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Abstract: Metal workpieces are an indispensable and important part of the manufacturing industry.
Surface flaws not only affect the appearance, but also affect the efficiency of the workpiece and
reduce the safety of the product. Therefore, the appearance of the product needs to be inspected to
determine if there are surface defects, such as scratches, dirt, chipped objects, etc., after production
is completed. The traditional manual comparison inspection method is not only time-consuming
and labor-intensive, but human error is also unavoidable when inspecting thousands or tens of
thousands of products. Therefore, Automated Optical Inspection (AOI) is often used today. The
traditional AOI algorithm does not fully meet the subtle detection requirements and needs to import a
Convolutional Neural Network (CNN), but the common deep residual networks are too large, such as
ResNet-101, ResNet-152, DarkNet-19, and DarkNet-53. Therefore, this research proposes an improved
customized convolutional neural network. We used a self-built convolutional neural network model
to detect the defects on the metal’s surface. Grad–CAM was used to display the result of the last
layer of convolution as the basis for judging whether it was OK or NG. The self-designed CNN
network architecture could be customized and adjusted without using a large network model. The
customized network model designed in this study was compared with LeNet, VGG-19, ResNet-34,
DarkNet-19, and DarkNet-53 after training five times each. The experimental results show that the
self-built customized deep learning model avoiding the use of pooling and fully connected layers can
effectively improve the recognition rate of defective samples and unqualified samples, and reduce
the training cost. Our custom-designed models have great advantages over other models. The results
of this paper contribute to the development of new diagnostic technologies for smart manufacturing.

Keywords: metal workpieces; custom-designed models; smart manufacturing

1. Introduction

Over the past few decades, the application of computer-aided design and analysis had
gradually increased in the engineering industry for applications such as signal processing
or simulation testing. In the past, manual inspection not only required a lot of labor, the test
results may also be inaccurate, affecting the quality of the product, due to human factors,
such as fatigue and manual measurement errors. Therefore, automatic optical inspection
is beginning to be used more and more; nowadays, the technological advancement of
hardware and software provides space for research using artificial intelligence [1], image
processing [2], computer vision [3], and machine learning [4], which are the main research
areas of artificial intelligence. In particular, image processing combined with deep learning
detection is becoming more and more popular, combining the deep learning model with the
existing optical inspection system; it was a technological breakthrough that could alleviate

Appl. Sci. 2022, 12, 3014. https://doi.org/10.3390/app12063014 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12063014
https://doi.org/10.3390/app12063014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4065-7731
https://doi.org/10.3390/app12063014
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12063014?type=check_update&version=1


Appl. Sci. 2022, 12, 3014 2 of 12

the bottleneck of the manufacturing defect detection system, and also achieved the goal of
advancing the manufacturing process.

Image classification technology in deep learning provides a new solution for image
detection and can improve the accuracy of image detection [5,6]; in addition, with the
advancement of graphics processing units, the computing power of the hardware has
been greatly improved. The well-known deep learning frameworks, such as TensorFlow [7]
and PyTorch [8], have also been developed, promoting the advancement of technology
in the field of deep learning. A well-known YOLO [9] is widely used for the purposes
of object detection and image processing. Many studies have used convolutional neural
network models to classify different images [10]; based on the deep learning structure,
convolutional neural network models are easy to train and can automatically search for
useful features [11,12]. Thus, deep learning technology can be deployed to inspect and
determine various image defects, and has been proven to be a very effective method [13].

