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Abstract: IoT systems contribute to digital transformation through the development of smart concepts.
However, the IoT has also generated new security challenges that require security tools to be adapted,
such as risk analysis methodologies. With this in mind, the purpose of our study is based on
the following question: Which factors of IoT devices should be considered within risk assessment
methodologies? We have addressed our study with a 4-phase design-research methodology (DRM)
that allows us, based on systematic literature review, to experiment and draw upon expert judgment;
as a final product, we obtain a risk assessment methodology based on the characteristics of IoT
devices. At the end of this study, we establish seven main constructs—Organization, Risk Behaviors,
Dependency, Attack Surface, Susceptibility, Severity and Uncertainty—over which security risk in
IoT systems can be evaluated.

Keywords: IoT security; risk analysis; attack graphs; security modeling

1. Introduction

Digital transformation is used in organizations to improve their strategic and opera-
tional processes by incorporating “Smart” concepts [1]. Currently, this “Smart” concept can
be implemented in agriculture, transportation, energy, homes and cities [2]. Implementing
the smart concept from a technological perspective is based on the use of emerging technolo-
gies such as artificial intelligence (AI), big data, machine learning (ML), Internet of Things
(IoT) and the cloud [3]. However, including these technologies has introduced additional
aspects related to cybersecurity. The IoT has certain particularities in relation to security
in contrast with AI, big data, ML and cloud; this is because of factors such as location in
less protected environments such as streets, traffic lights and agricultural fields, among
others [4]. IoT devices have inherent characteristics, such as heterogeneity of technologies
and protocols, reduced computational capacity and limited security mechanisms [5]. This
aspect of IoT systems has motivated the development of several works of research related
to IoT security. Some contributions have focused on establishing security strategies, such
as the zero trust model for IoT [6] and security verification on IoT systems [7]. These
strategies have two aspects in common. The first one is related to the fact that they focus on
establishing phases or procedures based on the security level of the IoT device. For instance,
“Zero-trust” establishes a minimum-security level that an IoT device must meet to join the
network, while “Security Verification” requires evaluating, as a first step, the compliance
of IoT devices based on risk profiles. The second aspect is related to the requirements
of these two strategies for their first step in developing “Risk analysis”, which is often
based on the identification and evaluation of critical assets (IoT devices) [8]. In relation
to this second aspect, applying a security risk analysis method in an IoT context has been
discussed by some researchers in recent years, because of the argument that IoT systems
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have characteristics and behaviors of IT (Information Technology) systems. For instance,
Kandasamy et al. [9] mentions that the complexity and heterogeneity of the technology and
data of IoT systems create additional issues related to security risk that cannot easily fit in
the existing risk frameworks. In the same vein, Nurse et al. [10] mentions that risk analysis
methodologies must adapt to dynamic IoT scenarios, as well as consider the possibility of
limited historical data related with attacks on IoT devices and the interconnection of IoT
with other non-IoT systems.

In this context, some proposed security risk methodologies focused on IoT have been
developed. These proposals include features of IoT systems, such as heterogeneity, a
layered model, and several IoT devices. However, each proposed method uses different
factors or characteristics of IoT systems in comparison with the others, and sometimes, there
is not a rational justification about the selection of the specific factors used. The analysis,
in conjunction with the factors used by the different methodologies, could contribute to a
deeper calculation of IoT security risk. Thus, there is a gap in relation to having a formal
IoT security risk analysis method, and in relation to the factors that could contribute to
more accurate and effective construction of a security risk analysis method for the IoT.
This context allows us to define our primary research question: How can we develop an
effective security risk assessment in IoT systems?

Based on this primary research question, we propose the following objectives for
this study:

1. Identify the most relevant factors that allow the definition of the security risk level of
an Internet of Things system.

2. Evaluate the relationships between the factors of the Internet of Things.
3. Establish a method to calculate an approximate value of the security risk level of an

IoT system.

Risk analysis methodologies have been considered as a starting point, since zero trust
is based on defining a risk level for IoT devices, while security verification is based on
defining a risk profile for IoT devices. Therefore, we define the start point on this study
as the analysis of the common element of these two strategies, the “IoT device” and its
relationship with security risk. For this reason, an epistemic approach to understanding the
factor of the IoT device and its relationship with security risk is addressed, to accomplish
objectives 1 and 2 of this study. For the analysis of the relationship between IoT devices
and security risk, we define the following questions related to IoT devices:

1. Which factors of IoT devices should be considered to define an adequate security level
for low cyber risk?

2. For which factors of IoT devices should risk assessment methodologies be considered?
3. Which factors of IoT devices could define a risk’s profile?

This identification allows us to address the development of risk analysis methodologies
for IoT systems, leaving, for future work, the question of how these factors could be used in
zero-trust strategies and security verification methodologies. Under this scope, the purpose
of this work seeks to contribute to the following objectives:

1. Identify the most relevant factors that allow the definition of the security risk level of
an IoT device.

2. Evaluate the relationships between the factors of IoT devices and security risk.
3. Establish a method to calculate an approximate value of the security risk level of an

IoT system.

The rest of this paper is structured as follows. Section 2 presents an overview of works
related to methodologies of risk analysis in IoT ecosystems. Section 3 presents the design
research methodology to identify the factors of IoT devices that contribute to risk security.
Section 4 presents an analysis of the results obtained from the design research, to determine
the contribution of the factors of IoT devices to security risk. Finally, Section 5 concludes
this study.
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2. Background and Related Works

Risk analysis methodologies have been widely used in computer science to assess
security risk in computer systems. Some of the most widely used risk methodologies are
presented in Table 1 with their strengths and weaknesses.

Table 1. Strengths and weaknesses of risk methodologies used in computer science.

Methodologies Focus On Strength Weakness

NIST [11] Security controls Guidelines to execute security
controls according to risk assessment.

Needs work with other standards
to address compliance.

ISO [12] Compliance of security controls Analysis of information security risks
according to specific criteria.

Coordination and integration to
remember to update the standard.

MAGERIT [13] Assets values
Assessments of critical assets, and the

mitigation of threats and risks that
could degrade them.

Requires time for identification of
critical assets.

TARA [14] Attacks Definition of a list of attacks. Does not quantify risk impact.

However, some researchers have mentioned that these traditional methodologies have
some limitations for IoT systems. For instance, Nurse mentions that current risk assessment
methods fail in the following aspects [10]:

• Short assessment periods: Risk methodologies are not usually designed to be per-
formed in short periods of time; however, the IoT ecosystem is continuously changing
because of the addition of new devices.

• Limited knowledge of IoT systems: Most risk assessments are focused on traditional
systems and do not include the IoT ecosystem.

• Connections to other systems: IoT devices connect to other systems or technologies
such as cloud computing, big data and traditional systems. This situation expands the
attack surface of IoT ecosystems.

• Not considering the asset as an attack platform: IoT devices can perform new attacks.

