and result graphs; and the last section presents the conclusions drawn
from this research.

2. Network Architecture
2.1. Graph Convolutional Network

GCN is a convolutional neural network and is based on graph theory, the main
components of a graph neural network are Node (N) and Edge (E) [1]; the nodes will be
connected to each other through directed edges or undirected edges in order to represent
the relationship and influence of the nodes to each other in the graph.

Figure 1 is an example of a graph; this graph depicts the influence of nodes on each
other. For example, all three nodes, D, C and A, act on each other, E and D are two nodes
that have no direct relationship between them.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 15

The content of this paper includes five sections: introduction, network architecture,
training process, evaluation and conclusion. The introduction section gives ideas and pro-
poses the GCTD3 method; the network architecture section aims to present in detail the
theoretical basis of GCTD3 algorithm; the training process section depicts how to imple-
ment the algorithm in ROS and Gazebo as well as our experience in training process; the
evaluation section is to compare our proposed method with other RL methods through
evaluation metrics and result graphs; and the last section presents the conclusions drawn
from this research.

2. Network Architecture
2.1. Graph Convolutional Network

GCN is a convolutional neural network and is based on graph theory, the main com-
ponents of a graph neural network are Node (N) and Edge (E) [1]; the nodes will be con-
nected to each other through directed edges or undirected edges in order to represent the
relationship and influence of the nodes to each other in the graph.

Figure 1 is an example of a graph; this graph depicts the influence of nodes on each
other. For example, all three nodes, D, C and A, act on each other, E and D are two nodes
that have no direct relationship between them.

Figure 1. Nodes and edges in a graph structure.

The relationship between nodes is represented by an adjacency matrix AN×N, where
N is the number of nodes in the graph and the elements of the adjacency matrix A are set
according to the principle: Aij = 1 when the ith node and jth node are connected and vice
versa if there is no edge between the ith and jth node, Aij = 0 (with i, j ∈ [1, N]). According
to the above principle, the adjacency matrix of the graph of Figure 1 is represented as the
Equation (1).

A B C D E F G
A
B
C

A D
E
F
G

×

 
 
 
 
 =  
 
 
 
  

7 7

0 0 1 1 0 0 0
0 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 0
0 1 1 0 0 0 0

 (1)

Figure 1. Nodes and edges in a graph structure.

The relationship between nodes is represented by an adjacency matrix AN×N, where
N is the number of nodes in the graph and the elements of the adjacency matrix A are set
according to the principle: Aij = 1 when the ith node and jth node are connected and vice
versa if there is no edge between the ith and jth node, Aij = 0 (with i, j ∈ [1, N]). According
to the above principle, the adjacency matrix of the graph of Figure 1 is represented as the
Equation (1).

A B C D E F G

A7×7 =

A
B
C
D
E
F
G



0 0 1 1 0 0 0
0 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 0
0 1 1 0 0 0 0


(1)

After obtaining the matrix depicting graph A, the matrix A is normalized to the form of
a Laplacian matrix ∆norm = IN − D−1/2 AD−1/2 [39] for training with the neural network
using the gradient-based method. Where IN is an identity matrix of size N × N, and D is a
diagonal matrix with the elements on the principal diagonal equal to the degrees of the
nodes Dii = ∑j Aij(1 ≤ i, j ≤ N). Since ∆norm is a symmetric positive definite matrix, ∆norm

can be decomposed into ∆norm = IN − D−1/2 AD−1/2 = UΛUT . U and Λ are matrices
representing eigenvectors and eigenvalues of ∆norm, respectively.

Appl. Sci. 2022, 12, 2948 4 of 15

An input signal x ∈ RN is filtered by gθ = diag(θ) (with θ ∈ RN) which is defined
in (2):

gθ ? x = Ugθ(Λ)UTx (2)

In this Equation (2), the function gθ(Λ) (3) is approximated by Chebyshev polynomial
according to Equation (4) [1,39].

gθ(Λ) ≈
K

∑
k=0

θkTk

(
Λ̃norm

)
(3)

with


T0(x) = 1

T1(x) = x

Tk(x) = 2xTk−1(x)− Tk−2(x)

(4)

In (3), Λ̃norm = 2
λmax

Λ − IN is the matrix λ rescaled to the maximum eigenvalue
λmax and θk ∈ R is the Chebyshev coefficient of degree k. From (2), (3) and ∆̃norm =

2
λmax

∆norm − IN , the convolution of signal x is rewritten as (5).

gθ ? x ≈
K

∑
k=0

θkTk

(
∆̃norm

)
x (5)

To facilitate the training process of GCN and reduce the number of learning parameters,
k is chosen to be 1, ∆̃norm ≈ ∆norm − IN and θ = θ0 = −θ1, so the Equation (5) is rewritten
as (6):

gθ ? x ≈ θ0T0

(
∆̃norm

)
x + θ1T1

(
∆̃norm

)
x

= θ0x + θ1∆̃normx

= θ0x + θ1(∆norm − IN)x

= θ(IN − ∆norm + IN)x

= θ
(

IN + D−1/2 AD−1/2
)

x

(6)

According to the paper [23], a renormalization trick was used for (6) to avoid exploding
and vanishing gradient problems: IN + D−1/2 AD−1/2 → D̂−1/2 ÂD̂−1/2 (with Â = A +
IN and D̂ is a diagonal degree matrix of Â. In general, input X ∈ RN×F is a feature matrix
of N nodes, each node has F features, and we obtain an output matrix Y ∈ RN×F′ (7). It can
be seen that each input node has F features, after being multiplied by the matrix Θ ∈ RF×F′ ,
it will be characterized by a F’-dimensional vector. The matrix Y is calculated as (7):

Y = D̂−1/2 ÂD̂−1/2XΘ (7)

2.2. Twin Delayed Deep Deterministic Policy Gradient

The implementation of reinforcement learning algorithms such as DDPG, SAC and
TD3 all follow the Markov Decision Process (MDP) as sequences (S, A, S’, R), where S, A,
S’ and R are state, agent, next state and reward, respectively. The trained agent gets two
elements (a state containing information from the environment and a reward calculated
based on the previous state) to find suitable actions, and the agent will then perform these
actions in the next state. The loop will continue as the environment sends the next state and
rewards to the agent to find the next action. Each set of parameters (S, A, S’, R) received
will be stored in a replay buffer B to serve the training process of the model.