At present, well-known convolutional neural networks include LeNet [14], VGG [15],
DarkNet-19 [16], and the deep residual networks ResNet-34 [17] and DarkNet-53 [13]. The
model structure of DarkNet-19 is similar to that of VGG [15]. DarkNet-19 has 19 convolutional
layers and 5 maximum pooling layers. DarkNet-53 combines the elements of DarkNet-19
and ResNet [17]. For massive data, DarkNet-53 is much more effective than DarkNet-
19 [18]. At the same time, DarkNet-53 achieves the highest floating point calculation speed
per second in the network structure. This means that its network structure can make
full use of the GPU [13]. Nevertheless, the deeper the network, the more difficult it is to
converge. Many researchers have changed the Activation function [19] for preventing the
gradient from disappearing. However, the problem still exists [20,21]. The disappearance or
explosion of the gradient may be due to the high nonlinearity of the deep network. DarkNet-
53, ResNet-101, and ResNet-152 use residual learning methods to solve the problem of
accuracy that increases first and then saturates. However, this will also lead to network
redundancy [22]. Therefore, how to reduce the number of hidden layers and retain the
efficient feature extraction via the characteristics of manipulating convolution is attractive
in our study.

One of the current studies on deep learning and optical inspection of the metal surfaces
was by Eugene Su et al. [23]. They combined machine vision and deep learning to detect
defects on the surface of metal cylinders and used a highly reflective metal surface as the
test data. To improve the problem of high reflection of the metal’s surface, they chose a strip
light source and a round tube homogenizing plate as the light source setting. An all-white
inner wall of a round tube was used. Since the strip light source can be placed in a round
tube, the light source can reflect light uniformly in the inner wall of the round tube. A
new ResNet architecture was used to train the model, and it was compared to the original
ResNet model architecture. This article uses a 1 × 1 convolution kernel size in the last layer
to achieve the effect of a fully connected layer; its parameters are lower than those using
a fully connected layer. Therefore, the performance in practice is relatively good. In [24],
for the aluminum alloy material, a camera to record the contours of extrusion during the
production process was used. The neural network model distinguished perfect surfaces
and surfaces with various common defects. The size, shape, and texture of the metal
defects may be different when inspecting the metal’s surface. Additionally, the defects
that may appear are very similar. Therefore, Yasir Aslam et al. [25] proposed an automatic
segmentation and quantification method and used it to check digital image defects by a
customized deep learning architecture on titanium-coated metal surfaces. In [26], for a
biomedical image, a U-Net convolutional network was used to segment the image first
with appropriate pre-processing and post-processing. The input image was filtered with a
median filter for eliminating possible impulse noise. As usual, standard benchmarks were
used to evaluate the detection and subdivision performance. The accuracy of the model
was 93.46%.

Shengping Wen et al. [27] designed a 26-layer convolutional neural network by them-
selves, which was used to identify surface defects of bearing machine components and
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compared with MobileNet [28], VGG-19, and ResNet-50. Their VGG-19 achieved a mAP
(mean average precision) of 83.86%, but the processing time was relatively long and took
83.3 ms. MobileNet has the fastest processing speed, but its mAP is the lowest among
all network models due to the reduction of parameters and calculations. The network
designed in [27] achieved a better balance between the mAP and data processing efficiency,
where the mAP was close to the highest mAP of ResNet-50. Compared with ResNet-50 and
VGG-19, the detection time has some advantages. In [29], the entropy calculation method
was used to adjust the self-designed neural network model and choose the most suitable
kernel size for the convolutional layer. The recognition rate of components, shortening the
model training time, was improved.

How to customize a suitable CNN with the aim of reducing the hidden layer numbers
and hyper-parameters numbers, and determining efficient feature extraction characteristics
with the consideration of image size by manipulating the convolution network are the
focus of this study. The core of this paper is based on the customized CNN architecture.
The objective is to identify the metal surface defects of a metal part immediately after
the Computer Numerical Control machine tool finished the machining operation on the
shop floor. A customized light source was used to illuminate the metal workpiece to
resolve the problem of high metal reflection. By adjusting the manipulated parameters,
such as the stride number and convolution kernel size to replace the pooling layer and
fully connected layer, the optimal convolution kernel size was chosen to improve the
metal product defect recognition rate and shorten the model training time. With the aid of
Gradient-weighted Class Activation Mapping (Grad–CAM) [30], the last layer convolution
will demonstrate the successful defect diagnostic results. Comparing the results with
the well-known LeNet, VGG-19, ResNet-34, DarkNet-19, and DarkNet-53 models, the
proposed customized network model demonstrated the highest accuracy, and had a greater
advantage for the machined defect data tested in this study.

