Application of Nanofluids in CO2 Absorption: A Review
Abstract
:1. Introduction
2. Nanofluid
Nanoparticle | Average Particle Size [nm] | Morphology | Surface Area [m2/g] | Density [kg/m3] | Thermal Conductivity (W/m·K) | |
---|---|---|---|---|---|---|
Al2O3 | <40 | Spherical | - | 4700 | 36–40 | [24] |
MWCNT | 10–20 | Tubular | 200 | 2100 | - | [29] |
ZnO | 10–30 | Nearly spherical | 20–60 | 5606 | 29 | [30] |
TiO2 | <50 | Spherical | 50 ± 15 | 5500–6000 | - | [29,30] |
SiO2 | 10–15 | Spherical | 180–270 | 2200 | - | [31] |
Fe3O4 | 4 | Spherical | 40–60 | 5200 | 17.65 | [32] |
CNT | 10–20 | - | 332 | 1800 | - | [33] |
NiO2 | 50 | - | - | 6670 | - | [34] |
MgO | - | Cubic | - | 2900 | 48.4 | [35] |
2.1. The Method of Nanofluid Preparation
2.1.1. One-Step Synthesis Method
2.1.2. Two-Step Method
2.2. Nanofluid Stability
2.2.1. Sedimentation and Centrifugation
2.2.2. Zeta Potential
2.3. The Mechanisms of Enhancement in Nanofluids
2.3.1. Shuttle (Grazing) Effect
2.3.2. Bubble Breaking Effect
2.3.3. Micro-Convection
3. Effective Factors in the CO2 Absorption by Nanofluid
3.1. Effect of Nanoparticle Type
3.2. Effect of Nanoparticle Concentration
3.3. Effect of Nanoparticle Size
3.4. Effect of Temperature
4. Classification of Nanofluids Based on Base Liquid
4.1. Amine-Based Nanofluid
Researchers | Base Fluid | Nanoparticle | Size of Nanoparticle (nm) | Contactor Type | Enhancement % | Absorbent Loading |
---|---|---|---|---|---|---|
Rahimi et al. [116] | MDEA | nMWCNT | 11.6 | Stirred reactor | 141.6 | 0.05 wt.% |
MEA | 11.6 | 20.79 | 0.1 wt.% | |||
Jiang et al. [42] | MEA | TiO2 | 20 | Bubbling reactor | 9 | 0.6 kg/m3 |
MDEA | TiO2 | 20 | 30 | 0.4 kg/m3 | ||
MEA | Al2O3 | 20 | 4 | 0.6 kg/m3 | ||
MDEA | Al2O3 | 20 | 15 | 0.8 kg/m3 | ||
Irani et al. [114] | MDEA | GO | 29.3–35.16 | Stirred cell reactor | 10.4 | 0.2 wt.% |
Taheri et al. [117] | DEA | Al2O3 | 10–20 | WWC | 33 | 0.05 wt.% |
SiO2 | 10–15 | 40 | 0.05 wt.% | |||
Irani et al. [94] | MDEA | PEI-HKUST-1 | - | PSE | 16 | 0.2 wt.% |
Aghehrochaboki et al. [72] | MDEA | GO | - | Stirred cell reactor | 10.4 | 0.2 wt.% |
PEI-GO | - | 15 | 0.1 wt.% | |||
Rahmatmand et al. [84] | MDEA | CNT | * | Batch vessel | 23 | 0.02 wt.% |
Pashaei et al. [118] | PZ | TiO2 | 20 | Stirrer Bubble column | 14.7 | 0.05 wt.% |
ZnO | 10–30 | 16.6 | 0.1 wt.% | |||
ZrO2 | 20 | 3.7 | 0.05 wt.% | |||
Li et al. [119] | MDEA | TiO2 | 15 | Stirred cell reactor | 11.54 | 0.8 wt.% |
Komati et al. [99] | MDEA | Fe3O4 | 15 | WWC | 90 | 0.39 vol% |
Wang et al. [112] | MEA | Al2O3 | 15 | Bubble Column | 10 | 0.06 wt.% |
SiO2 | 15 | 10 | 0.06 wt.% | |||
TiO2 | 15 | 13 | 0.06 wt.% | |||
Wang et al. [113] | MEA | Al2O3 | 20 | WWC | 7 | 0.02 wt.% |
SiO2 | 15 | 10 | 0.06 wt.% | |||
Elhambakhsh et al. [120] | MDEA | Fe3O4@SiO2-NH2 | 31–39 | Stirred cell reactor | 16.36 | 0.1 wt.% |
Fe3O4-proline | 10–16 | 6.78 | 0.02 wt.% | |||
Fe3O4-lysine | 13–18 | 12.13 | 0.1 wt.% | |||
Jiang et al. [121] | TETA | SiO2 | 45 | Bubble reaction system | 29 | 0.10 wt.% |
4.2. Water-Based Nanofluid
Researchers | Base Fluid | Nanoparticle | Size of Nanoparticle (nm) | Contactor Type | Enhancement % | Absorbent Loading |
---|---|---|---|---|---|---|
Arshadi et al. [111] | Water | Fe3O4@SiO2-SNH2 | 50 | Bubble column | 70.3 | 0.4 wt.% |
Kim et al. [90] | Water | SiO2 | 30 | Bubble column | 24 | 0.021 wt.% |
Jorge et al. [128] | Water | FCNT a | 10 | Bubble column | 36 | 4 vol% |
Rahmatmand et al. [84] | Water | SiO2 | 15 | Batch vessel | 21 | 0.1 wt.% |
Water | Al2O3 | 20 | Batch vessel | 18 | 0.1 wt.% | |
Fe3O4 | 4 | 24 | 0.02 wt.% | |||
CNT | * | 34 | 0.02 wt.% | |||
Peyravi et al. [32] | Water | Fe3O4 | 4 | HFMC | 43.8 | 0.15 wt.% |
CNT | * | 38 | 0.1 wt.% | |||
SiO2 | 15 | 25.9 | 0.05 wt.% | |||
Al2O3 | 20 | 3 | 0.05 wt.% | |||
Haghtalab et al. [88] | Water | SiO2 | 30–40 | Bubble column | 7 | 0.1 wt.% |
Water | ZnO | 11.5 | 14 | 0.1 wt.% | ||
Salimi et al. [129] | Water | Al2O3 | 15–20 | Packed column | 14 | 0.05 vol% |
Al2O3-SiO2 | 10–15 | 10 | 0.05 vol% | |||
Salimi et al. [34] | Water | Fe3O4 | 8 | Packed column | 12 | 0.005 vol% |
NiO | 50 | 9.5 | 0.01 vol% | |||
Samadi et al. [127] | Water | Al2O3 | 25 | WWC | 40–55 | 1 vol% |
Darvanjooghi et al. [93] | Water | SiO2 | 62 | Bubble column | 40 | 0.01 wt.% |