In this context, some research has been proposed for the development of risk analysis
methodologies focused on IoT. Kandasamy proposes that the following parameters should
be considered for assessing the security risk in IoT system network type (nwt), protocol type
(prt), the heterogeneous system involved (het), device security (des) and CIA impact type
(cia) [8]. From these criteria, the risk impact of a device would be given by Equation (1):

w(d) =
1
5
[nwt(d) + prt (d) + het (d) + des(d) + cia(d)] (1)

where

wd—level of risk impact;
nwt—network type;
prt—protocol type;
het—heterogeneous systems involved;
des—level of device security;
cia—level of impact on cia components.

The probability of risk would be given by the weight of past attacks (pat), the weight
of the IoT layer with more attacks (lyr), the weight of the sector where the IoT solution
is applied (scr) and the risk factor of the device according to its use (drf). Based on these
criteria, the risk probability of a device would be given by Equation (2):

S(d) =
1
4
[pat(d) + lyr(d) + scr (d) + drf(d)] (2)

where
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pat—weight of past attacks;
lyr—weight IoT layer;
scr—weight of sector of IoT;
drf—risk factor.

Finally, the proposal presented by Kandasamy evaluates risk (Rs) as a function of
impact by probability, denoted as the product of w(d) by S(d). The exploitation of this
proposal is interesting because it includes characteristic aspects of IoT solutions, such as the
application sector and the layered architecture of IoT. The proposal covers the components
without discussing more details about the threats, attacks or vulnerabilities of IoT systems,
allowing for the establishment of the weights for risk calculation. In addition, a method
could be included to reduce subjectivity when considering the weights of each component.

In the same vein, Toapanta defines the cybersecurity performance algorithm, where Ef
is the Efficiency; Dev is the number of devices connected to the network; Sor is the number
of sensors; Svs is the number of services and processes; Int is the number of interfaces;
Met is the number of reports, indicators or metrics; Dat is the number of data structures;
Scf is the number of smart contract functions; and Prot is the number of protocols or
standards adopted [15].

Ef = 100− (

√
Dev× Sor√
Dat× Scf

.
(Svs + Int + Met)

(5π + Prot)
(3)

where

Dev—number of devices connected to the network;
Sor—number of sensors;
Svs—number of services and processes;
Int—number of interfaces;
Met—number of reports;
Dat—number of data structures;
Scf—number of smart contract functions;
Prot—number of protocols or standards adopted.

Toapanta’s proposal considers the characteristics of IoT systems from the perspective
of the large number of devices, sensors, and processes. The proposal addresses the security
aspects of the IoT in a general approach, without going into detail on how aspects of the
IoT are affected by distinct threats. The proposal considers all IoT devices equally, which
could limit the selection of security controls to reduce risk, because it does not detail the
type of information on the IoT device or the criticality of the IoT device for health- or
energy-related applications.

In the same line, Aydos proposes that the risk assessment be based on a four-stage
approach: (a) Measurement of threats to the layers; (b) processes/procedures for securing
data in the layers; (c) third parties and human factors affecting layer security; and (d) criti-
cality of the layers and the scale of the attack surface [16]. The model proposes a qualitative
risk assessment based on three criticality scales: low, medium, and high. Aydos, again,
mentions the importance of considering in the risk assessment the heterogeneous systems
involved in the IoT system and attacks on different layers of IoT systems. The proposal
does not address how to establish component values to have a more accurate or focused
risk value.

From Popescu’s perspective, he proposes a risk management strategy reference model
(IoTSRM2) based on six domains: Asset Management, Business Environment, Governance,
Risk Assessment, Risk Management Strategy, and Supply Chain Risk Management. Within
the domains are included aspects such as hardware inventory, software inventory, crit-
ical dependencies and functions, resilience of critical services, security-related policies,
structures and responsibilities, regulatory requirements, governance and risk management
plans, vulnerability discovery, threat identification, risk analysis and risk responses [17].
The framework establishes a set of security criteria that could improve the security level
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of IoT systems based on the analysis of 25 international security frameworks. A potential
drawback of the proposal is that it does not present a detailed operational process for
developing each of the security criteria proposed in the framework.

Finally, Levitsky proposes a risk assessment on IoT devices using scores between 0 and
1 for subcomponents of five different attack categories on an IoT device (Physical, Network,
Mobile, Web, Unknown Risk) [18]. Levitsky defines the risk “ri” for each category based
on normalizing the sum of each of the subcomponents ci and dividing by the value of S,
which is the total score of all subcomponents of an attack category.

ri =
1
S

n

∑
i=1

Ci (4)

where

ri—level of risk;
S—total weight of score of all components;
Ci—subcomponents of IoT system.

Levisky’s proposal focuses on attacks on the three layers of the IoT model, although
Levisky separates mobile and web, which are part of the application layer; this separation
could allow more detail on risk analysis because they are components that have a different
dynamic with the user; however, for establishing a risk weight for the layer, this value
could be doubled. A limitation of the proposal is the consideration of a few IoT attacks.
In addition, the weighting of the subcomponents depends directly on the experience and
subjectivity of the evaluator. A relevant aspect to consider is the weight of unknown factors
for the total risk value.

Based on the analysis of the proposals about risk methodologies for IoT systems,
they focus on taking into consideration IoT aspects such as: the heterogeneity of devices
and networks; vulnerabilities and attacks to the physical, communication and application
layers of the IoT architecture; the application domain of the IoT system; and the number
of IoT devices. However, is not clearly detailed in the proposals why these factors have
been selected or how the weight of these factors was selected for the total risk value. Risk
assessment methodologies such as MAGERIT, TARA and OCTAVE [19], among others,
have the advantage of much documentation of their use; these documents present details
of formulas, tools and methodologies to define the values of the components used in the
risk assessment process. However, as we mention the criteria of some of the research cited
in this section, traditional methodologies do not cover all aspects of IoT systems that are
related to risk; therefore, there is a gap to be addressed by these risk analysis methodologies
or by means of the new proposals focusing on IoT, to obtain a more practical and repeatable
security risk analysis process in IoT systems.

3. Materials and Methods

The Research Methodology (DRM) used in this study is based on the proposal by
Blessing [20], which covers four stages: (i) Research Clarification, which uses as a basic
Systematic Literature Review to create an overview of the main IoT device factors, which is
the objective of this study; (ii) Descriptive Study I, based on an empirical analysis to define
and understand the relationships between IoT device factors associated with security risk;
(iii) Prescriptive study, based on experiments, tests and a focus group, to support the weight
of the factors and the relationships between them; and (iv) Descriptive study II, based on
empirical analysis to evaluate the methodology for calculating risk based on IoT device
factors. A representation of the DRM methodology is presented in Figure 1.
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Figure 1. Phases of Design Research Methodology (DRM) to development risk analysis methodology
for IoT systems.