2. System Architecture
Light Source Settings

The surface of the workpiece (Figure 1) tested this time was composed of opaque mirror
material. It was a related part of a car engine. The green box is the area detected by the
camera with a customized light source detection system. Since this circular chamfered hole
will have wires passing through it during actual usage, the defect caused by the machining
defect process will lead to the possibility of cutting the wires, resulting in a safety problem.
Using a common light source will make the incident angle equal to the reflection angle,
which conforms to the laws of geometric optics and produces total reflections. In this study,
in order to solve the reflection problem of the light source illuminating the metal material,
a light source system was specially designed for diagnostic detection. This system was
composed of a 1280 × 1024 pixel camera (Basler acA1280-60gm GigE, CMOS, Ahrensburg,
Germany) and with a 50 mm plus 15 mm extension ring lens. It used a shadowless ring
light to provide illumination from different angles of light. This can highlight the flaws of
the object, effectively solve the shadow problem caused by direct illumination, and obtain
the optimal light source illumination position by 100 mm and the camera inclination angle
α after many adjustments and experiments. The angular position between the camera and
the light source is shown in Figure 2 with some well-tuned specific positioning distance.

In the experiments, the shooting distance and angle were fixed when capturing the im-
ages. The lens was at a distance of 100 mm from the detection object, while the shadowless
ring light was 5 mm away from the detection object. The light source was illuminated by a
low-angle illumination method. This method allowed the light to have good uniformity
and brightness, which could enhance the surface feature extraction of the detected object
and reduce reflections. When shooting images, the detected object was rotated at the
position of the central axis to shoot and capture images.



Appl. Sci. 2022, 12, 3014 4 of 12Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 12 
 

 
Figure 1. Illustration of the green box detection area for the 3D drawing of the machined metal. 

 
Figure 2. Illustration of the customized light source detection system with positioning distance. 

In the experiments, the shooting distance and angle were fixed when capturing the 
images. The lens was at a distance of 100 mm from the detection object, while the shad-
owless ring light was 5 mm away from the detection object. The light source was illumi-
nated by a low-angle illumination method. This method allowed the light to have good 
uniformity and brightness, which could enhance the surface feature extraction of the de-
tected object and reduce reflections. When shooting images, the detected object was ro-
tated at the position of the central axis to shoot and capture images. 

3. Experimental Method 
3.1. Data Set 

In this paper, 304 stainless steel material parts were used as the detection items in 
this experiment. The experimental setup for the in-line manufacturing system and an il-
lustration of the pictured image of the inspection object are shown in Figure 3. Unwanted 
burr around the chamfered hole was generated when the workpiece was machined by 
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3. Experimental Method
3.1. Data Set

In this paper, 304 stainless steel material parts were used as the detection items in
this experiment. The experimental setup for the in-line manufacturing system and an
illustration of the pictured image of the inspection object are shown in Figure 3. Unwanted
burr around the chamfered hole was generated when the workpiece was machined by CNC.
Because there will be wires passing through this hole, in order to avoid scratches of the
wires, they should be detected here, as shown in Figure 4 with the pictured images. The left
is an example of an OK figure—the area circled in green is the focus of this judgment—and
the right is an example of a no good (NG) figure. It can be found that the oblique area
of the part circled in red was much larger than that of the OK on the left. Figure 5a is
an enlargement of the OK image, while Figure 5b is the NG image. As we can see, the
green-framed area was black because the machining process was normal. However, we
can see that there was a white abnormal area in the red-framed area of Figure 5b, because
the machining process was abnormal. Figure 6 provides more examples of six OK images
and NG images. In this experiment, a total of 1895 surface images of parts were collected
as data sets, 1302 of which were OK images without flaws, and the remaining 593 were
NG images with flaws. Among them, 80% of the data sets were used for training, and
the remaining 20% of the data sets were used for testing. Because the metal surface of the
detected target had reflective properties, this experiment used a shadowless ring light to
illuminate the surface of the metal workpiece at a low angle to solve the problem that the
metal surface was prone to reflection without affecting the feature extraction of the target.
In this paper, the original image size of 1280 × 550 pixels was reduced to 186 × 189 pixels,
and the defects caused by incomplete chamfering were marked as NG.
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3.2. Comparison of Results after Training with Common Models