Ghasem [130] | Water | CNT | * | HFMC | 45 1 | 0.25 wt.% |
Rezakazemi et al. [131] | Water | SiO2 | 15 | HFMC | 16 | 0.05 wt.% |
CNT | * | 34 | 0.05 wt.% | |||
Zare et al. [29] | DI Water | ZnO | 10–30 | PP HFMC | 130 | 0.15 wt.% |
TiO2 | 21 | 60 | 0.15 wt.% | |||
MWCNT | 10–20 | 60 | 0.15 wt.% | |||
Rahimi et al. [116] | Water | nMWCNT | 11.6 | Stirred reactor | 25.1 | 0.02 wt.% |
Devakki et al. [24] | DI Water | TiO2 | <50 | Stirred cell reactor | 39.81 | 0.1 wt.% |
Al2O3 | <40 | 22.3 | 0.14 wt.% | |||
Hafizi et al. [132] | Water | DETA@ECH@ Fe3O4 | 40 | Batch equilibrium | 77.3 | 0.5 wt.% |
vessel | ||||||
Esmaeili-Faraj et al. [133] | Water | EGO | 20 | Bubble column | diminished to zero | <0.02 wt.% |
Elhambakhsh et al. [134] | DI Water | Fe3O4@SiO2-lysine | 17–20 | Bubble Column | 88 | 0.125 wt.% |
Karamian et al. [135] | Water | Al2O3 | 20–60 | Single-Bubble Column | 117 | 0.1 wt.% |
Fe2O3 | 30–80 | 103 | 1 wt.% | |||
SiO2 | 20–60 | 88 | 0.01 wt.% | |||
Lee et al. [136] | DI Water | Al2O3 | 45 | Bubble Column | 23.5 | 0.01 vol% |
SiO2 | 15 | 23.5 | 0.01 vol% | |||
Ansaripour et al. [137] | DI Water | α- Al2O3 | 80 | HFMC | 12.2 | 0.02 vol% |
γ- Al2O3 | 20 | 21.6 | 0.02 vol% | |||
Golkhar et al. [31] | DI Water | CNT | * | HFMC | 40 | 0.5 wt.% |
SiO2 | 10–15 | 20 | 0.5 wt.% | |||
Choi et al. [138] | DI Water | SiO2 | 15 | Stirred cell reactor | 13.1 | 0.01 vol% |
Elhambakhsh et al. [120] | DI Water | Fe3O4-proline | 10–16 | Stirred cell reactor | 25.07 | 0.02 wt.% |
Fe3O4-lysine | 13–18 | 31.04 | 0.1 wt.% | |||
Fe3O4@SiO2-NH2 | 31–39 | 34.23 | 0.1 wt.% | |||
Manikandan et al. [95] | Water | Al2O3 | - | WWC | 19 | 0.6 vol% |
Manikandan et al. [139] | Water | TiO2 | - | Packed column | 65 | 1.0 vol% |
MWCNT | 10 | Bubble Column | 36 | 40 Mg/L |
4.3. Methanol-Based Nanofluid
Researchers | Base Fluid | Nanoparticle | Particle Size (nm) | Contactor Type | Enhancement % | Absorbent Loading |
---|---|---|---|---|---|---|
Pineda et al. [87] | Methanol | Al2O3 | 40–50 | AC, T-CA | 1.2, 10 | 0.05 vol% |
TiO2 | <25 | 4.6, 5 | 0.05 vol% | |||
SiO2 | 10–20 | 1.1, 6 | 0.05 vol% | |||
Jung et al. [105] | Methanol | Al2O3 | 40–50 | Bubble column | 8.3 | 0.01 vol% |
Pineda et al. [141] | Methanol | Al2O3 | 40–50 | Tray column | 9.4 | 0.05 vol% |
SiO2 | 10–20 | 9.7 | 0.05 vol% | |||
Lee et al. [104] | Methanol | Al2O3 | 40–50 | Bubble column | 4.5 | 0.01 vol% |
SiO2 | 10–20 | 5.6 | 0.01 vol% | |||
Kim et al. [78] | Methanol | Al2O3 | 40–50 | Bubble column | 26 | 0.01 vol% |
Researchers | Base Fluid | Nanoparticle | Size of Nanoparticle (nm) | Contactor Type | Enhancement % | Absorbent Loading |
---|---|---|---|---|---|---|
Devakki et al. [24] | Salt solutions | Al2O3 | <40 | Stirred cell reactor | −5.68 1 | 1 to 3.1 wt.% |
TiO2 | <50 | −11.93 1 | 1 to 3.1 wt.% | |||
Lee et al. [92] | NaCl solution | Al2O3 | 40–50 | Bubble column | 12.5 | 0.01 vol% |
Nabipour et al. [89] | Sulfinol-M | Fe3O4 | ** | Quasi-static high pressure | 14.7 | 0.02 wt.% |
MWCNT | 20–30 | 23.2 | 0.02 wt.% | |||
Zhang et al. [83] | Ammonia solutions | Fe3O4 | 20 | Bubbling reactor | 14.5 | 0.3 g/L |
5. Future Perspective
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Annular contactor |
AMP | 2-Amino-2-Methyl-1-Propanol |
CCS | CO2 capture and sequestration |
COPs | Covalent organic frameworks |
DEA | Diethanolamine |
DEPG | Dimethyl ether of polyethylene glycol |
DLS | Dynamic light scattering |
DW | Distilled water |
EU | European Union |
ESA | Electrical swing adsorption |
GHG | Greenhouse gas |
HFCM | Hollow fiber ceramic membrane |
IIS | lonic liquids |
LLE | Liquid–liquid extraction |
MDEA | Methyldiethanolamine |
MEA | Monoethanolamine |
MOFs | Metal-organic frameworks |
MWCNT | Multi-walled carbon nanotube |
NGO | Nanographene oxide |
NMP | N-Methyl-2-Pyrrolidone |
NP | Nanoparticle |
PC | Propylene carbonate |
PNP | Pnitrophenol |
PSA | Pressure swing adsorption |
PZ | Piperazine |
RES | Renewable energy sources |
SNG | Synthetic natural gas |
TEM | Transmission electron microscopy |
TSA | Temperature swing adsorption |
TVS | Temperature vacuum adsorption |
VSA | Vacuum swing adsorption |
WWC | Watted-wall column |
Fe3O4@SiO2-NH2 | Synthesiz of Fe3O4 |
Fe3O4-lysine | Synthesiz of Fe3O4 |
Fe3O4-proline | Synthesiz of Fe3O4 |
References