3.1. Research Clarification

This first phase of the DRM supports the identification of the most relevant factors
of IoT devices that could be considered in the security risk assessment process. For this
purpose, we conducted a systematic literature review (SLR) based on articles that focus
on analyzing the security of IoT devices. The SLR was established using the PRISMA
methodology, which is based on four stages: identification, screening, eligibility analysis,
and inclusion. Study selection, establishing inclusion and exclusion criteria, manual search,
and elimination of duplicates are some of the steps included in the identification stage.
The screening stage comprised reviewing titles and abstracts. The eligibility analysis stage
was performed by reading the full texts of the selected articles. Finally, the inclusion stage
comprised data extraction.

Systematic Literature Review

Phase 1. Selection of studies
The selection of studies was based on a systematic review following the PRISMA

guidelines [21]. The following databases were used: Springer, Scopus, IEEE, Association for
Computing Machinery (ACM), Web of Science, and Science Direct. These databases were
chosen because they are the most relevant sources of information for Computer Science.
The range of publications spans from 2016 to 2021.

Inclusion and exclusion criteria
The inclusion criteria were: (i) manuscripts published by peer-reviewed academic

sources; and (ii) manuscripts that analyzed factors enabling security attacks on IoT systems.
The exclusion criteria included: (i) manuscripts that, despite including technical aspects,
did not detail the factors enabling the security attack; and (ii) manuscripts that addressed
proposed risk analysis methodologies to avoid subjectivities. The following research strings
used were:

“(IoT OR Internet of thing)” AND “(Security attacks OR cybersecurity attacks)”
“(IoT OR Internet of thing)” AND “(Security risk OR cybersecurity risk)”
“(IoT OR Internet of things)” AND “(Threats OR vulnerabilities)”
From the search string, we found 1607 articles. Table 2 shows the searched articles

distributed in: conferences, journals, series, chapters and books.
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Table 2. Publication types of articles according to inclusion and exclusion criteria.

Label for Hypothesis Factors

Conferences 807

Journal article 559

Series 215

Chapter 23

Book 3

Duplicate manuscripts were eliminated through a manual review of the collected
articles. During this process, 23 duplicates were eliminated.

Phase 2. Screening
The screening process was based on a review of article titles and abstracts using the

Rayyan web application (Rayyan), created for the systematic review process by MIT. The
web application allows each reviewer to view the titles and abstracts of the articles collected
while maintaining a blinded review process. Articles that did not meet the inclusion criteria
in the title or abstract were excluded at this stage of the study. A screenshot of the process
carried out in the Rayyan tool is shown in Figure 2.
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Phase 3. Eligibility analysis
A full text review of each of the 370 articles was conducted to determine those with

more detail related to the factors during IoT security attacks. After this process, 55 articles
were selected for the data mining process. A flowchart of the PRISMA process is presented
in Figure 3.

Phase 4. Inclusion
Data extraction
For this stage, we developed a qualitative analysis of the 55 documents from the

eligibility analysis phase using ATLAS TI version 9. During the qualitative analysis,
11 codes were defined in the Atlas TI associated with factor: application domain, related to
the verticals in which IoT systems have been implemented [22–24]; attack surface, related
to the entry and exit points via which attacks can be performed [25]; interdependency,
related to the relationship of the IoT system with other IT/OT/IoT systems that could
increase the severity of the attack [26]; scalability, related to the coverage area that can
be affected by the propagation of the attack [27]; severity, related to the value of the
damage that can be caused by the attack [28]; susceptibility, related to the predisposition
to pick up the effects of an attack [29]; type of attack, related to the attack vector, technique
or methodology [30,31]; device type, related to the type of IoT device [32,33]; type of
information, related to the type of information processed, stored, or transmitted by the
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device [34]; uncertainty, related to the unknown factors that could affect the security of IoT
systems [35]; vulnerabilities, related to the weak points that IoT systems may have and
that may increase the possibility of being affected by an attack [36–41]. The density values
of the codes (factors) are shown in Figure 4.
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From the quality analysis, we identified 11 factors of IoT devices that could affect
that security risk value. For the security analysis processes we defined three groups: A
first group of factors with values above 5, a second group of factors with values between
3 and 5, and finally, a third group of factors with values below 3. The first group of
factors with the highest relevance included the types of vulnerabilities (density = 17),
followed by the type of attack (density = 10), then the attack surface (density = 8), and
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finally, the interdependence (density = 7). The second group included the factors: severity
(density = 5), followed by scalability (density = 4), then application domain (density = 4),
and finally, device type (density = 3). The third group with the lowest relevance values
corresponded to the factors: type of information (density = 1), followed by uncertainty or
unknown factors (density = 0).

We order these factors by their density values in Table 3, to obtain a first view of the
relationships of the IoT devices’ factors with security risk. For instance, security risk would
be associated with the existence of vulnerabilities in IoT devices, followed by the attacks;
depending on whether it is a ransomware, a denial of service (DoS) or a man-in-the-middle
(MITM), the probability of risk could be higher. The third relevant factor that could affect
risk is the large attack surface, because of an increase in the number of IoT devices, or the
number of entry and exit points for connectivity with other IoT, IT and OT systems. We can
observe that there are other factors, such as the application domain, wherein IoT devices
operate that could increase the probability of security risk due to being in open areas; this
is the case for smart traffic and smart agriculture. Other factors are the scalability that
an attack may have because of the interdependence between devices and systems, or the
type of information in the IoT device. Although these factors have a low-density value,
this may be because the studies selected for the SLR do not analyze these factors, and not
because their contribution to security risk is low. At this point of our study, we cannot
confirm for certain that the contribution of these factors to security risk is low, medium or
high; for this reason, we define these factors as hypothesis to test in the next part of our
research methodology.

Table 3. Factors of IoT devices that could affect risk values and their values of density from the
quality analysis.

Label for Hypothesis Factors Density

H1 Vulnerabilities 17

H2 Type of attack 10

H3 Attack surface 8

H4 Interdependency 7

H5 Severity 5

H6 Application domain 4

H7 Scalability 4

H8 Type of device 3

H9 Susceptibility 2

H10 Type of information 1

H11 Uncertainty 0

Based on this first phase of the DRM “research clarification”, an initial reference model
for risk analysis in IoT systems is proposed in Figure 5. The model is considered as the key
component of the application domain, e.g., in healthcare, education, transportation and
energy, which all use IoT devices for their digital transformation processes. Multiple IoT
devices can be used in the domain to increase the interdependency between IoT devices
and IT and OT systems, to increase the functionalities of the IoT system; however, this also
increases the attack surface and the scalability of attacks to other systems.
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Attacks can use the vulnerabilities and susceptibilities of IoT devices to increase
their effectiveness. Attacks can also use the large attack surface and scalability to create
greater impact (severity) in their attack. The IoT device can be of different types and has
different information depending on its functionality in the domain application. Although
the uncertainty factor considered by Levistky was not found in the qualitative analysis, we
consider that it may be relevant in this initial risk assessment model.