This paper used MATLAB software to develop convolutional neural networks, se-
lecting several common models, including LeNet, VGG-19, ResNet-34, DarkNet-19, and
DarkNet-53 for training, and compared the results. We used the following hyperparameters
for each training: the Batch Size was set to 8, the Learning Rate was set to 0.0001, and the
Epoch was set to 1. The data set was used for training with each model in sequence. In order
to achieve fair experimental results, we used the same hyperparameters and data set to train
each model five times. The results of training of the LeNet, VGG19, ResNet34, DarkNet19,
and DarkNet53 models five times were averaged to obtain accuracies of 98.45%, 98.93%,
93.68%, 98.64%, and 98.64%, respectively, as shown in Table 1. In Table 2, the prediction
times by implementing the LeNet, VGG19, ResNet34, DarkNet19, and DarkNet53 models
five times were averaged to 0.391, 0.303, 0.946, 0.329, and 1.167 s, respectively. A note is
made here that the first prediction time is always the highest with real implementation. This
is caused by the time in deploying the parameters into the GPU. The rest of the consecutive
prediction time will be less than the first one naturally.

Table 1. Training accuracy for the VGG19, ResNet34, LeNet DarkNet 19 and DarkNet53 models.

Model VGG19 ResNet34 LeNet DarkNet19 DarkNet53

First training accuracy (%) 99.00 89.37 97.36 98.53 99.04
Second training accuracy (%) 99.07 97.22 99.07 98.92 97.56
Third training accuracy (%) 98.72 94.72 98.93 98.05 98.54

Fourth training accuracy (%) 98.96 91.28 98.22 98.84 98.91
Fifth training accuracy (%) 98.90 95.81 98.67 98.46 99.15

Average accuracy (%) 98.93 93.68 98.45 98.64 98.64

Table 2. Prediction time of the implementation of the 5 models.

Model VGG19 ResNet34 LeNet DarkNet19 DarkNet53

First prediction time (s) 0.889 0.666 2.325 0.824 1.84
Second prediction time (s) 0.315 0.245 0.623 0.265 1.02
Third prediction time (s) 0.27 0.204 0.591 0.211 1.009

Fourth prediction time (s) 0.202 0.172 0.532 0.136 0.945
Fifth prediction time (s) 0.281 0.229 0.661 0.21 1.023

Average prediction time (s) 0.391 0.303 0.946 0.329 1.167

3.3. Customized Model Design

Based on the comparison results after training each model in Section 3.2, the VGG19
model had the highest accuracy, so we modified it with the model architecture of VGG19.
We still set the Batch Size and Learning Rate to 8 and 0.0001, respectively, which remained
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unchanged. Table 3 details the customized CNN model. First, we added a convolutional
layer after the convolutional layer, and set the Stride of the added second convolutional
layer to 2, so that the OutPut Size after the convolution could be reduced by half. This
method could achieve the function of the pooling layer, and adding Batch Normalization
and ReLU activation functions between the two convolutional layers helped to slow down
the disappearance of gradients and accelerated the convergence of the model, which had
the effect of regularization.

Table 3. Customized design model architecture.