- Koytsoumpa, E.I.; Bergins, C.; Kakaras, E. The CO2 economy: Review of CO2 capture and reuse technologies. J. Supercrit. Fluids 2018, 132, 3–16. [Google Scholar] [CrossRef]
- Wojtacha-Rychter, K.; Kucharski, P.; Smolinski, A. Conventional and alternative sources of thermal energy in the production of cement—An impact on CO2 emission. Energies 2021, 14, 1539. [Google Scholar] [CrossRef]
- Aghel, B.; Sahraie, S.; Heidaryan, E. Comparison of aqueous and non-aqueous alkanolamines solutions for carbon dioxide desorption in a microreactor. Energy 2020, 201, 117618. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, Z.; Ding, R.; Dai, Y.; Li, X.; Ruan, X.; He, G. Constructing continuous and fast transport pathway by highly permeable polymer electrospun fibers in composite membrane to improve CO2 capture. Sep. Purif. Technol. 2021, 285, 120332. [Google Scholar] [CrossRef]
- Liu, L.; Fang, M.; Xu, S.; Wang, J.; Guo, D. Development and testing of a new post-combustion CO2 capture solvent in pilot and demonstration plant. Int. J. Greenh. Gas Control 2022, 113, 103513. [Google Scholar] [CrossRef]
- Garg, B.; Pearson, P.; Cousins, A.; Verheyen, V.; Puxty, G.; Feron, P. Experimental evaluation of methods for reclaiming sulfur loaded amine absorbents. In Proceedings of the 14th Greenhouse Gas Control Technologies Conference, Melbourne, VIC, Australia, 21–25 October 2018; pp. 21–26. [Google Scholar]
- Krótki, A.; Solny, L.W.; Stec, M.; Spietz, T.; Wilk, A.; Chwoła, T.; Jastrząb, K. Experimental results of advanced technological modifications for a CO2 capture process using amine scrubbing. Int. J. Greenh. Gas Control 2020, 96, 103014. [Google Scholar] [CrossRef]
- Aghel, B.; Sahraie, S.; Heidaryan, E.; Varmira, K. Experimental study of carbon dioxide absorption by mixed aqueous solutions of methyl diethanolamine (MDEA) and piperazine (PZ) in a microreactor. Process Saf. Environ. Prot. 2019, 131, 152–159. [Google Scholar] [CrossRef]
- Janati, S.; Aghel, B.; Shadloo, M.S. The effect of alkanolamine mixtures on CO2 absorption efficiency in t-shaped microchannel. Environ. Technol. Innov. 2021, 24, 102006. [Google Scholar] [CrossRef]
- Mukhtar, A.; Saqib, S.; Mellon, N.B.; Babar, M.; Rafiq, S.; Ullah, S.; Bustam, M.A.; Al-Sehemi, A.G.; Muhammad, N.; Chawla, M. CO2 capturing, thermo-kinetic principles, synthesis and amine functionalization of covalent organic polymers for CO2 separation from natural gas: A review. J. Nat. Gas Sci. Eng. 2020, 77, 103203. [Google Scholar] [CrossRef]
- Babar, M.; Bustam, M.A.; Maulud, A.S.; Ali, A.; Mukhtar, A.; Ullah, S. Enhanced cryogenic packed bed with optimal CO2 removal from natural gas; a joint computational and experimental approach. Cryogenics 2020, 105, 103010. [Google Scholar] [CrossRef]
- Chawla, M.; Saulat, H.; Masood Khan, M.; Mahmood Khan, M.; Rafiq, S.; Cheng, L.; Iqbal, T.; Rasheed, M.I.; Farooq, M.Z.; Saeed, M.; et al. Membranes for CO2/CH4 and CO2/N2 gas separation. Chem. Eng. Technol. 2020, 43, 184–199. [Google Scholar] [CrossRef]
- Hu, X.E.; Liu, L.; Luo, X.; Xiao, G.; Shiko, E.; Zhang, R.; Fan, X.; Zhou, Y.; Liu, Y.; Zeng, Z.; et al. A review of N-functionalized solid adsorbents for post-combustion CO2 capture. Appl. Energy 2020, 260, 114244. [Google Scholar] [CrossRef]
- Li, C.; Shi, X.; Shen, S. Performance evaluation of newly developed absorbents for solvent-based carbon dioxide capture. Energy Fuels 2019, 33, 9032–9039. [Google Scholar] [CrossRef]
- Aghel, B.; Sahraie, S.; Heidaryan, E. Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor. Sep. Purif. Technol. 2020, 237, 116390. [Google Scholar] [CrossRef]
- Aghel, B.; Maleki, M.; Sahraie, S.; Heidaryan, E. Desorption of carbon dioxide from a mixture of monoethanolamine with alcoholic solvents in a microreactor. Fuel 2021, 306, 121636. [Google Scholar] [CrossRef]
- Carranza-Abaid, A.; Wanderley, R.R.; Knuutila, H.K.; Jakobsen, J.P. Analysis and selection of optimal solvent-based technologies for biogas upgrading. Fuel 2021, 303, 121327. [Google Scholar] [CrossRef]
- Babar, M.; Bustam, M.A.; Ali, A.; Maulud, A.S.; Shafiq, U.; Mukhtar, A.; Shah, S.N.; Maqsood, K.; Mellon, N.; Shariff, A.M. Thermodynamic data for cryogenic carbon dioxide capture from natural gas: A review. Cryogenics 2019, 102, 85–104. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Ji, N.; Deng, S.; Zhao, J.; Li, Y.; Kitamura, Y. Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization. Energy 2017, 124, 29–39. [Google Scholar] [CrossRef]
