Customized Convolutional Neural Networks Technology for Machined Product Inspection
Abstract
:1. Introduction
2. System Architecture
Light Source Settings
3. Experimental Method
3.1. Data Set
3.2. Comparison of Results after Training with Common Models
3.3. Customized Model Design
3.4. Accuracy of Customized Model
4. Experimental Results
4.1. Procedure to Customize the CNN
4.2. Visualizing Convolutional Networks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korbicz, J.; Koscielny, J.M.; Kowalczuk, Z.; Cholewa, W. (Eds.) Fault Diagnosis: Models, Artificial Intelligence, Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Nixon, M.; Aguado, A. Feature Extraction and Image Processing for Computer Vision; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Chen, C.H. (Ed.) Handbook of Pattern Recognition and Computer Vision; World Scientific: Singapore, 2015. [Google Scholar]
- Duygulu, P.; Barnard, K.; de Freitas, J.F.; Forsyth, D.A. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In Proceedings of the European Conference on Computer Vision, Copenhagen, Denmark, 28–31 May 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 97–112. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Ketkar, N.; Moolayil, J. Introduction to pytorch. In Deep Learning with Python; Apress: Berkeley, CA, USA, 2017; pp. 195–208. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Kang, J.; Park, Y.J.; Lee, J.; Wang, S.H.; Eom, D.S. Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems. IEEE Trans. Ind. Electron. 2017, 65, 4279–4289. [Google Scholar] [CrossRef]
- Jiang, W.; Ma, Y.; Liu, B.; Liu, H.; Zhou, B.B.; Zhu, J.; Wu, S.; Jin, H. Layup: Layer-adaptive and multi-type intermediate-oriented memory optimization for GPU-based CNNs. ACM Trans. Archit. Code Optim. (TACO) 2019, 16, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Guha, R.; Das, N.; Kundu, M.; Nasipuri, M.; Santosh, K.C. Devnet: An efficient cnn architecture for handwritten devanagari character recognition. Int. J. Pattern Recognit. Artif. Intell. 2020, 34, 2052009. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Sang, D.V.; Hung, D.V. YOLOv3-VD: A sparse network for vehicle detection using variational dropout. In Proceedings of the Tenth International Symposium on Information and Communication Technology, Ha Noi, Vietnam, 4–6 December 2019; pp. 280–284. [Google Scholar]
- Elliott, D.L. A Better Activation Function for Artificial Neural Networks; ISR Technical Report TR 93-8; Institute for Systems Research Technical Reports: College Park, MD, USA, 1993. [Google Scholar]
- Ciuparu, A.; Nagy-Dăbâcan, A.; Mureşan, R.C. Soft++, a multi-parametric non-saturating non-linearity that improves convergence in deep neural architectures. Neurocomputing 2020, 384, 376–388. [Google Scholar] [CrossRef]
- Chen, Z.; Ho, P.H. Global-connected network with generalized ReLU activation. Pattern Recognit. 2019, 96, 106961. [Google Scholar] [CrossRef]
- Ayinde, B.O.; Inanc, T.; Zurada, J.M. Redundant feature pruning for accelerated inference in deep neural networks. Neural Netw. 2019, 118, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Su, E.; You, Y.-W.; Ho, C.-C. Machine Vision and Deep Learning Based Defect Inspection System for Cylindrical Metallic Surface. Instrum. Today 2018, 46–58. Available online: https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=10195440-201806-201806270008-201806270008-46-58#Altmetrics (accessed on 10 February 2022). (In Chinese).