Layer Type Filters Kernel Size/Stride Output Size

Convolutional 1 64 3 × 3/1 189 × 186 × 64
Batch Normalization/ReLU 189 × 186 × 64

Convolutional 2 64 3 × 3/2 95 × 93 × 64
Batch Normalization/ReLU 95 × 93 × 64

Convolutional 3 128 3 × 3/1 95 × 93 × 128
Batch Normalization/ReLU 95 × 93 × 128

Convolutional 4 128 3 × 3/2 48 × 47 × 128
Batch Normalization/ReLU 48 × 47 × 128

Convolutional 5 256 3 × 3/1 48 × 47 × 256
Batch Normalization/ReLU 48 × 47 × 256

Convolutional 6 256 3 × 3/2 24 × 24 × 256
Batch Normalization/ReLU 24 × 24 × 256

Convolutional 7 512 24 × 24/1 1 × 1 × 512
Convolutional 8 2 1 × 1/1 1 × 1 × 2

Softmax 1 × 1 × 2
Classoutput 1 × 1 × 2

The OutPut Size of the sixth layer of the customized design model was 24 × 24, so
we also set the Kernel Size of the seventh layer to 24 × 24, so that the OutPut Size of
the seventh layer could reach 1 × 1, and set the Filters to 512 to replace the effect of the
fully connected layer. Using a convolutional layer has fewer parameters than using a fully
connected layer. We compared the accuracy of using a fully connected layer with that
of using a convolutional layer instead of a fully connected layer, and found that using
convolution instead of a fully connected layer performed relatively well.

3.4. Accuracy of Customized Model

The custom-designed convolutional neural network in this experiment (Figure 7)
was trained with an NVIDIA GeForce RTX 2070 SUPER GPU; the Batch Size was set to 8,
Learning Rate was set to 0.0001, Epoch was set to 1, and iteration was set to 119. This
training took 1 min 14 s and achieved 99.36% Accuracy.
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Convolutional 4 128 3 × 3/2 48 × 47 × 128 

Batch Normalization/ReLU   48 × 47 × 128 
Convolutional 5 256 3 × 3/1 48 × 47 × 256 

Batch Normalization/ReLU   48 × 47 × 256 
Convolutional 6 256 3 × 3/2 24 × 24 × 256 

Batch Normalization/ReLU   24 × 24 × 256 
Convolutional 7 512 24 × 24/1 1 × 1 × 512 
Convolutional 8 2 1 × 1/1 1 × 1 × 2 

Softmax   1 × 1 × 2 
Classoutput   1 × 1 × 2 

The OutPut Size of the sixth layer of the customized design model was 24 × 24, so we 
also set the Kernel Size of the seventh layer to 24 × 24, so that the OutPut Size of the sev-
enth layer could reach 1 × 1, and set the Filters to 512 to replace the effect of the fully 
connected layer. Using a convolutional layer has fewer parameters than using a fully con-
nected layer. We compared the accuracy of using a fully connected layer with that of using 
a convolutional layer instead of a fully connected layer, and found that using convolution 
instead of a fully connected layer performed relatively well. 
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From the training result graph (Figure 8), it can be found that, when the Iteration was
around 10, the Accuracy value began to gradually increase, and when the Iteration was
in the range of 20 to 80, the Accuracy value oscillated in the range of 80 to 100. Iteration
gradually converged after 80 and the oscillation was less obvious.
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4. Experimental Results

The calculation times by using the LeNet, VGG19, ResNet34, DarkNet19, and Dark-
Net53 models were 25, 87, 838, 59, and 163 s respectively, on average after five training
sessions. Our customized model took 74 s on average after five training sessions. In Table 4,
compared with VGG19, our accuracy was higher with less time and lower model parameters.

Table 4. Training accuracy and training time of each network model.