- Saqib, S.; Rafiq, S.; Muhammad, N.; Khan, A.L.; Mukhtar, A.; Mellon, N.B.; Man, Z.; Nawaz, M.H.; Jamil, F.; Ahmad, N.M. Perylene based novel mixed matrix membranes with enhanced selective pure and mixed gases (CO2, CH4, and N2) separation. J. Nat. Gas Sci. Eng. 2020, 73, 103072. [Google Scholar] [CrossRef]
- Jeong, Y.; Kim, S.; Lee, M.; Hong, S.; Jang, M.-G.; Choi, N.; Hwang, K.S.; Baik, H.; Kim, J.-K.; Yip, A.C.K.; et al. A hybrid zeolite membrane-based breakthrough for simultaneous CO2 capture and CH4 upgrading from biogas. ACS Appl. Mater. Interfaces 2022, 14, 2893–2907. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Y.; Wang, L.; Chen, J.; Lu, Y. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges. Appl. Energy 2019, 239, 876–897. [Google Scholar] [CrossRef]
- Raganati, F.; Miccio, F.; Ammendola, P. Adsorption of carbon dioxide for post-combustion capture: A review. Energy Fuels 2021, 35, 12845–12868. [Google Scholar] [CrossRef]
- Devakki, B.; Thomas, S. Experimental investigation on absorption performance of nanofluids for CO2 capture. Int. J. Air-Cond. Refrig. 2020, 28, 2050017. [Google Scholar] [CrossRef]
- Kumar, R.; Mangalapuri, R.; Ahmadi, M.H.; Vo, D.-V.N.; Solanki, R.; Kumar, P. The role of nanotechnology on post-combustion CO2 absorption in process industries. Int. J. Low Carbon Technol. 2020, 15, 361–367. [Google Scholar] [CrossRef]
- Yu, W.; Wang, T.; Park, A.-H.A.; Fang, M. Review of liquid nano-absorbents for enhanced CO2 capture. Nanoscale 2019, 11, 17137–17156. [Google Scholar] [CrossRef] [PubMed]
- Mehdipour, M.; Keshavarz, P.; Rahimpour, M.R. Rotating liquid sheet contactor: A new gas-liquid contactor system in CO2 absorption by nanofluids. Chem. Eng. Process. Process Intensif. 2021, 165, 108447. [Google Scholar] [CrossRef]
- Ma, B.; Banerjee, D. A review of nanofluid synthesis. In Advances in Nanomaterials; Springer: Cham, Switzerland, 2018; pp. 135–176. ISBN 978-3-319-64715-9. [Google Scholar]
- Zare, P.; Keshavarz, P.; Mowla, D. Membrane absorption coupling process for CO2 capture: Application of water-based ZnO, TiO2, and multi-walled carbon nanotube nanofluids. Energy Fuels 2019, 33, 1392–1403. [Google Scholar] [CrossRef]
- Pordanjani, A.H.; Aghakhani, S.; Afrand, M.; Mahmoudi, B.; Mahian, O.; Wongwises, S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers. Manag. 2019, 198, 111886. [Google Scholar] [CrossRef]
- Golkhar, A.; Keshavarz, P.; Mowla, D. Investigation of CO2 removal by silica and CNT nanofluids in microporous hollow fiber membrane contactors. J. Membr. Sci. 2013, 433, 17–24. [Google Scholar] [CrossRef]
- Peyravi, A.; Keshavarz, P.; Mowla, D. Experimental investigation on the absorption enhancement of CO2 by Various nanofluids in hollow fiber membrane contactors. Energy Fuels 2015, 29, 8135–8142. [Google Scholar] [CrossRef]
- Sumin, L.U.; Min, X.; Yan, S.U.N.; Xiangjun, D. Experimental and theoretical studies of CO2 absorption enhancement by nano-Al2O3 and carbon nanotube particles. Chin. J. Chem. Eng. 2013, 21, 983–990. [Google Scholar]
- Salimi, J.; Haghshenasfard, M.; Etemad, S.G. CO2 absorption in nanofluids in a randomly packed column equipped with magnetic field. Heat Mass Transf. 2015, 51, 621–629. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H. A review on nanofluids: Preparation, stability mechanisms, and applications. J. Nanomater. 2011, 2012, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab.: Lemont, IL, USA, 1995. [Google Scholar]
- Elsaid, K.; Olabi, A.; Wilberforce, T.; Abdelkareem, M.A.; Sayed, E.T. Environmental impacts of nanofluids: A review. Sci. Total Environ. 2021, 763, 144202. [Google Scholar] [CrossRef]
- Chakraborty, S.; Panigrahi, P.K. Stability of nanofluid: A review. Appl. Therm. Eng. 2020, 174, 115259. [Google Scholar] [CrossRef]
- Yahya, S.I.; Rezaei, A.; Aghel, B. Forecasting of water thermal conductivity enhancement by adding nano-sized alumina particles. J. Therm. Anal. Calorim. 2021, 145, 1791–1800. [Google Scholar] [CrossRef]