The main purpose of reinforcement learning is to find an optimal policy πopt (with
π : S→ A) for the highest cumulative reward [40,41], the cumulative reward is represented
as (8):

Rt = ∑
T

i=tγ
i−tr(si, ai) (8)

Appl. Sci. 2022, 12, 2948 5 of 15

where γ is a discount factor (0 < γ < 1), Rt is the total reward the agent receives from
timestep t to the end of an episode and the reward at each timestep is r(si, ai).

For problems that need to compute continuous actions through each state, the actor-
critic method is appropriate. The actor network receives an input state that the agent
obtained from the environment and calculates the actions, and the actor network is the
policy that the agent needs to find an optimal one. The critic network returns a Q-value that
is used to evaluate the calculated actions from the actor network, and during the training
process, the learning parameters are updated to maximize this Q-value.

TD3 is one of these actor-critic methods, the structure and the steps of TD3 algo-
rithms [20] are presented as follows:

• The algorithm uses an actor network πφ(s), two critic networks Qθ1(s, a), Qθ2(s, a),
corresponding to these three networks are their target networks: one target actor
network πφ′(s′) and two target critic networks Q

θ
′
i
(s′, a′) (i = 1, 2). Where φ and

θi(i = 1, 2) are the learning parameters of the actor and critic network, respectively,
and similarly φ′ and θi

′ are the parameters of the target actor network and the target
critic networks;

• In order for the agent to explore a variety of states in the environment, actions com-
puted from the actor network have a noise added ε [42]. This noise helps the data in
replay buffer B to be augmented, and the noise in TD3 algorithms follows a Gaussian
distribution [20]. Both the action “a” and the target action “a′” are added a noise
a ∼ πφ(s) + ε, a′ ∼ πφ′(s′) + ε (with ε ∼ N (0, σ)). The Bellman equation [43] is
used to calculate a target value y(r, s′) as (9). In Equation (9), the smaller value be-
tween two outputs (Qθ′1

, Qθ′2
) of target critic networks is fed into the Bellman equation

to avoid overestimating the Q-value:

y
(
r, s′
)
= r + γmin

i=1,2
Q

θ
′
i

(
s′, πφ

(
s′
)
+ ε
)
; (9)

• The parameter sets (θ1 and θ2) are updated by minimizing the loss values Lθ1, B (10)
and Lθ2,B (11) which are the expected value of the difference between the target value
y(r, s′) and the two Q-value, where (s, a, r, s’) are retrieved from replay buffer B:

Lθ1,B = E
(s,a,r,s′)∼B

[(
Qθ1(s, a)− y

(
r, s′
))2
]

(10)

Lθ2,B = E
(s,a,r,s′)∼B

[(
Qθ2(s, a)− y

(
r, s′
))2
]

(11)

The parameter set φ of the actor network is updated by maximizing Qθ1 value
max

φ
E

s∼B

[
Qθ1

(
s, πφ(s)

)]
;

The parameters of the target networks are not updated consecutively like those of
the actor and critic networks in order to avoid overestimation during the training process.
These parameters are updated after a certain number of timesteps (in this research, the delay
timestep is 2), in addition, a hyperparameter τ (0 < τ < 1) is used to make updating these
weights slower. These parameters of the target networks are updated as the Equations (12)
and (13):

θ
′
i ← τθi + (1− τ)θ

′
i (12)

φ′ ← τφ + (1− τ)φ′ (13)

2.3. GCTD3

In the paper [20], the actor and critic networks used contiguous Fully Connected (FC)
layers, so the weights learned only from these FC layers made the model more difficult to
achieve convergence. Thus, the paper [9] proposed a method of combining RNN into TD3
to increase input information from many previous consecutive states, however that made
the neural network more complex and difficult to train with weak hardware. In this paper,
we propose to use the GCTD3 network for two purposes:

Appl. Sci. 2022, 12, 2948 6 of 15

• The graph convolutional layers of our GCTD3 show efficiency with data in the form of
the graph structure of the bipedal robot. The joints will learn each other’s relationships
and constraints through these layers, the joints that are not connected will not affect
each other. For example, the right knee joint and the right hip joint can share their
attributes with each other, but the left knee joint and the right knee joint are not
directly related;

• GCNs do not need to use a large number of weights to increase the joint features
of the robot joints, so the computational volume is not too large even when using
many previous states combined as the input of the neural network. According to
Equation (7), the number of weights Θ used for a joint to increase the number of its
features from F to F’ is only equal to F × F’.