Model Customized CNN VGG19

Accuracy 99.36% 98.93%
Time 74 s 87 s

Parameters 76,643,266 143,667,240

In Table 5, the five prediction times for the Customized CNN and VGG19 models were
averaged to obtain 0.433 and 0.391 s, respectively. The prediction time of Customized CNN
was slightly higher than that of VGG19.
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Table 5. Prediction times of the Customized CNN and VGG19 models.

Model Customized CNN VGG19

First prediction time (s) 0.953 0.889
Second prediction time (s) 0.343 0.315
Third prediction time (s) 0.307 0.270

Fourth prediction time (s) 0.246 0.202
Fifth prediction time (s) 0.318 0.281

Average time (s) 0.433 0.391

As usual, the original defect inspection was conducted manually. Such defects are
very subtle and need to be inspected with a microscope repeatedly by human labor. To
reduce the cost of the manual inspection time, AOI is a must. Leveraged by CNN in the
above, the average prediction time of the developed automatic image recognition system
was less than one second. This benefits the quality assurances and resolves the problem
in the production line when inspection must be implemented for every single piece. The
labor reduction and increase in the production line bring the development of industry.

4.1. Procedure to Customize the CNN

In this section, we detail the adjustment strategy when customizing the CNN model
architecture. First, we classify common models according to the number of parameters
and layers, such as the LeNet, VGG-19, ResNet-34, DarkNet-19, and DarkNet-53 models
used in this experiment. We defined LeNet as a small model, VGG-19 and DarkNet-19 as
medium models, and ResNet-34 and DarkNet-53 as large models. As the data sets for each
training were different, we first put the data sets through three types of model training:
large, medium, and small. Then, we compared the training results of the large, medium,
and small models, selected the model size that was more in line with our expectations, and
then adjusted the parameters. It can be seen from this experiment that the results of using
convolutional layers, instead of pooling layers and fully connected layers, were better, so
they can be adjusted from the replacement of convolutional layers. As shown in Table 3,
the self-designed CNN network architecture could be customized and adjusted without
using a large network model, which could reduce the amount of parameters and shorten
the computing time of the neural network.

4.2. Visualizing Convolutional Networks

Although we know that the usage of CNN is more accurate than the human eye in
image recognition, we cannot easily know what the neural network performs during the
process of the convolution operation. Heuristically, the characteristics of the picture to be
diagnosed by the neural network are like a black box. We only know the input dataset with
known training features and the output result without knowing the abstract key features.
Therefore, in addition to using the neural network to identify the defects, in this research,
Grad–CAM [30] was used to connect the last layer of the neural network to show the neural
network identification result with visualization for validating the status of the original OK
or NG pictures.

The approach of Class Activation Mapping (CAM) [31] is very straightforward. For
example, in the NG image, each feature map generated by the convolutional layer of the
last layer will become a pixel after GAP (Global Average Pooling). Multiply the pixel
array after GAP by the weight w; the larger the value of the weight w, the greater the
influence of the image represented by the pixel. After the function of Softmax, it can be
determined that NG is the maximum value of the classification. By multiplying the pixels
of the entire feature map by the weight w and then superimposing them, we can focus on
different regions according to the importance of each feature map. The larger the weight
w corresponding to the classification, the greater the influence of the feature map; on the
contrary, the less important the feature maps with the weight closer to 0. Therefore, if the
convolutional neural network model designed in this experiment does not use GAP after
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the convolutional layer of the last layer, the architecture of the model must be modified and
retrained. For the Grad–CAM used this time, no matter what kind of neural network the
model used, after the convolutional layer, the aim of CAM could be implemented without
modifying the model. The Grad–CAM-visualized results are shown in Figure 9, where
Figure 9(a1–c2) are the three images randomly sampled after the last layer of convolution.
For example, Figure 9(a1) is the original feature map, while Figure 9(a2) is the image
immediately after inputting Figure 9(a1) into the Grad–CAM software. It can be found that
Figure 9(a2) exhibited the obvious defect area from Figure 9(a1) and then marked it in red.
All three visualized convolutional neural networks resulted in NG in Figure 9(a1–c1). The
color bar indicates the strength of the weighting result via the Grad–CAM. The red part
illustrates the characteristic features for the NG metal part with defects and scratches.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 12 
 