- Ruthiya, K.C.; van der Schaaf, J.; Kuster, B.F.M.; Schouten, J.C. Mechanisms of physical and reaction enhancement of mass transfer in a gas inducing stirred slurry reactor. Chem. Eng. J. 2003, 96, 55–69. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Bhattacharya, A.P.; Phelan, P.E.; Prasher, R.S. Enhanced mass transport in nanofluids. Nano Lett. 2006, 6, 419–423. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, B.; Zhuo, Y.; Wang, S. Experimental study of CO2 absorption in aqueous MEA and MDEA solutions enhanced by nanoparticles. Int. J. Greenh. Gas Control 2014, 29, 135–141. [Google Scholar] [CrossRef]
- ZareNezhad, B.; Montazeri, V. Nanofluid-assisted gas to hydrate (GTH) energy conversion for promoting CO2 recovery and sequestration processes in the petroleum industry. Pet. Sci. Technol. 2016, 34, 37–43. [Google Scholar] [CrossRef]
- Rashidi, H.; Mamivand, S. Experimental and numerical mass transfer study of carbon dioxide absorption using Al2O3/water nanofluid in wetted wall column. Energy 2022, 238, 121670. [Google Scholar] [CrossRef]
- Selvi, P.P.; Baskar, R. CO2 absorption in nanofluid with magnetic field. Chem. Ind. Chem. Eng. Q. 2020, 26, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.-Z.; Zhang, S.; Fu, X.-L.; Liu, L.; Sun, B.-M. Review of gas–liquid mass transfer enhancement by nanoparticles from macro to microscopic. Heat Mass Transf. 2019, 55, 2061–2072. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.; Pan, Z.; Zhang, Z. A brief review of enhanced CO2 absorption by nanoparticles. Int. J. Energy Clean Environ. 2018, 19, 3–4. [Google Scholar] [CrossRef]
- Babar, H.; Ali, H.M. Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. J. Mol. Liq. 2019, 281, 598–633. [Google Scholar] [CrossRef]
- Ma, B.; Shin, D.; Banerjee, D. One-step synthesis of molten salt nanofluid for thermal energy storage application—A comprehensive analysis on thermophysical property, corrosion behavior, and economic benefit. J. Energy Storage 2021, 35, 102278. [Google Scholar] [CrossRef]
- Torres-Mendieta, R.; Mondragón, R.; Juliá, E.; Mendoza-Yero, O.; Lancis, J.; Mínguez-Vega, G. Fabrication of high stable gold nanofluid by pulsed laser ablation in liquids. Adv. Mater. Lett. 2015, 6, 1037–1042. [Google Scholar] [CrossRef]
- El-Salamony, R.A.; Morsi, R.E.; Alsabagh, A.M. Preparation, stability and photocatalytic activity of titania nanofluid using gamma irradiated titania nanoparticles by two-step method. J. Nanofluids 2015, 4, 442–448. [Google Scholar]
- Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev. 2015, 43, 164–177. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, J.; Chen, F.; Li, H.; Zhang, W.; Qi, W. Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status. Renew. Energy 2018, 118, 527–535. [Google Scholar] [CrossRef]
- Solangi, K.; Kazi, S.; Luhur, M.; Badarudin, A.; Amiri, A.; Sadri, R.; Zubir, M.; Gharehkhani, S.; Teng, K. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy 2015, 89, 1065–1086. [Google Scholar] [CrossRef]
- Ilyas, S.U.; Pendyala, R.; Narahari, M.; Susin, L. Stability, rheology and thermal analysis of functionalized alumina-thermal oil-based nanofluids for advanced cooling systems. Energy Convers. Manag. 2017, 142, 215–229. [Google Scholar] [CrossRef]
- Said, Z.; Hachicha, A.A.; Aberoumand, S.; Yousef, B.A.; Sayed, E.T.; Bellos, E. Recent advances on nanofluids for low to medium temperature solar collectors: Energy, exergy, economic analysis and environmental impact. Prog. Energy Combust. Sci. 2021, 84, 100898. [Google Scholar] [CrossRef]
- Syarif, D.G.; Prajitno, D.H. Synthesis and characterization of Fe3O4 nanoparticles for nanofluids from local material through carbothermal reduction and precipitation. J. Aust. Ceram. Soc. 2016, 52, 76–81. [Google Scholar]
- Sandhya, M.; Ramasamy, D.; Sudhakar, K.; Kadirgama, K.; Harun, W.S.W. Ultrasonication an intensifying tool for preparation of stable nanofluids and study the time influence on distinct properties of graphene nanofluids—A systematic overview. Ultrason. Sonochemistry 2021, 73, 105479. [Google Scholar] [CrossRef]
- Sadeghinezhad, E.; Togun, H.; Mehrali, M.; Nejad, P.S.; Latibari, S.T.; Abdulrazzaq, T.; Kazi, S.N.; Metselaar, H.S.C. An experimental and numerical investigation of heat transfer enhancement for graphene nano-platelets nanofluids in turbulent flow conditions. Int. J. Heat Mass Transf. 2015, 81, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Farahmandjou, M.; Sebt, S.A.; Parhizgar, S.S.; Aberomand, P.; Akhavan, M. Stability investigation of colloidal Fe, Pt nanoparticle systems by spectrophotometer analysis. Chin. Phys. Lett. 2009, 26, 27501. [Google Scholar] [CrossRef]