In this paper, we modelled a 2-legged robot with six independent joint coordinates
to test the algorithm (details on the robot model are presented in Section 3.1). We created
a graph with seven nodes located at the joints of the robot and one node located at the
ground, thereby building the adjacency matrix for the bipedal robot. The order of the
robot’s nodes is shown in Figure 2, the adjacency matrix Â and the diagonal degree matrix
D̂ built according to the principle in Section 2.1 are also shown in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 15

𝜃௜′ ← 𝜏𝜃௜ + (1 − 𝜏)𝜃௜′ (12) 𝜙′ ← 𝜏𝜙 + (1 − 𝜏)𝜙′ (13)

2.3. GCTD3
In the paper [20], the actor and critic networks used contiguous Fully Connected (FC)

layers, so the weights learned only from these FC layers made the model more difficult to
achieve convergence. Thus, the paper [9] proposed a method of combining RNN into TD3
to increase input information from many previous consecutive states, however that made
the neural network more complex and difficult to train with weak hardware. In this paper,
we propose to use the GCTD3 network for two purposes:
• The graph convolutional layers of our GCTD3 show efficiency with data in the form

of the graph structure of the bipedal robot. The joints will learn each other’s relation-
ships and constraints through these layers, the joints that are not connected will not
affect each other. For example, the right knee joint and the right hip joint can share
their attributes with each other, but the left knee joint and the right knee joint are not
directly related;

• GCNs do not need to use a large number of weights to increase the joint features of
the robot joints, so the computational volume is not too large even when using many
previous states combined as the input of the neural network. According to Equation
(7), the number of weights 𝛩 used for a joint to increase the number of its features
from F to F’ is only equal to F × F’.
In this paper, we modelled a 2-legged robot with six independent joint coordinates

to test the algorithm (details on the robot model are presented in Section 3.1). We created
a graph with seven nodes located at the joints of the robot and one node located at the
ground, thereby building the adjacency matrix for the bipedal robot. The order of the ro-
bot’s nodes is shown in Figure 2, the adjacency matrix Â and the diagonal degree matrix
D̂ built according to the principle in Section 2.1 are also shown in Figure 2.

Figure 2. The order of nodes, linking edges for the bipedal robot; the adjacency matrix Â and the

diagonal degree matrix D̂ built based on the defined nodes and edges.

The characteristics of a node in the next state will be calculated based on the charac-
teristics of that node in the previous state and the neighboring nodes affecting that node.
This relationship is modeled in the form of Graph Convolutional layers and based on
Equation (7), the layers of graph convolution network are represented as (14):

Figure 2. The order of nodes, linking edges for the bipedal robot; the adjacency matrix Â and the
diagonal degree matrix D̂ built based on the defined nodes and edges.

The characteristics of a node in the next state will be calculated based on the charac-
teristics of that node in the previous state and the neighboring nodes affecting that node.
This relationship is modeled in the form of Graph Convolutional layers and based on
Equation (7), the layers of graph convolution network are represented as (14):

Hl+1 = σ
(

D̂−
1
2 ÂD̂−

1
2 HlW l

)
(14)

where Hl+1, Hl are the features matrices of the nodes at (l + 1)th and lth layers, W l is the
weights’ matrix at the lth layer trained by the neural network and σ() is the activation
function, in this paper we used ReLu function.

The neural network structure used is shown in Figure 3. The input of the algorithm is
the sensor signals placed at eight positions consisting of the joints of the robot, the body
of the robot, and the ground. In order to increase the input information for the neural
network, the most recent five consecutive states are used (His). At a state, each node is
characterized by a 2-D input feature vector (In) consisting of the position on the z-axis and
the velocity on the y-axis of the body robot node, angular velocity and the angular position
of the joints of the robot and the ground contact states of two feet. Since the last five states
are used, each node will have a total of 10 features, so the input dimension of the GCTD3

Appl. Sci. 2022, 12, 2948 7 of 15

is (8, 10). After three layers of the GCN with the number of hidden features 32, 32 and 16,
respectively, each node will be represented by a 16-features vector, these features are the
relationships between the nodes affecting each other. Then, we concatenate the features of
eight nodes before introducing two fully connected layers and a last linear layer to give the
desired angles for the joints of the robot for the next state.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 15

𝐻௟ାଵ = 𝜎(𝐷෡ିଵଶ𝐴መ𝐷෡ିଵଶ𝐻௟𝑊௟) (14)

where 𝐻௟ାଵ, 𝐻௟ are the features matrices of the nodes at (l + 1)th and lth layers, 𝑊௟ is the
weights’ matrix at the lth layer trained by the neural network and 𝜎() is the activation
function, in this paper we used ReLu function.

The neural network structure used is shown in Figure 3. The input of the algorithm
is the sensor signals placed at eight positions consisting of the joints of the robot, the body
of the robot, and the ground. In order to increase the input information for the neural
network, the most recent five consecutive states are used (His). At a state, each node is
characterized by a 2-D input feature vector (In) consisting of the position on the z-axis and
the velocity on the y-axis of the body robot node, angular velocity and the angular position
of the joints of the robot and the ground contact states of two feet. Since the last five states
are used, each node will have a total of 10 features, so the input dimension of the GCTD3
is (8, 10). After three layers of the GCN with the number of hidden features 32, 32 and 16,
respectively, each node will be represented by a 16-features vector, these features are the
relationships between the nodes affecting each other. Then, we concatenate the features
of eight nodes before introducing two fully connected layers and a last linear layer to give
the desired angles for the joints of the robot for the next state.

Figure 3. The actor network and two critic networks structure in GCTD3 algorithm: N is the number
of nodes in the graph; “In” is the number of features of each node at a state; and “His” is the number
of most recent consecutive states used during training, the activation function is ReLu.