To continue our study, we are interested in analyzing whether the 11 factors of IoT
devices, which are represented in the initial reference model of Figure 6, are covered by
the proposals of the risk analysis methodologies for the IoT from Section 2 of this study, as
shown in Table 4. We can observe that most of the factors of IoT devices are covered for
the IoT risk methodologies. However, the following factors are not completely covered for
these methodologies: application domain, scalability, type of information, susceptibility,
severity and uncertainty. This opens the opportunity for the contribution of this study to
the understanding of these factors for use in the security risk methodologies of IoT systems.
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Table 4. Analysis of the factors of IoT devices that are covered by the proposals of IoT risk methodologies.

Proposals\Factors Kandasamy Toapanta Aydos Popescus Levitsky

Application
domain

Partially
Covered Not covered Not covered Not covered Not covered

Attack surface Covered Covered Covered Covered Covered

Interdependency Covered Covered Not covered Not covered Not covered

Scalability Not covered Not covered Not covered Not covered Not covered

Severity Covered Not covered Not covered Not covered Covered

Susceptibility Not covered Not covered Not covered Not covered Not covered

Type of attack Not covered Not covered Covered Covered Covered

Type of device Covered Not covered Not covered Not covered Not covered

Type of
information Not covered Not covered Not covered Not covered Not covered

Uncertainty Not covered Not covered Not covered Not covered Covered

Vulnerabilities Not covered Not covered Not covered Covered Not covered

3.2. Descriptive Study I

This second phase identifies the relationships between the 11 factors, proposed by the
research clarification, with the risk value. To accomplish this goal, we used the concurrence-
table option of ATLAS TI and found a relationship between the “Severity” code and the
“Type of attack” code. We can also observed a relationship between the code “Type of
attack” and the code “Severity”, and with the code “Vulnerabilities”. In addition, it is
possible to observe a relationship between the code “Vulnerabilities” and the code “Type of
attack” (see Figure 6).

We can observe that the attack surface is associated with elements such as the size
of the network (number of nodes or devices), the interfaces and links, and the security
elements of the IoT system components (see, Figure 7).
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Based on the SLR, we could not find more references to the relationships between
factors. The DRM methodology proposes, in the descriptive study phase I, the use of
empirical studies such as experimentation to fill this gap in the literature review. To address
experimentation, we define a set of research items with their respective coding in Table 5.
The research items were based on the 11 factors of IoT devices from the previous phase
and defined as hypotheses to test. The coding of research item was proposed according
to the relationships between the factors of IoT devices. For instance, the code “S-A”
represents the relationship between severity and application domain. The code “S-A-P” is
the relationship between severity, application domain, and pillars. We grouped the research
items into three proposed theoretical constructors related to risk—severity, susceptibility
and risk behaviors—to address the contribution of the factors of the IoT device and their
relationships with other factors of IoT devices with the security risk value.
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Table 5. Research items validated in experimentation to identify the relationships between factors of
IoT devices.

Hypothesis (Risk Factors) Code Research Items

H6. Application domain
S-A Cyberattacks on IoT systems could affect economic, social or

environmental domains.

S-A-P Cyberattacks on IoT systems could be targeted at IoT
solutions to health, energy, traffic and agriculture.

H4. Interdependency
S-I-Sys Cyberattacks on IoT systems could be affected by other IoT, IT

and OT systems.

S-I-nd The growth of the number of IoT devices could increase the
probability of cyberattacks.

H7. Level of scalability S-Scl Cyberattacks on IoT systems could generate shock on markets
or risk systemic events.

H9. Level of susceptibility S-Sc Security configurations on IoT devices depend on domains or
pillars where IoT devices will be used.

H4. Interdependency Sc-I-Sys
Interdependency of IoT device with other IoT, IT and OT
systems could increase the probability of attacks on IoT

systems and cause bigger damage.

H4. Attack surface Sc-As-nd
The growth in the number of IoT devices could increase

organizations’ susceptibility to suffering cyberattacks because
of the large attack surface.

H1. Vulnerabilities Sc-V Vulnerabilities of IoT devices could increase the probability of
cyberattacks on IoT systems.

H9. Level of susceptibility Sc-Ta IoT devices are susceptible to specific types of cyberattacks.

H2. Types of attacks Sc-Ta2 Previous attack allows the execution of new attacks.

H2. Types of attacks Sc-Ta-L Attacks could be executed in different layers.

H8. Type of IoT device Sc-Td Security configurations on IoT devices could increase their
susceptibility to being attacked.

H5. Severity Rb-Sv-Ta Cyberattacks could generate degradation in the operation of
IoT devices.

H5. Severity Rb-Sv-Sr Cyberattacks could affect CIA on IoT systems.

H7. Level of scalability Rb-Scl Cyberattacks could be scaled from one layer of an IoT system
to another one.

H11. Factors not known Rb-U-f The frequency of cyberattacks could increase their success.

H11. Factors not known Rb-U-Tp Short times of the propagation of cyberattacks could increase
their damage.

H7. Level of scalability Rb-Scl-L Cyberattack could affect different layers of IoT systems and
increase the surface of damage.

The experiments developed have the goal of generating an understanding of the
behavior of IoT devices against security events, to analyze their contribution to the three
proposed theoretical constructs of risk value: severity, susceptibility, and risk behaviors.
For this reason, we propose two experiments to simulate security attacks on a small IoT
system such as a smart home, and on a big IoT system such as a smart city, to analyze
the behavior of IoT devices, the susceptibility to attacks, and the severity of the attacks.
Then we propose a third experiment to evaluate the behavior, susceptibility, and severity
of IoT device in response to diverse types of attacks. Next, we propose the evaluation
of the effect of security attacks in a real scenario, to develop a prototype with low-cost
hardware, such as Raspberry and Arduino. Finally, we propose the evaluation of the effect
of security attacks in commercial hardware for IoT solutions such as Alexa, Google Home
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and WeMo. The experiments were built based on the IoT-23 dataset developed by [42]. It
has 20 malware captures executed in three different IoT devices: a Philips HUE smart LED
lamp, an Amazon Echo Home intelligent personal assistant, and a Somfy smart doorlock.
The IoT-23 dataset was obtained from PCAP files and transformed into a connection log.by
using Zeek, to obtain a high-level format with the following attributes: orig_p”, “id.resp_p”,
“orig_bytes”, “resp_bytes”, “missed_bytes”, “orig_pkts”, “orig_ip_bytes”, “resp_pkts”,
“resp_ip_bytes “ and “duration” [43].

The goal of these five experiments is to understand the behavior of IoT devices in
different scenarios. An overview of the 5 proposed experiments is presented below.