convolutional layer of the last layer, the architecture of the model must be modified and 
retrained. For the Grad–CAM used this time, no matter what kind of neural network the 
model used, after the convolutional layer, the aim of CAM could be implemented without 
modifying the model. The Grad–CAM-visualized results are shown in Figure 9, where 
Figure 9(a1–c2) are the three images randomly sampled after the last layer of convolution. 
For example, Figure 9(a1) is the original feature map, while Figure 9(a2) is the image im-
mediately after inputting Figure 9(a1) into the Grad–CAM software. It can be found that 
Figure 9(a2) exhibited the obvious defect area from Figure 9(a1) and then marked it in red. 
All three visualized convolutional neural networks resulted in NG in Figure 9(a1–c1). The 
color bar indicates the strength of the weighting result via the Grad–CAM. The red part 
illustrates the characteristic features for the NG metal part with defects and scratches. 

 
Figure 9. Grad–CAM-visualized results with NG images for (a2–c2), where the (a1–c1) are the orig-
inally captured images. 

5. Conclusions 
This research combines industrial machine vision and deep learning, and deploys the 

machined metal defect detection for smart manufacturing and reduced production costs. 
The three main contributions are as follows. First, we provided a quick layer structure 
solution by feeding the initial dataset to some well-known small, medium, and large CNN 
layers with only one epoch simulation. This sped up the selection of the number of CNN 
layers with an appropriate CNN backbone size. Second, the customized light source with 
a shadowless ring light used in this experiment to illuminate the metal workpiece success-
fully solved the problem of easy reflection on the metal surface without affecting the fea-
ture extraction of the measured object with deep learning technology, where the tradi-
tional AOI algorithm did not fully meet the needs of this detection. Thirdly, we used a 
self-built custom convolutional neural network model, replacing pooling layers and fully 
connected layers with convolutional layers only. The proposed CNN minimized the num-
ber of parameters while maintaining extremely high performance and retained remarka-
ble accuracy. The experimental results showed that, after comparing the customized con-
volutional neural network model designed in this study with the ResNet-34, VGG-19, 
DarkNet-19, and LeNet models, our model achieved 99.36% accuracy, which was better 
than that of other models. Additionally, the Grad–CAM module validated the last layer 
of the convolution result. The highest accuracy could effectively improve the recognition 
rate of defective and non-defective samples, and achieve the effect of reducing training 
costs. The results of this paper contribute to the technological development of automatic 
optical inspection, and also contribute to intelligent manufacturing. These findings for 
how to customize a CNN are expected to enable the development of visual inspection 

Figure 9. Grad–CAM-visualized results with NG images for (a2–c2), where the (a1–c1) are the
originally captured images.

5. Conclusions

This research combines industrial machine vision and deep learning, and deploys the
machined metal defect detection for smart manufacturing and reduced production costs.
The three main contributions are as follows. First, we provided a quick layer structure
solution by feeding the initial dataset to some well-known small, medium, and large CNN
layers with only one epoch simulation. This sped up the selection of the number of CNN
layers with an appropriate CNN backbone size. Second, the customized light source with a
shadowless ring light used in this experiment to illuminate the metal workpiece successfully
solved the problem of easy reflection on the metal surface without affecting the feature
extraction of the measured object with deep learning technology, where the traditional AOI
algorithm did not fully meet the needs of this detection. Thirdly, we used a self-built custom
convolutional neural network model, replacing pooling layers and fully connected layers
with convolutional layers only. The proposed CNN minimized the number of parameters
while maintaining extremely high performance and retained remarkable accuracy. The
experimental results showed that, after comparing the customized convolutional neural
network model designed in this study with the ResNet-34, VGG-19, DarkNet-19, and
LeNet models, our model achieved 99.36% accuracy, which was better than that of other
models. Additionally, the Grad–CAM module validated the last layer of the convolution
result. The highest accuracy could effectively improve the recognition rate of defective and
non-defective samples, and achieve the effect of reducing training costs. The results of this
paper contribute to the technological development of automatic optical inspection, and also
contribute to intelligent manufacturing. These findings for how to customize a CNN are
expected to enable the development of visual inspection techniques with high adaptability
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to overcome the bottlenecks of current image processing techniques and advance the
advancement of manufacturing processes.
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20. Ciuparu, A.; Nagy-Dăbâcan, A.; Mureşan, R.C. Soft++, a multi-parametric non-saturating non-linearity that improves convergence
in deep neural architectures. Neurocomputing 2020, 384, 376–388. [CrossRef]