3. Training Process
3.1. Simulation Environment

An overview of the robot training and simulation process is shown in Figure 4. ROS
is used to transmit signals between the Gazebo simulation environment and the RL algo-
rithm. The model receives the state from Gazebo when the robot moves in the environ-
ment, then calculates the reward corresponding to that state to put the input state into the
GCTD3 algorithm and find the appropriate action for the robot in the next state. Nodes
and topics communicate with each other thanks to ROS which is shown in Figure 5. In

Figure 3. The actor network and two critic networks structure in GCTD3 algorithm: N is the number
of nodes in the graph; “In” is the number of features of each node at a state; and “His” is the number
of most recent consecutive states used during training, the activation function is ReLu.

3. Training Process
3.1. Simulation Environment

An overview of the robot training and simulation process is shown in Figure 4. ROS is
used to transmit signals between the Gazebo simulation environment and the RL algorithm.
The model receives the state from Gazebo when the robot moves in the environment, then
calculates the reward corresponding to that state to put the input state into the GCTD3
algorithm and find the appropriate action for the robot in the next state. Nodes and topics
communicate with each other thanks to ROS which is shown in Figure 5. In Figure 5, when
the robot walks in the Gazebo simulation environment, /gazebo node publishes data about
the robot’s transformation and the ground contact state of the feet to topics /Joint_states,
/FootR_contact and /FootL_contact. After that, the /walker_controller node subscribes
data provided from the three topics so that RL algorithms can process and find a proper
action. These found values are published to six topics corresponding to six robot joints and
/gazebo node continues getting these six values from the six topics for the bipedal robot
to perform in the next state. The components used in testing the algorithm are detailed in
this section.

Appl. Sci. 2022, 12, 2948 8 of 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 15

Figure 5, when the robot walks in the Gazebo simulation environment, /gazebo node pub-
lishes data about the robot’s transformation and the ground contact state of the feet to
topics /Joint_states, /FootR_contact and /FootL_contact. After that, the /walker_controller
node subscribes data provided from the three topics so that RL algorithms can process
and find a proper action. These found values are published to six topics corresponding to
six robot joints and /gazebo node continues getting these six values from the six topics for
the bipedal robot to perform in the next state. The components used in testing the algo-
rithm are detailed in this section.

Figure 4. Diagram of the main components in the training and simulation process of the bipedal robot.

Figure 5. Communication between nodes and topics in ROS. Ovals represent nodes and rectangles
represent topics.

The robot model has the shape and size as shown in Figure 6. The bipedal robot con-
sists of seven links (the left and right thigh, the left and right shank, the left and right foot
and a body), we selected Acrylonitrile butadiene styrene (ABS) material for all links of the
robot. The weight and height of each link are presented in Table 1.

Figure 4. Diagram of the main components in the training and simulation process of the bipedal robot.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 15

Figure 5, when the robot walks in the Gazebo simulation environment, /gazebo node pub-
lishes data about the robot’s transformation and the ground contact state of the feet to
topics /Joint_states, /FootR_contact and /FootL_contact. After that, the /walker_controller
node subscribes data provided from the three topics so that RL algorithms can process
and find a proper action. These found values are published to six topics corresponding to
six robot joints and /gazebo node continues getting these six values from the six topics for
the bipedal robot to perform in the next state. The components used in testing the algo-
rithm are detailed in this section.

Figure 4. Diagram of the main components in the training and simulation process of the bipedal robot.

Figure 5. Communication between nodes and topics in ROS. Ovals represent nodes and rectangles
represent topics.

The robot model has the shape and size as shown in Figure 6. The bipedal robot con-
sists of seven links (the left and right thigh, the left and right shank, the left and right foot
and a body), we selected Acrylonitrile butadiene styrene (ABS) material for all links of the
robot. The weight and height of each link are presented in Table 1.

Figure 5. Communication between nodes and topics in ROS. Ovals represent nodes and rectangles
represent topics.

The robot model has the shape and size as shown in Figure 6. The bipedal robot
consists of seven links (the left and right thigh, the left and right shank, the left and right
foot and a body), we selected Acrylonitrile butadiene styrene (ABS) material for all links of
the robot. The weight and height of each link are presented in Table 1.

Appl. Sci. 2022, 12, 2948 9 of 15Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 15

Figure 6. Shape and size of the bipedal robot’s links.

Table 1. Mass, height and material of links of robot.

Link Material Mass (kg) Height (m)
Body Acrylonitrile butadiene styrene (ABS) 4.0200 0.47

Left Thigh Acrylonitrile butadiene styrene (ABS) 1.7324 0.267
Right Thigh Acrylonitrile butadiene styrene (ABS) 1.7324 0.267
Left Shank Acrylonitrile butadiene styrene (ABS) 0.7527 0.253

Right Shank Acrylonitrile butadiene styrene (ABS) 0.7527 0.253
Left Foot Acrylonitrile butadiene styrene (ABS) 0.4111 0.065

Right Foot Acrylonitrile butadiene styrene (ABS) 0.4111 0.065

The software used for the simulation is Gazebo and the Robot Operating System is
used to get state information from the environment for computational processing to find
the appropriate action and then send it back to the environment.
• Environment: Gazebo simulation environment receives control signals through the

ROS with a frequency of 50 Hz, i.e., ROS will take the state from the environment
and calculate the reward of that state to store data into a replay buffer every 0.02 s;

• State: At each joint of the robot model, sensors are placed to measure the information
received from the environment for the agent to process. The sent signals contain in-
formation of the angular position and angular velocity of the joints, the coordinates
of the robot’s body in the vertical direction and the robot’s speed according to the
robot’s movement direction, and the signals from the sensor located at the feet to know
whether the robot touches the ground or not, five consecutive states from t − 5 to t are
concatenated again to form the input state of the neural network during training;

• Action: Before sending the robot control signals, the action corresponding to the de-
sired angle coordinates of the joints is calculated by our proposed network, the action
consists of six values corresponding to the desired angle of six joints: left hip joint,
right hip joint, left knee joint, right knee joint, left ankle joint and right ankle joint.
The angle ranges of these joints are limited as shown in Table 2;

Figure 6. Shape and size of the bipedal robot’s links.