Experiment Setup 1.
We simulated an IoT system focused on the most common elements of a smart home

according to a literature review, using Phyton libraries in Google Collaborate, as shown in
Figure 8. The lights were interconnected to the IT network through a hub, which allowed
the connection with IT devices such as computers and smartphones, or by voice assistants
using the router (gateway). The smart home solution had two voice assistants based on
cloud services to control the lights. Then we defined the random probabilities of attack in
each node to evaluate the impact of attacks on the smart home. We can observe in the IoT
graph of Figure 8 that there are two paths for attacking smart lights. The attack could come
from the IT network using the router, or from the voice assistant (Alexa). In the first path,
the owner could have more control over security configurations; however, that is not the
case with Alexa, because the security configurations depend on third parties. An extract of
probabilities used in the simulation is shown in Figure 9.
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Experiment Setup 2.
We simulated a smart city based on the most common IoT nodes, according to the

literature review. The graph representing a smart home (SH), smart grid (SG), smart
agriculture (SA) and smart traffic (ST) is shown in the Figure 10. We defined random
probabilities in each node to evaluate the impact of attacks. The scenario was simulated
using a Bayesian network in the software Bayesian Server. We can observe, in the IoT graph
of Figure 10, the relationships between smart agriculture and smart grids through the IoT
or cloud nodes. In addition, there is a relationship between the attacks on smart grids or
smart homes and the impact on economic, social and environmental nodes.
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Experiment Setup 3.
This experiment aimed to understand relationships among smart home attacks. It

is based on the work proposed by Dr. Mariam Wajdi Ibrahim, who simulated smart
home attacks based on JKind and Graphviz [44]. The work shows that if an attacker
could execute a specific attack, such as phishing, then the attacker could execute DoS
attacks. We replicated this scenario and added probabilities. Thus, we observed that
one type of attack can also be related to further attacks. Figure 11 shows a graph of
the relationships among attacks on a smart home, and Figure 12 shows an extract of
probabilities in Google Collaborate.
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Experiment Setup 4.
The goal of this experiment was to understand attacks in non-simulated scenarios

and based on low-cost hardware for IoT. We propose a prototype to check possible vul-
nerabilities in embedded systems based on Arduino Mega 2560 and Raspberry Pi 3B+.
Figure 13 shows the diagram and the elements used in the architecture. In the sensing
layer, the following sensors were used: temperature, humidity, gas and ultrasound. In the
communication layer, a Raspberry pi 3B+, an Arduino Mega 2560 and a modem were used.
We used applications to see the data from the sensors. Then we developed attacks using
Kali Linux. We could detect open ports such as Telnet and http, and they could trigger the
execution of DoS attacks in IoT devices.

Experiment Setup 5.
The goal of this experiment was to understand attacks in non-simulated scenarios and

based on medium-cost hardware for IoT, as shown in the Figure 14. A smart home prototype
was developed by configuring the following devices: three Alexa devices, a Google Home
device, a WEMO switch, a fire tv and three Phillips lights. The voice assistants allowed
us to interact with the on and off lights and the Smart tv, as they were connected to the
home’s wireless Wi-Fi network. The lights used ZigBee technology for communication
with a hub that was connected to the home wireless router via a network cable. The WEMO
switch allowed the switching (on and off) of electronic devices connected to it from the
voice assistants or from the mobile device. The switch was connected to the home network
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using Wi-Fi. Finally, the fire tv device was connected to the home network using Wi-Fi. All
devices were configured to be accessed by the virtual assistants from their management
platform, allowing them to send commands to control the status. Then, we used Kali Linux
to make attacks on the IoT devices; in this case, we could take the control of lights. We
could not execute an MiTM (man-in-the-middle) attack, because the communication of
voice help was encrypted.
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By verifying the research items through experiments, we can observe that the factors
defined as hypotheses contribute to the risk value. We can also establish certain rela-
tionships between factors. Aspects such as propagation time between attacks or attack
frequency were able to be validated with the experiments. The verification of the relation-
ships between the factors of IoT devices was based on the analysis of the research items
using experiments, as shown in Table 6.
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Table 6. Research items validated in experimentation to identify the relation between factors of
IoT devices.

Research Items Verifiable Means Relation

Cyberattacks on IoT systems could affect economic, social or environmental domains. Experiment 1
Experiment 2 S-A

Cyberattacks on IoT systems could be targeted at IoT solutions to health, energy,
traffic, agriculture.

Experiment 1
Experiment 2 S-A-P

Cyberattacks on IoT systems could be affected by other IoT, IT and OT systems. Experiment 1 S-I-Sys

The growth of the number of IoT devices could increase the probability of cyberattacks. Experiment 1 S-I-nd

Cyberattacks on IoT systems could generate shock in markets or risk systemic events. Not verifiable S-Scl

Security configurations on IoT devices depends on domains or pillars where IoT devices
will be used.

Experiment 1
Experiment 3 S-Sc

Interdependency of IoT device with other IoT, IT and OT systems could increase the
probability of an attack on IoT systems and cause bigger damage.

Experiment 3
Experiment 4
Experiment 5

Sc-I-Sys

The growth of the number of IoT devices could increase organizations’ susceptibility to
suffering cyberattacks because of the large attack surface. Not verifiable Sc-As-nd

Vulnerabilities in IoT devices could increase the probability of cyberattacks on IoT systems. Experiment 4
Experiment 5 Sc-V

IoT devices are susceptible to specific type of cyberattacks. Experiment 1
Experiment 3 Sc-Ta

Previous attack allows the execution of new attacks. Experiment 3 Sc-Ta2

Attacks could be executed in different layers. Experiment 4 Sc-Ta-L

Security configurations on IoT device could increase susceptibility to being attacked. Experiment 4
Experiment 5 Sc-Td

Cyberattacks could generate degradation in the operation of IoT devices. No verificable Rb-Sv-Ta

Cyberattacks could affect CIA on IoT systems.
Experiment 3
Experiment 4
Experiment 5

Rb-Sv-Sr

Cyberattacks could be scaled from one layer of an IoT system to another one. Experiment 4 Rb-Scl

The frequency of cyberattacks could increase their success. No verificable Rb-U-f

Short times of the propagation of cyberattacks could increase their damage. Not verifiable Rb-U-Tp

Cyberattacks could affect different layers of IoT systems and increase the surface of damage.
Experiment 1
Experiment 2
Experiment 3

Rb-Scl-L

Based on the results of experimentation, we propose, in Figure 15, a new model that
includes economic, social and environmental aspects, and the relationships between the
application domains and pillars, and IT/OT systems. Finally, the relationship between
surface attack and interdependence, and IoT device vulnerability and the number of
existing IoT devices is shown in the graph.
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4. Results
4.1. Prescriptive Study

Based on literature review and experiments from the previous phases of the DRM, we
can understand the factors associated with IoT devices, which we represented in Figure 16,
and make the following assumptions about their contribution to security risk:
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Assumption 1: The risk value will depend on the probability that threats can capitalize
on IoT systems, but also on related systems, such as IT and OT. The probability of threat
impact will be a function of the contribution of the probability of its occurrence in each of
the above systems.

Assumption 2: The risk, severity and probability values will depend on the level of
dependency and interdependency between IT, OT, and IoT systems.

Assumption 3: Risk and severity values will depend on the relationship of IT, IoT and
OT systems with the social, economic and environmental pillars supported by IoT solutions.

Assumption 4: The value of the risk will depend on the type of information in the IoT
device, its physical location and the application supporting the IoT solution.