- Neuhauser, F.M.; Bachmann, G.; Hora, P. Surface defect classification and detection on extruded aluminum profiles using convolutional neural networks. Int. J. Mater. Form. 2020, 13, 591–603. [Google Scholar] [CrossRef]
- Aslam, Y.; Santhi, N.; Ramasamy, N.; Ramar, K. Localization and segmentation of metal cracks using deep learning. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 4205–4213. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Wen, S.; Chen, Z.; Li, C. Vision-based surface inspection system for bearing rollers using convolutional neural networks. Appl. Sci. 2018, 8, 2565. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Jian, B.L.; Hung, J.P.; Wang, C.C.; Liu, C.C. Deep Learning Model for Determining Defects of Vision Inspection Machine Using Only a Few Samples. Sens. Mater. 2020, 32, 4217–4231. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
Model | VGG19 | ResNet34 | LeNet | DarkNet19 | DarkNet53 |
---|---|---|---|---|---|
First training accuracy (%) | 99.00 | 89.37 | 97.36 | 98.53 | 99.04 |
Second training accuracy (%) | 99.07 | 97.22 | 99.07 | 98.92 | 97.56 |
Third training accuracy (%) | 98.72 | 94.72 | 98.93 | 98.05 | 98.54 |
Fourth training accuracy (%) | 98.96 | 91.28 | 98.22 | 98.84 | 98.91 |
Fifth training accuracy (%) | 98.90 | 95.81 | 98.67 | 98.46 | 99.15 |
Average accuracy (%) | 98.93 | 93.68 | 98.45 | 98.64 | 98.64 |
Model | VGG19 | ResNet34 | LeNet | DarkNet19 | DarkNet53 |
---|---|---|---|---|---|
First prediction time (s) | 0.889 | 0.666 | 2.325 | 0.824 | 1.84 |
Second prediction time (s) | 0.315 | 0.245 | 0.623 | 0.265 | 1.02 |
Third prediction time (s) | 0.27 | 0.204 | 0.591 | 0.211 | 1.009 |
Fourth prediction time (s) | 0.202 | 0.172 | 0.532 | 0.136 | 0.945 |
Fifth prediction time (s) | 0.281 | 0.229 | 0.661 | 0.21 | 1.023 |
Average prediction time (s) | 0.391 | 0.303 | 0.946 | 0.329 | 1.167 |
Layer Type | Filters | Kernel Size/Stride | Output Size |
---|---|---|---|
Convolutional 1 | 64 | 3 × 3/1 | 189 × 186 × 64 |
Batch Normalization/ReLU | 189 × 186 × 64 | ||
Convolutional 2 | 64 | 3 × 3/2 | 95 × 93 × 64 |
Batch Normalization/ReLU | 95 × 93 × 64 | ||
Convolutional 3 | 128 | 3 × 3/1 | 95 × 93 × 128 |
Batch Normalization/ReLU | 95 × 93 × 128 | ||
Convolutional 4 | 128 | 3 × 3/2 | 48 × 47 × 128 |
Batch Normalization/ReLU | 48 × 47 × 128 | ||
Convolutional 5 | 256 | 3 × 3/1 | 48 × 47 × 256 |
Batch Normalization/ReLU | 48 × 47 × 256 | ||
Convolutional 6 | 256 | 3 × 3/2 | 24 × 24 × 256 |
Batch Normalization/ReLU | 24 × 24 × 256 | ||
Convolutional 7 | 512 | 24 × 24/1 | 1 × 1 × 512 |
Convolutional 8 | 2 | 1 × 1/1 | 1 × 1 × 2 |
Softmax | 1 × 1 × 2 | ||
Classoutput | 1 × 1 × 2 |
Model | Customized CNN | VGG19 |
---|---|---|
Accuracy | 99.36% | 98.93% |
Time | 74 s | 87 s |
Parameters | 76,643,266 | 143,667,240 |
Model | Customized CNN | VGG19 |
---|---|---|
First prediction time (s) | 0.953 | 0.889 |
Second prediction time (s) | 0.343 | 0.315 |
Third prediction time (s) | 0.307 | 0.270 |
Fourth prediction time (s) | 0.246 | 0.202 |
Fifth prediction time (s) | 0.318 | 0.281 |
Average time (s) | 0.433 | 0.391 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-C.; Hung, K.-C.; Liu, C.-C.; Chuang, T.-H.; Chiou, S.-J. Customized Convolutional Neural Networks Technology for Machined Product Inspection. Appl. Sci. 2022, 12, 3014. https://doi.org/10.3390/app12063014
Huang Y-C, Hung K-C, Liu C-C, Chuang T-H, Chiou S-J. Customized Convolutional Neural Networks Technology for Machined Product Inspection. Applied Sciences. 2022; 12(6):3014. https://doi.org/10.3390/app12063014
Chicago/Turabian StyleHuang, Yi-Cheng, Kuo-Chun Hung, Chun-Chang Liu, Ting-Hsueh Chuang, and Shean-Juinn Chiou. 2022. "Customized Convolutional Neural Networks Technology for Machined Product Inspection" Applied Sciences 12, no. 6: 3014. https://doi.org/10.3390/app12063014
APA StyleHuang, Y. -C., Hung, K. -C., Liu, C. -C., Chuang, T. -H., & Chiou, S. -J. (2022). Customized Convolutional Neural Networks Technology for Machined Product Inspection. Applied Sciences, 12(6), 3014. https://doi.org/10.3390/app12063014