- Sofiah, A.; Samykano, M.; Shahabuddin, S.; Kadirgama, K.; Pandey, A. A comparative experimental study on the physical behavior of mono and hybrid RBD palm olein based nanofluids using Cu, O nanoparticles and PANI nanofibers. Int. Commun. Heat Mass Transf. 2021, 120, 105006. [Google Scholar] [CrossRef]
- Kong, L.; Sun, J.; Bao, Y. Preparation, characterization and tribological mechanism of nanofluids. RSC Adv. 2017, 7, 12599–12609. [Google Scholar] [CrossRef] [Green Version]
- Ettefaghi, E.; Ghobadian, B.; Rashidi, A.; Najafi, G.; Khoshtaghaza, M.H.; Pourhashem, S. Preparation and investigation of the heat transfer properties of a novel nanofluid based on graphene quantum dots. Energy Convers. Manag. 2017, 153, 215–223. [Google Scholar] [CrossRef]
- Yang, X.-F.; Liu, Z.-H. Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures. Int. J. Therm. Sci. 2011, 50, 2402–2412. [Google Scholar] [CrossRef]
- Thakur, P.; Sonawane, S.S.; Sonawane, S.H.; Bhanvase, B.A. Nanofluids-based delivery system, encapsulation of nanoparticles for stability to make stable nanofluids. In Encapsulation of Active Molecules and Their Delivery System; Elsevier: Amsterdam, The Netherlands, 2020; p. 141. [Google Scholar]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.-Y.; Yoo, J.Y. Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL). Int. J. Heat Mass Transf. 2009, 52, 525–528. [Google Scholar] [CrossRef]
- Kamalgharibi, M.; Hormozi, F.; Zamzamian, S.A.H.; Sarafraz, M.M. Experimental studies on the stability of CuO nanoparticles dispersed in different base fluids: Influence of stirring, sonication and surface active agents. Heat Mass Transf. 2016, 52, 55–62. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, C.; Tang, Y.; Wang, J.; Ren, B. Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon 2007, 45, 226–228. [Google Scholar] [CrossRef]
- Choudhary, R.; Khurana, D.; Kumar, A.; Subudhi, S. Stability analysis of Al2O3/water nanofluids. J. Exp. Nanosci. 2017, 12, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Mehrali, M.; Sadeghinezhad, E.; Latibari, S.T.; Kazi, S.N.; Mehrali, M.; Zubir, M.N.B.M.; Metselaar, H.S.C. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res. Lett. 2014, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Aghehrochaboki, R.; Chaboki, Y.A.; Maleknia, S.A.; Irani, V. Polyethyleneimine functionalized graphene oxide/methyldiethanolamine nanofluid: Preparation, characterization, and investigation of CO2 absorption. J. Environ. Chem. Eng. 2019, 7, 103285. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, B.; Jiang, J.; Zhuo, Y.; Wang, S. The use of TiO2 nanoparticles to enhance CO2 absorption. Int. J. Greenh. Gas Control 2016, 50, 49–56. [Google Scholar] [CrossRef]
- Kars, R.L.; Best, R.J.; Drinkenburg, A.A.H. The sorption of propane in slurries of active carbon in water. Chem. Eng. J. 1979, 17, 201–210. [Google Scholar] [CrossRef]
- Vinke, H.; Hamersma, P.; Fortuin, J. Enhancement of the gas-absorption rate in agitated slurry reactors by gas-adsorbing particles adhering to gas bubbles. Chem. Eng. Sci. 1993, 48, 2197–2210. [Google Scholar] [CrossRef]
- Kluytmans, J.; van Wachem, B.; Kuster, B.; Schouten, J. Mass transfer in sparged and stirred reactors: Influence of carbon particles and electrolyte. Chem. Eng. Sci. 2003, 58, 4719–4728. [Google Scholar] [CrossRef]
- Holstvoogd, R.; van Swaaij, W. The influence of adsorption capacity on enhanced gas absorption in activated carbon slurries. Chem. Eng. Sci. 1990, 45, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Jung, C.W.; Kang, Y.T. Mass transfer enhancement during CO2 absorption process in methanol/Al2O3 nanofluids. Int. J. Heat Mass Transf. 2014, 76, 484–491. [Google Scholar] [CrossRef]
- Craig, V.S. Bubble coalescence and specificion effects. Curr. Opin. Colloid Interface Sci. 2004, 9, 178–184. [Google Scholar] [CrossRef]
- Koo, J.; Kleinstreuer, C. Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int. Commun. Heat Mass Transf. 2005, 32, 1111–1118. [Google Scholar] [CrossRef]