Assumption 5: The value of the risk will depend on the security controls in place.
Assumption 6: The value of the risk will depend on the types of attacks on the social,

economic and environmental pillars supported by the IoT solution.
Assumption 7: The value of the risk will depend on the number of attacks on IoT

systems and the relationship these attacks may have, to improve their effectiveness.
Assumption 8: The value of the risk will depend on the value of the surface attack and

the vulnerability score of the IoT system.
However, we cannot quantitatively evaluate these assumptions, because we do not

know the weight of the contribution of each of the factors proposed for the security risk.
In this third phase of the DRM, the aim is to support this understanding and reduce the
bias of the authors of this study in the assumptions about the contribution of these factors
of IoT devices to security risk. For this reason, we validated our assumptions through the
judgment of experts. Therefore, we conducted a survey to obtain the opinions of experts
in security and, then, based on an exploratory analysis, observed the association of their
opinions with the factors of IoT devices and their relationships with security risk. For the
exploratory analysis, we propose Principal Component Analysis (PCA) in an exploratory
approach, because the factors of IoT devices and survey are new proposals from this study
and are not previously used. For future work, it is possible to take into consideration
the development of a new survey and use PCA in a confirmatory approach; for that, it is
necessary to increase the number of experts in the survey [43,44]. The survey was based
on a 10-point Likert scale using Google Forms. The research items from Table 4 and the
second reference model were used to build the 27 questions in the survey. According
to [45], an acceptable exploratory analysis can be performed with a value of 10 variables
per case. Therefore, our goal for the survey was the acquisition of the opinion of at least
10 experts in cybersecurity to validate the factors of IoT devices and their relations, which
were identified in the previous phases 1 and 2 of DRM. An extract of survey questions
is shown in Figure 16. We obtained thirteen responses from security experts: three from
the academia sector, three from the enterprise sector, one from the government sector, one
from the international security industry, one from the national security industry, one from
international organizations related with security standards, one from national organizations
focused on security standards, and two from a community organization focused on security.
Regarding this, we expected to obtain more security experts for the survey; however, some
of them mentioned that they did not have knowledge of IoT security, which would limit
their participation in the survey. This is not a complete limitation for the study because
our expectations were to obtain a minimum of 10 security experts to build a matrix of 10X
270 for the use of PCA (Principal Component Analysis) and MCDA (Multicriteria Decision
Analysis) to continue our analysis; both types of analysis were used for the evaluation of
factors for risk assessment in different fields, such as aeronautic or cloud computing [46].
From the data obtained, we developed Principal Component Analysis (PCA) using the
statistical software SPSS (see Figure 17). The PCA was used for exploratory analysis. For
this reason, the number of factors for extraction was 27, which is equal to the number of
questions in the survey.
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Analyzing the graph of sedimentation in Figure 18, which was created for SPSS from
our data, the number of relevant factors is equal to seven. This means that there are seven
theoretical constructs which accumulated the total variance of our questions, in our case
research items and assumptions.
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Table 7 was obtained from SPSS, and it shows the variance for the seven main compo-
nents. From component numbers 8 to 27, the contribution of variance is poor; thus, they are
not considered for the rest of the analysis. The first construct explains 54% of the variance,
the second contributes to 12.39% of the variance, the third contributes to 11.92% of the
variance, the fourth contributes to 7.18%, and so on, as show in Figure 19.
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Table 7. Variance distributed in components (factors) using SPSS.

Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared
Loadings

Total % of Variance Cumulative % Total % of Variance

1 14,822 54,895 54,895 14,822 54,895
2 3344 12,385 67,280 3344 12,385
3 3218 11,918 79,197 3218 11,918
4 1938 7178 86,375 1938 7178
5 1671 6190 92,565 1671 6190
6 1219 4516 97,081 1219 4516
7 0.788 2919 100,000 0.788 2919
8 1321 × 10−15 4892 × 10−15 100,000 1321 × 10−15 4892 × 10−15

9 1228 × 10−15 4547 × 10−15 100,000 1228 × 10−15 4547 × 10−15
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The results did not change the proposals’ risk factors related to IoT devices. All factors
that were represented in the questions of the survey have relationships with one of the
seven components.

Based on the analysis of the seven theoretical constructs through the matrix of compo-
nents of SPSS with the factors, we obtained the following results:

Component 1 (54.90% of weight): Application

• Effect on economic, social, environmental domains.
• Number of IoT devices.
• Effect of shock on the market.
• Security configurations of IoT devices.
• Vulnerabilities of IoT devices.

Component 2 (12.39% of weight): Scalability

• Effect of the relation between IT/OT/IoT systems.
• Number of IoT devices increase the probability of attack.
• Previous attacks allow new attacks.
• Short times to propagate attacks.
• Attacks from one layer to other layers of IoT system.

Component 3 (11.92% of weight): Attack Surface

• IoT devices number increase attack surface.
• Attacks could be on different IoT layers.
• Attacks could be on different domains.
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Component 4 (7.18% of weight): Severity

• Effect on CIA.
• Impact depends on type of attack.
• Vulnerabilities in IoT devices.

Component 5 (6.19% of weight): Susceptibility

• IoT devices could be susceptible to attacks.
• Attacks could be on different IoT layers.
• Frequency of attacks.
• Attacks could be on different domains.
• Short time between attacks.
• Interdependency with other IT/OT/IoT systems increases the severity of attacks.

Component 6 (4.52% of weight): Interdependency

• Attacks could be on different domains.
• Interdependency with other IT/OT/IoT systems increases the severity of attacks.
• Attacks could be on different IoT layers.
• Security configurations of IoT devices.
• Frequency of attacks.
• Attack surface.

Component 7 (2.9% of weight): Uncertainty

• Security configurations of IoT devices.
• Number of IoT devices.
• Interdependency with other IT/OT/IoT systems increases the severity of attacks.

In relation to the eleven factors proposed in this study, for four of the factors (vul-
nerability, type of attack, type of information and type of device) it was not possible to
establish indicators from the PCA. However, these factors are considered as inputs to other
factors. For example, vulnerability is included in the factors: application, attack surface
and severity.

4.2. Descriptive Study II

The aim of the four phases of the DRM was to establish the risk methodology based on
the factors of IoT devices. For this phase, we proposed the use of MCDA using the results
of the matrix of components and correlation from SPSS. The relationships between factors,
and the weights of the factors and their relationships, allow us to build the MCDA to define
the value of risk. The MCDA for this study was based on the following seven steps [47]:

1. Define the aim—in our case, the risk value.
2. Define the criteria—in our case, the seven constructs.
3. Weighting the criteria—the weight of constructs
4. Define the sub-criteria—in our case, factors of IoT devices associated with the con-

structs
5. Weighting the sub-criteria—the weight of factors of IoT devices.
6. List of options—in our case, the features of the factors associated with each of the

sub-criteria.
7. Weighting of options—the weight of features of the factors of IoT devices.