Table 1. Mass, height and material of links of robot.

Link Material Mass (kg) Height (m)

Body Acrylonitrile butadiene styrene (ABS) 4.0200 0.47
Left Thigh Acrylonitrile butadiene styrene (ABS) 1.7324 0.267

Right Thigh Acrylonitrile butadiene styrene (ABS) 1.7324 0.267
Left Shank Acrylonitrile butadiene styrene (ABS) 0.7527 0.253

Right Shank Acrylonitrile butadiene styrene (ABS) 0.7527 0.253
Left Foot Acrylonitrile butadiene styrene (ABS) 0.4111 0.065

Right Foot Acrylonitrile butadiene styrene (ABS) 0.4111 0.065

The software used for the simulation is Gazebo and the Robot Operating System is
used to get state information from the environment for computational processing to find
the appropriate action and then send it back to the environment.

• Environment: Gazebo simulation environment receives control signals through the
ROS with a frequency of 50 Hz, i.e., ROS will take the state from the environment and
calculate the reward of that state to store data into a replay buffer every 0.02 s;

• State: At each joint of the robot model, sensors are placed to measure the information
received from the environment for the agent to process. The sent signals contain
information of the angular position and angular velocity of the joints, the coordinates
of the robot’s body in the vertical direction and the robot’s speed according to the
robot’s movement direction, and the signals from the sensor located at the feet to know
whether the robot touches the ground or not, five consecutive states from t − 5 to t are
concatenated again to form the input state of the neural network during training;

• Action: Before sending the robot control signals, the action corresponding to the
desired angle coordinates of the joints is calculated by our proposed network, the
action consists of six values corresponding to the desired angle of six joints: left hip
joint, right hip joint, left knee joint, right knee joint, left ankle joint and right ankle
joint. The angle ranges of these joints are limited as shown in Table 2;

• Reward: We use a dense reward function based on the actual human gait to make the
algorithm easier to converge. While walking, the robot always has two states: one-foot
contacts with the ground and two feet contact with the ground (Figure 7). In each state,
the height of the body robot has different values. In the paper [25], only an average

Appl. Sci. 2022, 12, 2948 10 of 15

value of the body height during motion is used as a basis height for the robot to learn,
two average values of the body height corresponding to two grounding states of the
legs in motion are used in this paper. At the single phase of walking (Figure 7a,b), the
average height of the robot’s body reaches a higher value than that at the double phase
of walking (Figure 7c,d). In addition, the robot will also be punished if it performs
actions that delay its movement such as falling or standstill, the details of the reward
function are presented in Table 3.

Table 2. Limiting rotation angle and annotation of joints.

Joint Flexion (Rad) Extension (Rad) Annotation

Hip 0.7854 0.7854 α

Knee 1.3962 0.0012 β

Ankle 0.7854 0.7854 γ

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 15

Table 2. Limiting rotation angle and annotation of joints.

Joint Flexion (Rad) Extension (Rad) Annotation
Hip 0.7854 0.7854 α

Knee 1.3962 0.0012 β
Ankle 0.7854 0.7854 γ

• Reward: We use a dense reward function based on the actual human gait to make the
algorithm easier to converge. While walking, the robot always has two states: one-
foot contacts with the ground and two feet contact with the ground (Figure 7). In each
state, the height of the body robot has different values. In the paper [25], only an
average value of the body height during motion is used as a basis height for the robot
to learn, two average values of the body height corresponding to two grounding
states of the legs in motion are used in this paper. At the single phase of walking
(Figure 7a,b), the average height of the robot’s body reaches a higher value than that
at the double phase of walking (Figure 7c,d). In addition, the robot will also be pun-
ished if it performs actions that delay its movement such as falling or standstill, the
details of the reward function are presented in Table 3.

Figure 7. The stage of the bipedal robot’s walk: (a,b) are two single phases of walking; (c,d) are two
double phases of walking.

Table 3. Bonus and punishment values at state t of the reward function during robot motion.

Situation Reward
Bonus 𝑟௜ = 𝑚𝑖𝑛(𝑣௜௬, 𝑣target) + 0.2 ൉ (𝑦௜ − 𝑦௜ି௛)

Gait punishment
1 | |

0.0
0.02

:
5

1
:

target

target

target

Single support phase
Double support phase

i ir c z z

z
w

z
ith

− = −

= −

 = −

Long ground contact time 1.0ir − =

Fall down 10.0ir − =

3.2. Experiment
The algorithm is trained for more than 10,000 epochs, in each epoch, the robot starts

to move from the starting position to the end of the distance in 15 m or falls. The other

Figure 7. The stage of the bipedal robot’s walk: (a,b) are two single phases of walking; (c,d) are two
double phases of walking.

Table 3. Bonus and punishment values at state t of the reward function during robot motion.