- Lu, S.; Song, J.; Li, Y.; Xing, M.; He, Q. Improvement of CO2 absorption using Al2O3 nanofluids in a stirred thermostatic reactor. Can. J. Chem. Eng. 2015, 93, 935–941. [Google Scholar] [CrossRef]
- Saien, J.; Bamdadi, H. Mass transfer from nanofluid single drops in liquid–liquid extraction process. Ind. Eng. Chem. Res. 2012, 51, 5157–5166. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, C.; Wu, T.; Xu, G.; Liu, W. The effect of Fe3O4 nanoparticles on the mass transfer of CO2 absorption into aqueous ammonia solutions. Chem. Eng. Process. Process Intensif. 2020, 154, 108002. [Google Scholar] [CrossRef]
- Rahmatmand, B.; Keshavarz, P.; Ayatollahi, S. Study of absorption enhancement of CO2 by Si, O2, Al2O3, CNT, and Fe3O4 nanoparticles in water and amine solutions. J. Chem. Eng. Data 2016, 61, 1378–1387. [Google Scholar] [CrossRef]
- Ganapathy, H.; Shooshtari, A.; Dessiatoun, S.; Alshehhi, M.; Ohadi, M.M. Experimental investigation of enhanced absorption of carbon dioxide in diethanolamine in a microreactor. In International Conference on Nanochannels, Microchannels, and Minichannels; American Society of Mechanical Engineers: New York, NY, USA, 2013. [Google Scholar]
- Fang, L.; Liu, H.; Zhu, Y.; Zhang, H.; Cao, T. Influence of nanoparticles on bubble absorption of gaseous CO2 in ammonia water. Chem. Eng. China 2016, 5, 6. [Google Scholar]
- Pineda, I.T.; Choi, C.K.; Kang, Y.T. CO2 gas absorption by CH3OH based nanofluids in an annular contactor at low rotational speeds. Int. J. Greenh. Gas Control 2014, 23, 105–112. [Google Scholar] [CrossRef]
- Haghtalab, A.; Mohammadi, M.; Fakhroueian, Z. Absorption and solubility measurement of CO2 in water-based ZnO and SiO2 nanofluids. In Fluid Phase Equilibria; Elsevier: Amsterdam, The Netherlands, 2015; Volume 392, pp. 33–42. [Google Scholar]
- Nabipour, M.; Keshavarz, P.; Raeissi, S. Experimental investigation on CO2 absorption in sulfinol-M based Fe3O4 and MWCNT nanofluids. Int. J. Refrig. 2017, 73, 1–10. [Google Scholar] [CrossRef]
- Kim, W.-G.; Kang, H.U.; Jung, K.-M.; Kim, S.H. Synthesis of silica nanofluid and application to CO2 absorption. Sep. Sci. Technol. 2008, 43, 3036–3055. [Google Scholar] [CrossRef]
- Pang, C.; Wu, W.; Sheng, W.; Zhang, H.; Kang, Y.T. Mass transfer enhancement by binary nanofluids (NH3/H2O+ Ag na-noparticles) for bubble absorption process. Int. J. Refrig. 2012, 35, 2240–2247. [Google Scholar] [CrossRef]
- Lee, J.W.; Kang, Y.T. CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution. Energy 2013, 53, 206–211. [Google Scholar] [CrossRef]
- Darvanjooghi, M.H.K.; Esfahany, M.N.; Esmaeili-Faraj, S.H. Investigation of the effects of nanoparticle size on CO2 absorption by silica-water nanofluid. Sep. Purif. Technol. 2018, 195, 208–215. [Google Scholar] [CrossRef]
- Irani, V.; Tavasoli, A.; Maleki, A.; Vahidi, M. Polyethyleneimine-functionalized HKUST-1/MDEA nanofluid to enhance the absorption of CO2 in gas sweetening process. Int. J. Hydrogen Energy 2018, 43, 5610–5619. [Google Scholar] [CrossRef]
- Manikandan, S.P.; Akila, S.; Deepapriya, N. Mass transfer performance of Al2O3 nanofluids for CO2 absorption in a wetted wall column. Int. Res. J. Eng. Technol. 2019, 6, 1329–1331. [Google Scholar]
- Hwang, B.-J.; Park, S.-W.; Park, D.-W.; Oh, K.-J.; Kim, S.-S. Absorption of carbon dioxide into aqueous colloidal silica solution with different sizes of silica particles containing monoethanolamine. Korean J. Chem. Eng. 2009, 26, 775–782. [Google Scholar] [CrossRef]
- Park, S.-W.; Choi, B.-S.; Kim, S.-S.; Lee, J.-W. Chemical absorption of carbon dioxide into aqueous colloidal silica solution containing monoethanolamine. J. Ind. Eng. Chem. 2007, 13, 133–142. [Google Scholar]
- Park, S.-W.; Choi, B.-S.; Kim, S.-S.; Lee, B.-D.; Lee, J.-W. Absorption of carbon dioxide into aqueous colloidal silica solution with diisopropanolamine. J. Ind. Eng. Chem. 2008, 14, 166–174. [Google Scholar] [CrossRef]
- Komati, S.; Suresh, A.K. CO2 absorption into amine solutions: A novel strategy for intensification based on the addition of ferrofluids. J. Chem. Technol. Biotechnol. 2008, 83, 1094–1100. [Google Scholar] [CrossRef]
- Lee, J.W.; Pineda, I.T.; Lee, J.H.; Kang, Y.T. Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents. Appl. Energy 2016, 178, 164–176. [Google Scholar] [CrossRef]