Each of the criteria had a set of sub-criteria. For the first criteria (domain, pillars and
systems) the following sub-criteria were domains: pillars, systems, security configurations
and vulnerabilities. Security configurations were related to the controls, policies and
solutions that IoT systems should have according to the domain or pillar where the IoT
systems were working. Vulnerabilities were related with the weakness in controls, polices
and solutions that generated a gap, to accomplish the level of security configurations.

The criterion Risk Behavior had the following sub-criteria: impact or degradation,
probability of occurrence, propagation time, propagation coverage and previous attacks on
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IoT systems. The criterion Attack Surface had the following sub-criteria: number of IoT
devices, number of IoT layers, and threats in IoT systems.

The criterion Interdependency had the following sub-criteria: upstream, downstream,
functional, geographical and cybernetic. The criterion Severity had the following sub-
criteria: confidentiality, integrity, availability, traceability and authenticity. Finally, the
criteria Susceptibility and Uncertainty did not have sub-criteria.

The sub-criterion Domain had the following options: economic, social and environ-
mental. The sub-criterion Pillar had the options: health, energy, waste, traffic, agriculture,
home. These options were based on the systems that support the operations of organi-
zations, cities, or countries. They could be related to the services supported by critical
infrastructures.

The sub-criterion Systems had the following options: IT systems, OT systems, and IoT
systems. The result of MCDA to evaluate security risk in IoT systems is shown in Table 8,
and a screenshot of the application of methodology is shown in Table 9. We propose, in
Figure 20, a risk analysis framework based on the seven domains. We renamed the factor
application to an organization to improve the understanding of its scope within the risk
assessment process.

Table 8. MCDA to evaluate the security risk value for IoT systems.

Components
Organization (54.9%)

Domains Pillars Systems Security
configurations Vulnerabilities

Weight 30% 20% 20% 10% 20%

Components Scalability (12.39%)
Impact/degradation P. Ocurrence P.time P.coverage Previous Attacks

Weight 40% 30% 10% 10% 10%

Components Attack Surface (11.92%) Susceptibility (6.19%)
Number IoT dev. Threats Number IoT layers No extra components

Weight 40% 40% 40% 100%

Components Severity (7.18%)
Confidenciality Integrity Avalability Trazability Authenticity

Weight 40% 20% 20% 10% 10%

Components Interdependency (4.52%)
Upstream Downstream Functional Geographical Cybernetic

Weight 20% 20% 20% 20% 20%

Components Uncertainity (2.9%)
No extra components

Weight 100%
Domain (30 %) Economic Social Environmental

Weight 60% 25% 15%

Table 9. Screenshot of the application of MCDA to evaluate the risk of three different IoT systems.

IoT System Severity Susceptibility Risk
Behaviours Risk Total (/10)

0.6 0.3 0.1
IoTX 1.44 2.10 0.49 4.03
IoTY 0.70 0.77 0.21 1.68
IoTZ 2.29 1.01 0.31 3.61
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1. Organization domain. The domain covers the organizational aspects of the organi-
zation (city, campus, enterprise, home) where IoT systems are implemented. The
domain includes the evaluation of the security configurations according to policies or
regulations related with cybersecurity in the different sectors, such as energy, traffic,
health and home. The domain includes the analysis of the vulnerabilities that could
affect the compliance of the policies or regulations of cybersecurity. This domain
comprises three components:

− Pillars: Represents the social, environmental, and economic contexts that encom-
pass IoT systems.

− Application domains: Represents the application domains that are covered by
the IoT system such as agriculture, health and traffic.

− Systems: Includes the IT/OT/IoT systems that support the development of the
IoT system, to support the pillars and domains.

2. Dependency/interdependency domain: Include the upstream, downstream, func-
tional, geographic or cyber dependencies that exist between IoT, OT and IT systems.

3. Attack surface domain: Include the natural (earthquakes, floods) and human (cyberat-
tacks) hazards, or failures (configuration errors, system malfunctions) that may affect
the operation of IoT systems. It includes the analysis of attacks that may occur in the
layers of the IoT system.

4. Susceptibility domain: This domain includes the analysis of factors that could render
IoT devices more vulnerable to attacks.

5. Severity domain: This domain includes the analysis of impact on CIA, traceability
and authenticity of IoT devices.

6. Risk behaviors domain: This domain analyzes the factors that may affect the value at
risk, including:

− Impact: Represents the value of damage that an IoT system may suffer because
of threats.

− Probability: Represents the occurrence that a threat may occur.
− Propagation time: Represents the time it takes for a threat to propagate and cause

medium or high damage.
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− Propagation coverage: Represents the area of compromise (IT, IoT, OT systems)
because of a threat.

7. Uncertainty domain: This domain covers the address of unknown factors that could
contribute to security risk in a spatial and temporal axis.

The framework considers the risk behaviors and the uncertainty factors that could af-
fect the severity of the attack. There are conditions such as impact, probability of occurrence,
propagation time and propagation coverage that can be variable, depending on the context
of the IoT systems, and of the specific conditions at the time of occurrence of the threat. For
example, an attack that is carried out at the exact moment when an upgrade process on IoT
devices is performed, and allows the attack to have a greater impact and even reach other
devices, is a fortuitous event and may not be repeatable. There is uncertainty regarding
these events. Although it is not possible to establish an exact value of the uncertainty, there
are several research proposals to estimate it.

Benchmark for IoT Security Risk Methodology

According to [48], the benchmark is considered a real or virtual set of measures that
allows the evaluation or ranking of research approaches, algorithms, and methods, based on
performance indices (input and outputs) prior to industrial application. From the literature
review conducted in this study, it was not possible to identify a standard benchmark for
risk analysis methodologies. However, we can identify that, under the ISO 31000, the risk
management should cover the following aspects [49]:

• Establishing the context
• Risk identification
• Risk analysis
• Risk evaluation
• Risk treatment

Additionally, regarding this study, which is a risk analysis, the method should cover
following points: likelihood, consequence and calculation of risk level. Therefore, it is
within our interest to observe how the IoT factors that have been considered in this study
can be used in risk analysis, to evaluate the increase or reduction in the probability of
negative consequences in a context wherein IoT devices are used. For this reason, we
define our performance indices in Table 10 for the proposed security risk analysis, in an IoT
context, based on the results from PCA on the IoT device factors found in our study.