Situation Reward

Bonus ri = min(viy, vtarget) + 0.2·(yi − yi−h)

Gait punishment
ri− = c1

∣∣zi − ztarget
∣∣

with
{

ztarget = −0.01 : Single support phase
ztarget = −0.025 : Double support phase

Long ground contact time ri− = 1.0
Fall down ri− = 10.0

3.2. Experiment

The algorithm is trained for more than 10,000 epochs, in each epoch, the robot starts
to move from the starting position to the end of the distance in 15 m or falls. The other
hyperparameters of the actor and critic networks of the GCTD3 algorithm chosen to train
the model are presented in Table 4.

Appl. Sci. 2022, 12, 2948 11 of 15

Table 4. Hyperparameters values of Actor and Critic networks used for the training process.

Actor Critics (Q1, Q2)

Episode 10,000
Policy update frequency 2

Learning rate 3 × 10−4 3 × 10−4

Weight decay τ 0.001 0.001
Optimizer Adam Adam

Hidden GC layers [32, 32, 16] [32, 32, 16]
Hidden fully connected layers [256, 256] [256, 256]

Discount factor 0.99 0.99

After training the RL algorithms, the rewards obtained during the training process
are shown in Figure 8. In Figure 8, the dashed lines are the total reward values of the
timesteps at each episode, the solid line is the average cumulative reward of the episodes.
According to the graph in Figure 8, we can see that after more than 10,000 training episodes,
the cumulative reward of an episode using GCTD3 (the solid red line) is higher than the
rest of the algorithms.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 15

hyperparameters of the actor and critic networks of the GCTD3 algorithm chosen to train
the model are presented in Table 4.

Table 4. Hyperparameters values of Actor and Critic networks used for the training process.

 Actor Critics (Q1, Q2)
Episode 10,000

Policy update frequency 2
Learning rate 3e-4 3e-4

Weight decayτ 0.001 0.001
Optimizer Adam Adam

Hidden GC layers [32, 32, 16] [32, 32, 16]
Hidden fully connected layers [256, 256] [256, 256]

Discount factor 0.99 0.99

After training the RL algorithms, the rewards obtained during the training process
are shown in Figure 8. In Figure 8, the dashed lines are the total reward values of the
timesteps at each episode, the solid line is the average cumulative reward of the episodes.
According to the graph in Figure 8, we can see that after more than 10,000 training epi-
sodes, the cumulative reward of an episode using GCTD3 (the solid red line) is higher
than the rest of the algorithms.

Figure 8. Cumulative reward over 10,000 episodes when training GCTD3 (red), TD3 (yellow),
DDPG (green) and SAC (blue).

4. Evaluation
In this section, we will show some evaluation results between our GCTD3 algorithm

and the TD3 baseline and we will also make a comparison with other RL algorithms. Fig-
ure 9 shows that the period and amplitude of oscillation of the knee and ankle joints when
using GCTD3 are more stable than TD3 over timestep. In addition, when comparing these
characteristics between the left and right legs of the robot, the GCTD3 algorithm also
achieved better similarity of the trajectory of the two legs than TD3.

Figure 8. Cumulative reward over 10,000 episodes when training GCTD3 (red), TD3 (yellow), DDPG
(green) and SAC (blue).

4. Evaluation

In this section, we will show some evaluation results between our GCTD3 algorithm
and the TD3 baseline and we will also make a comparison with other RL algorithms.
Figure 9 shows that the period and amplitude of oscillation of the knee and ankle joints
when using GCTD3 are more stable than TD3 over timestep. In addition, when comparing
these characteristics between the left and right legs of the robot, the GCTD3 algorithm also
achieved better similarity of the trajectory of the two legs than TD3.

Appl. Sci. 2022, 12, 2948 12 of 15Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 15

Figure 9. Graph of rotation angle values of hip, knee and ankle joints (from left to right) of GCTD3
and TD3 algorithms (from top to bottom). The blue and orange lines represent the rotation of the
joints of the right and left legs over timestep, respectively.

In addition, according to the graph of Figure 10, we can see that the body position
when using the GCTD3 algorithm fluctuates more stably and cyclically than the other
three algorithms. In Table 5, the robot’s cumulative reward value of GCTD3 is also higher
than that of other algorithms, the robot also has a moving speed of 1.414 (m/s) that is faster
than DDPG (1.344 m/s), SAC (0.619 m/s) and TD3 (1.164 m/s).

Figure 10. Graph of the position of robot’s body oscillation during walking when using
reinforcement learning algorithms GCTD3, TD3, DDPG, and SAC.

Figure 9. Graph of rotation angle values of hip, knee and ankle joints (from left to right) of GCTD3
and TD3 algorithms (from top to bottom). The blue and orange lines represent the rotation of the
joints of the right and left legs over timestep, respectively.

In addition, according to the graph of Figure 10, we can see that the body position
when using the GCTD3 algorithm fluctuates more stably and cyclically than the other three
algorithms. In Table 5, the robot’s cumulative reward value of GCTD3 is also higher than
that of other algorithms, the robot also has a moving speed of 1.414 (m/s) that is faster than
DDPG (1.344 m/s), SAC (0.619 m/s) and TD3 (1.164 m/s).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 15

Figure 9. Graph of rotation angle values of hip, knee and ankle joints (from left to right) of GCTD3
and TD3 algorithms (from top to bottom). The blue and orange lines represent the rotation of the
joints of the right and left legs over timestep, respectively.

In addition, according to the graph of Figure 10, we can see that the body position
when using the GCTD3 algorithm fluctuates more stably and cyclically than the other
three algorithms. In Table 5, the robot’s cumulative reward value of GCTD3 is also higher
than that of other algorithms, the robot also has a moving speed of 1.414 (m/s) that is faster
than DDPG (1.344 m/s), SAC (0.619 m/s) and TD3 (1.164 m/s).