21. Chen, Z.; Ho, P.H. Global-connected network with generalized ReLU activation. Pattern Recognit. 2019, 96, 106961. [CrossRef]
22. Ayinde, B.O.; Inanc, T.; Zurada, J.M. Redundant feature pruning for accelerated inference in deep neural networks. Neural Netw.

2019, 118, 148–158. [CrossRef] [PubMed]

http://doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1109/TIE.2017.2764861
http://doi.org/10.1145/3357238
http://doi.org/10.1142/S0218001420520096
http://doi.org/10.1109/5.726791
http://doi.org/10.1016/j.neucom.2019.12.014
http://doi.org/10.1016/j.patcog.2019.07.006
http://doi.org/10.1016/j.neunet.2019.04.021
http://www.ncbi.nlm.nih.gov/pubmed/31279285


Appl. Sci. 2022, 12, 3014 12 of 12

23. Su, E.; You, Y.-W.; Ho, C.-C. Machine Vision and Deep Learning Based Defect Inspection System for Cylindrical Metallic Surface.
Instrum. Today 2018, 46–58. Available online: https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=10195440-201
806-201806270008-201806270008-46-58#Altmetrics (accessed on 10 February 2022). (In Chinese).

24. Neuhauser, F.M.; Bachmann, G.; Hora, P. Surface defect classification and detection on extruded aluminum profiles using
convolutional neural networks. Int. J. Mater. Form. 2020, 13, 591–603. [CrossRef]

25. Aslam, Y.; Santhi, N.; Ramasamy, N.; Ramar, K. Localization and segmentation of metal cracks using deep learning. J. Ambient.
Intell. Humaniz. Comput. 2021, 12, 4205–4213. [CrossRef]

26. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference
on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241.

27. Wen, S.; Chen, Z.; Li, C. Vision-based surface inspection system for bearing rollers using convolutional neural networks. Appl. Sci.
2018, 8, 2565. [CrossRef]

28. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

29. Jian, B.L.; Hung, J.P.; Wang, C.C.; Liu, C.C. Deep Learning Model for Determining Defects of Vision Inspection Machine Using
Only a Few Samples. Sens. Mater. 2020, 32, 4217–4231. [CrossRef]

30. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep net-
works via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,
22–29 October 2017; pp. 618–626.

31. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929.

https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=10195440-201806-201806270008-201806270008-46-58#Altmetrics
https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=10195440-201806-201806270008-201806270008-46-58#Altmetrics
http://doi.org/10.1007/s12289-019-01496-1
http://doi.org/10.1007/s12652-020-01803-8
http://doi.org/10.3390/app8122565
http://doi.org/10.18494/SAM.2020.3101

	Introduction 
	System Architecture 
	Experimental Method 
	Data Set 
	Comparison of Results after Training with Common Models 
	Customized Model Design 
	Accuracy of Customized Model 

	Experimental Results 
	Procedure to Customize the CNN 
	Visualizing Convolutional Networks 

	Conclusions 
	References