There are different benchmarks, among which we can mention those based on criteria,
data and simulation. The advantages of simulation-based benchmarks are that they can
be used in environments where it is not possible to continuously affect the components
to obtain data, such as industrial processes or cybersecurity, because they would affect
the normal operations of the organizations [47]. For instance, Jeppsson [49] proposes a
benchmark simulation for the evaluation of plant-wide control strategies. In the present
study, we opted for a simulation benchmark because of the complexity of generating IoT
attack scenarios in real environments. A simulation benchmark is based on the simulation
of normal or attack states related to the behavior of the components of IoT system. Another
relevant aspect to take into consideration with regard to benchmark simulation of IoT
security risk, is that it might not always be workable to obtain numerical values, because of
the complexity and dynamics of these systems. Therefore, an alternative could be adopted
in the form of probabilistic modeling, to obtain a numerical evaluation of likelihood.
Lueckmann proposes a benchmark that comprises a set of algorithms, performance metrics,
and tasks. According to Lueckmann [50], given a prior p(θ) over parameters θ, a simulator
to sample x~p(x|θ) and an observation xo, the algorithm returns an approximate posterior
q(θ|xo). The approximate solution is tested, according to a performance metric, against
a reference posterior p(θ|xo). Our simulation was based on the software Hugin Lite,
and the probabilities of states in each node were based on Bayesian inference according
to Lueckman [50]. We can observe, in Figures 21 and 22, how output variables change
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based on the values of input variables. For instance, if there is evidence or a belief that
vulnerabilities exist in IoT devices, we can change the probability of economic impact to
73.12%. However, if there is evidence or a belief that vulnerabilities and susceptibility exist,
the attack surface is attackable, and interdependent systems are attacked, the economic
impact increases to 86.5%.
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Table 10. Performance indices for the benchmark of risk methodology.

Performance Indices

Label for
Hypothesis Factors Constructs Input Variables Output

Variables

H1 Vulnerabilities
Organization,

Attack Surface,
Severity

(a) Values of
vulnerabilities

H2 Type of attack

Organization,
Risk Behavior,

Severity,
Uncertainty

(a) Value of
attack per layer

H3 Attack surface

Organization,
Risk Behavior,
Attack Surface,

Interdepen-
dency

(a) Number of
IoT devices
(b) Security

configurations
(c) Values of

vulnerabilities

H4 Interdependency

Organization,
Risk Behavior,
Attack Surface,

Susceptibility, In-
terdependency,

Uncertainty

(a) Values of in-
terdependency

H5 Severity Severity
(a) Values of
degradation

of CIA

H6 Application
domain

Organization,
Attack surface,

Susceptibility, In-
terdependency

(a) Value of
economic impact

(b) Value of
economic impact

(c) Value of
economic impact

H7 Scalability Risk behavior

(a) Number of
IoT devices,

(b) Historical
attack,

(c) Time between
attacks

H8 Type of device
Severity, Interde-

pendency,
Uncertainty

(a) Security level
of CIA

H9 Susceptibility Organization,
Susceptibility

(a) Frequency of
attack

(b) Time
between attacks

(c) Security
levels

H 10 Type
information Organization (a) Security

configurations

H 11 Uncertainty

Attack Surface,
Susceptibility, In-
terdependency,

Uncertainty

(a) Number of
IoT devices
(b) Security

configurations
(c) Values of in-
terdependency
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To validate the behavior of the nodes that build the risk analysis, a set of values was
established for the input variables defined in the performance indices and we observed
the output variables as shown in Table 11. We executed a Shapiro–Wilk test with the null
hypothesis that a sample is from a normal distribution. We chose a significance level of
0.05 and had an alternative hypothesis that the distribution is not normal. Vulnerability,
susceptibility, attack surface and interdependency nodes did not follow a normal distri-
bution, while economic, social, and environmental nodes followed a normal distribution.
Having a normal distribution in the values of the output variables allowed us, from a
theoretical point of view, to satisfactorily approximate the value of the random variables
to a real situation. The values obtained in the output variables did not present significant
dispersions and had a tendency, in this case, to that of a normal distribution. In addition, a
correlational analysis of the values generated and obtained was carried out, as shown in
Figure 23, showing that the interdependence node is the one that generates the greatest
contribution to the values of the economic, social and environmental impact nodes. This
gives us a guideline for future work, to analyze the security aspects in the interdependence
between IT, OT and IoT systems.

Table 11. Performance indices for the benchmark of risk methodology.

IoT Factors (Input Variables) Impact (Output Variables)

Vulnerabilities Susceptibility Attack
Surface Interdependency Economic Social Environmental

70% 50% 60% 60% 70.77% 63.98% 55.90%

100% 50% 50% 60% 73.12% 66.04% 57.66%

100% 100% 50% 60% 76.56% 69.08% 60.26%

100% 100% 100% 60% 77.91% 70.25% 61.26%

100% 100% 100% 100% 86.05% 77.15% 67.28%

70% 100% 50% 60% 73.40% 66.30% 57.88%

70% 50% 50% 100% 84.86% 76.22% 66.43%
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5. Discussion

Including IoT is a relevant contribution to digital transformation processes, but its
inherent characteristics, such as heterogeneity of technologies, limited computational re-
sources, low levels of security and the dispersed location of IoT devices, generate new
security issues. In this context, there arises the need to establish security strategies for IoT
environments such as zero trust or security verification. One of the first steps to imple-
menting security strategies is to develop a risk analysis, for which different established
methodologies such as MAGERIT, TARA, ISO can be used. However, several researchers
have pointed out that these risk methodologies were conceived considering the charac-
teristics of traditional information system environments, and they do not consider the
characteristics of IoT systems; thus, they need to be adapted. In this sense, several re-
searchers have proposed risk analysis methodologies for IoT that consider these inherent
characteristics of IoT systems. However, it can be observed that these proposed method-
ologies consider different elements so that the way of calculating risk varies from one
methodology to another; it does not allow us to have a risk methodology that considers
all factors.

The aim of this work is focused on analyzing, grouping and proposing factors that
allow us to evaluate risk in IoT systems. We have proposed grouping of the factors into
seven constructs: Organization, Risk Behaviors, Dependency, Attack Surface, Susceptibility,
Severity and Uncertainty. The organization construct suggests that the focus of the risk
methodology should not be on the assets, but on the aspects of the domains and pillars
to which the IoT solution is contributing. The IoT risk methodology should consider
the impact—economic, social or environmental—that may be caused by a threat to IoT
systems. Security risks are currently considered among the 10 threats that could generate a
shock to the world economy in the so-called systemic risk, and the high interoperability
and dependence between IoT/IT/OT systems increases the likelihood of this risk. In this
sense, the IoT risk methodology should allow us to understand the risk behavior (impact,
propagation time, coverage area) against the different dependencies and attack surfaces
generated by IoT systems. A comparison of the traditional risk analysis methodology
versus the IoT proposal is presented in Table 12.

Table 12. Comparison of traditional methodologies versus the proposal of IoT security risk in the
present study.

Methodology Computer Security Risk
Analysis (MAGERIT) IoT Risk

Focus on Assets Context (social,
environmental, economic)

Priority Top of critical assets Top of group of critical assets

Dependency of Assets Assets/threats

Type Assets Individual critical assets Grouped critical assets (based
on classes or security levels)

Security factors on the assets
Confidentiality, Integrity,

Availability, Traceability and
Authenticity

Confidentiality, integrity and
availability (Based on classes)

Vulnerabilities Overall approach
Based on IoT layers

(application, communication,
and device)

Attack surface Not included in the
methodology.

Based on relationships
among systems.
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