Figure 10. Graph of the position of robot’s body oscillation during walking when using
reinforcement learning algorithms GCTD3, TD3, DDPG, and SAC.

Figure 10. Graph of the position of robot’s body oscillation during walking when using reinforcement
learning algorithms GCTD3, TD3, DDPG, and SAC.

Appl. Sci. 2022, 12, 2948 13 of 15

Table 5. Average rewards, mean body position, and average robot velocity obtained when evaluating
algorithms in 50 episodes.

DDPG SAC TD3 GCTD3(our)

Average reward 241.28 ± 89.44 224.18 ± 56.96 370.31 ± 37.26 380.0 ± 18.47
Position of the body robot (m) −0.0114 −0.0397 −0.0020 −0.0202

Velocity (m/s) 1.344 0.619 1.164 1.414

5. Conclusions

This paper presents the GCTD3 method using graph convolutional layers in the TD3
baseline algorithm to apply to the bipedal robot having six independent joint coordinates.
The GCTD3 algorithm achieves a higher average cumulative reward and a higher average
speed than the TD3 algorithm as well as other reinforcement learning algorithms (DDPG
and SAC) which is shown in Table 5. Our method exploits the graph structure of the robot’s
joints to help the robot move more smoothly, and it helps the rotation angles of the joints
to have a better cycle (Figure 9). In this paper, through the actual observation of human
gait, a reward function of RL algorithms was built, based on two phases (single phase of
walking and double phase of walking). The results evaluated and performed through the
ROS and Gazebo environment proved the effectiveness of our method and it is a premise
to apply this method in a real environment with real robots in future studies. Moreover, the
GCTD3 can be improved to orient the robot to perform other more complex actions such
as jumping, avoiding obstacles and moving on complex terrains, and it can be extended
to apply for more multi-legged and degrees-of-freedom robots such as quadrupeds or
spider robots.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12062948/s1.

Author Contributions: Conceptualization, K.P.B., G.N.T. and D.N.N.; methodology, K.P.B., G.N.T.
and D.N.N.; software, G.N.T.; validation, K.P.B. and D.N.N.; writing-original draft preparation
G.N.T. and D.N.N.; writing-review and editing, K.P.B.; visualization K.P.B.; supervision, K.P.B. and
D.N.N.; project administration, K.P.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th Interna-

tional Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.
2. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.

In Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16), Barcelona, Spain, 4–9
December 2016; pp. 3844–3852.

3. Kormushev, P.; Calinon, S.; Caldwell, D.G. Reinforcement Learning in Robotics: Applications and Real-World Challenges. Robotics
2013, 2, 122–148. [CrossRef]

4. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
5. Zhu, H.; Yu, J.; Gupta, A.; Shah, D.; Hartikainen, K.; Singh, A.; Kumar, V.; Levine, S. The Ingredients of Real-World Robotic

Reinforcement Learning. arXiv 2020, arXiv:2004.12570.
6. Tuomas, H.; Sehoon, H.; Aurick, Z.; Jie, T.; George, T.; Sergey, L. Learning to Walk via Deep Reinforcement Learning. arXiv 2019,

arXiv:1812.11103.
7. Michael, B.; Fadri, F.; Tonci, N.; Roland, S.; Juan, I.N. Comparing Task Simplifications to Learn Closed-Loop Object Picking Using

Deep Reinforcement Learning. IEEE Robot. Autom. Lett. 2019, 2, 1549–1556.

https://www.mdpi.com/article/10.3390/app12062948/s1
https://www.mdpi.com/article/10.3390/app12062948/s1
http://doi.org/10.3390/robotics2030122
http://doi.org/10.1177/0278364913495721

Appl. Sci. 2022, 12, 2948 14 of 15

8. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy
updates. In Proceedings of the IEEE international conference on robotics and automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 3389–3396.

9. Zhang, K.; Hou, Z.; Silva, C.W.; Yu, H.; Fu, C. Teach Biped Robots to Walk via Gait Principles and Reinforcement Learning with
Adversarial Critics. arXiv 2019, arXiv:1910.10194.

10. Peters, J.; Vijayakumar, S.; Schaal, S. Reinforcement learning for humanoid robotics. In Proceedings of the IEEE-RAS international
conference on humanoid robots, Karlsruhe-Munich, Germany, 29–30 September 2003; pp. 1–20.

11. Morimoto, J.; Cheng, G.; Atkeson, C.G.; Zeglin, G. A simple reinforcement learning algorithm for biped walking. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA ’04), New Orleans, LA, USA, 26 April–1 May 2004.

12. Krishna, L.; Mishra, U.A.; Castillo, G.A.; Hereid, A.; Kolathaya, S. Learning Linear Policies for Robust Bipedal Locomotion on
Terrains with Varying Slopes. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Prague, Czech Republic, 27 September–1 October 2021; pp. 5159–5164.

13. Siekmann, J.; Valluri, S.S.; Dao, J.; Bermillo, L.; Duan, H.; Fern, A.; Hurst, J.W. Learning Memory-Based Control for Human-Scale
Bipedal Locomotion. arXiv 2020, arXiv:2006.02402.

14. Peng, X.B.; Berseth, G.; Yin, K.; Van De Panne, M. Deeploco: Dynamic locomotion skills using hierarchical deep reinforcement
learning. ACM Trans. Graph. 2017, 36, 41. [CrossRef]

15. Atique, M.U.; Sarker, R.I.; Ahad, A.R. Development of an 8DOF quadruped robot and implementation of Inverse Kinematics
using Denavit–Hartenberg convention. Heliyon 2018, 4, e01053. [CrossRef] [PubMed]

16. Gor, M.M.; Pathak, P.M.; Samantaray, A.K.; Yang, J.M.; Kwak, S.W. Jacobian based control of walking robot with compliant legs.
In Proceedings of the 6th International Conference on Integrated Modeling and Analysis in Applied Control and Automation,
Vienna, Austria, 19–21 September 2012; pp. 171–177.

17. Farshidian, F.; Jelavic, E.; Winkler, A.W.; Buchli, J. Robust whole-body motion control of legged robots. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017;
pp. 4589–4596.

18. Khoi, P.B.; Nguyen Xuan, H. Fuzzy Logic-Based Controller for Bipedal Robot. Appl. Sci. 2021, 11, 11945. [CrossRef]
19. Konda, V.R.; Tsitsiklis, J.N. Actor-Critic Algorithms. In Proceedings of the Neural Information Processing Systems (NIPS); MIT Press:

Cambridge, MA, USA, 29 November–4 December 1999; pp. 1008–1014.
20. Fujimoto, S.; Van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. In Proceedings of the

International Conference on Machine Learning Conference (ICML), Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596.
21. Tuomas, H.; Aurick, Z.; Pieter, A.; Sergey, L. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a

Stochastic Actor. In Proceedings of the International Conference on Machine Learning, Stockholm (ICML), Stockholm, Sweden,
10–15 July 2018; pp. 1861–1870.

22. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. In Proceedings of the 4th International Conference on Learning Representations (ICLR), San Juan, Puerto
Rico, 2–4 May 2016.

23. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning (ICML’16), New York, NY, USA,
19–24 June 2016; pp. 1928–1937.

24. Kumar, A.; Paul, N.; Omkar, S. Bipedal Walking Robot using Deep Deterministic Policy Gradient. arXiv 2018, arXiv:1807.05924.
25. Khoi, P.B.; Giang, N.T.; van Tan, H. Control and Simulation of a 6-DOF Biped Robot based on Twin Delayed Deep Deterministic

Policy Gradient Algorithm. Indian J. Sci. Technol. 2021, 14, 2460–2471. [CrossRef]
26. Connor, W.C.; Wengong, J.; Luke, R.; Timothy, F.J.; William, G.; Tommi, S.J.; Regina, B.; Klavs, F.J. A graph-convolutional neural

network model for the prediction of chemical reactivity. Chem. Sci. J. 2019, 10, 370–377.
27. Duvenaud, D.; Dougal, M.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Timothy, H.; Aspuru-Guzik, A.; Ryan, P.A. Con-

volutional Networks on Graphs for Learning Molecular Fingerprints. In Proceedings of the Advances in Neural Information
Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015; pp. 2215–2223.

28. Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, London, UK, 19–23 August 2018; pp. 974–983.

29. Yan, S.; Xiong, Y.; Lin, D. Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. arXiv 2018,
arXiv:1801.07455.

30. Tang, Y.; Tian, Y.; Lu, J.; Li, P.; Zhou, J. Deep progressive reinforcement learning for skeleton-based action recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 5323–5332.

31. Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20
June 2019.

32. Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Skeleton-based action recognition with directed graph neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 7912–7921.

http://doi.org/10.1145/3072959.3073602
http://doi.org/10.1016/j.heliyon.2018.e01053
http://www.ncbi.nlm.nih.gov/pubmed/30582058
http://doi.org/10.3390/app112411945
http://doi.org/10.17485/IJST/v14i30.1030

Appl. Sci. 2022, 12, 2948 15 of 15

33. Jiang, J.; Dun, C.; Lu, Z. Graph Convolutional Reinforcement Learning for Multi-Agent Cooperation. arXiv 2018, arXiv:1810.09202.
34. Quigley, M.; Conley, K.; Gerkey, B.P.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating

System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009.
35. Quigley, M.; Gerkey, B.; Smart, W.D. Programming Robots with ROS: A Practical Introduction to the Robot Operating System; O’Reilly

Media, Inc.: Newton, MS, USA, 2015.
36. Cañas, J.M.; Perdices, E.; García-Pérez, L.; Fernández-Conde, J. A ROS-Based Open Tool for Intelligent Robotics Education. Appl.

Sci. 2020, 10, 7419. [CrossRef]
37. Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the 2004

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), Sendai, Japan, 28 September–2 October 2004.
38. Wenshuai, Z.; Jorge, P.Q.; Tomi, W. Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: A Survey 2020. In

Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020;
pp. 737–744.

39. Hammond, D.K.; Vandergheynst, P.; Gribonval, R. Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal.
2011, 30, 129–150. [CrossRef]

40. Richard, S.S.; Andrew, G.B. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018.
41. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
42. Rafael, S. Noise, Overestimation and Exploration in Deep Reinforcement Learning. Available online: https://arxiv.org/pdf/2006

.14167v1.pdf (accessed on 28 January 2022).
43. Bellman, R. Dynamic programing. Science 1966, 153, 34–37. [CrossRef] [PubMed]

http://doi.org/10.3390/app10217419
http://doi.org/10.1016/j.acha.2010.04.005
http://doi.org/10.1613/jair.301
https://arxiv.org/pdf/2006.14167v1.pdf
https://arxiv.org/pdf/2006.14167v1.pdf
http://doi.org/10.1126/science.153.3731.34
http://www.ncbi.nlm.nih.gov/pubmed/17730601

	Introduction
	Network Architecture
	Graph Convolutional Network
	Twin Delayed Deep Deterministic Policy Gradient
	GCTD3

	Training Process
	Simulation Environment
	Experiment

	Evaluation
	Conclusions
	References