- Said, S.; Govindaraj, V.; Herri, J.-M.; Ouabbas, Y.; Khodja, M.; Belloum, M.; Sangwai, J.; Nagarajan, R. A study on the influence of nanofluids on gas hydrate formation kinetics and their potential: Application to the CO2 capture process. J. Nat. Gas Sci. Eng. 2016, 32, 95–108. [Google Scholar] [CrossRef]
- Nagy, E.; Feczkó, T.; Koroknai, B. Enhancement of oxygen mass transfer rate in the presence of nanosized particles. Chem. Eng. Sci. 2007, 62, 7391–7398. [Google Scholar] [CrossRef]
- Zhu, H.; Shanks, B.H.; Heindel, T.J. Enhancing CO−water mass transfer by functionalized MCM41 nanoparticles. Ind. Eng. Chem. Res. 2008, 47, 7881–7887. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Jung, J.-Y.; Lee, S.-G.; Kang, Y.T. CO2 bubble absorption enhancement in methanol-based nanofluids. Int. J. Refrig. 2011, 34, 1727–1733. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Lee, J.W.; Kang, Y.T. CO2 absorption characteristics of nanoparticle suspensions in methanol. J. Mech. Sci. Technol. 2012, 26, 2285–2290. [Google Scholar] [CrossRef]
- Lin, P.-H.; Wong, D.S.H. Carbon dioxide capture and regeneration with amine/alcohol/water blends. Int. J. Greenh. Gas Control 2014, 26, 69–75. [Google Scholar] [CrossRef]
- Mandal, B.; Guha, M.; Biswas, A.; Bandyopadhyay, S. Removal of carbon dioxide by absorption in mixed amines: Modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. Chem. Eng. Sci. 2001, 56, 6217–6224. [Google Scholar] [CrossRef]
- Mazari, S.A.; Ghalib, L.; Sattar, A.; Bozdar, M.M.; Qayoom, A.; Ahmed, I.; Muhammad, A.; Abro, R.; Abdulkareem, A.; Nizamuddin, S.; et al. Review of modelling and simulation strategies for evaluating corrosive behavior of aqueous amine systems for CO2 capture. Int. J. Greenh. Gas Control 2020, 96, 103010. [Google Scholar] [CrossRef]
- Hafizi, A.; Mokari, M.; Khalifeh, R.; Farsi, M.; Rahimpour, M. Improving the CO2 solubility in aqueous mixture of MDEA and different polyamine promoters: The effects of primary and secondary functional groups. J. Mol. Liq. 2020, 297, 111803. [Google Scholar] [CrossRef]
- Garcia, M.; Knuutila, H.K.; Aronu, U.E.; Gu, S. Influence of substitution of water by organic solvents in amine solutions on absorption of CO2. Int. J. Greenh. Gas Control 2018, 78, 286–305. [Google Scholar] [CrossRef]
- Arshadi, M.; Taghvaei, H.; Abdolmaleki, M.; Lee, M.; Eskandarloo, H.; Abbaspourrad, A. Carbon dioxide absorption in water/nanofluid by a symmetric amine-based nanodendritic adsorbent. Appl. Energy 2019, 242, 1562–1572. [Google Scholar] [CrossRef]
- Wang, T.; Yu, W.; Liu, F.; Fang, M.; Farooq, M.; Luo, Z. Enhanced CO2 absorption and desorption by monoethanolamine (MEA)-based nanoparticle suspensions. Ind. Eng. Chem. Res. 2016, 55, 7830–7838. [Google Scholar] [CrossRef]
- Wang, T.; Yu, W.; Fang, M.; He, H.; Xiang, Q.; Ma, Q.; Xia, M.; Luo, Z.; Cen, K. Wetted-wall column study on CO2 absorption kinetics enhancement by additive of nanoparticles. Greenh. Gases Sci. Technol. 2015, 5, 682–694. [Google Scholar] [CrossRef]
- Irani, V.; Maleki, A.; Tavasoli, A. CO2 absorption enhancement in graphene-oxide/MDEA nanofluid. J. Environ. Chem. Eng. 2019, 7, 102782. [Google Scholar] [CrossRef]
- Park, S.-W.; Choi, B.-S.; Lee, J.-W. Effect of elasticity of aqueous colloidal silica solution on chemical absorption of carbon dioxide with 2-amino-2-methyl-1-propanol. Korea Aust. Rheol. J. 2006, 18, 133–141. [Google Scholar]
- Rahimi, K.; Riahi, S.; Abbasi, M. Effect of host fluid and hydrophilicity of multi-walled carbon nanotubes on stability and CO2 absorption of amine-based and water-based nanofluids. J. Environ. Chem. Eng. 2020, 8, 103580. [Google Scholar] [CrossRef]
- Taheri, M.; Mohebbi, H.A.; Hashemipour, H.; Rashidi, A. Simultaneous absorption of carbon dioxide (CO2) and hydrogen sulfide (H2S) from CO2–H2S–CH4 gas mixture using amine-based nanofluids in a wetted wall column. J. Nat. Gas Sci. Eng. 2016, 28, 410–417. [Google Scholar] [CrossRef]
- Pashaei, H.; Ghaemi, A.; Nasiri, M.; Heydarifard, M.; Heydarifaed, M. Experimental investigation of the effect of nano heavy metal oxide particles in piperazine solution on CO2 absorption using a stirrer bubble column. Energy Fuels 2018, 32, 2037–2052. [Google Scholar] [CrossRef]
- Li, S.H.; Ding, Y.; Zhang, X.S. Enhancement on CO2 bubble absorption in MDEA solution by TiO2 nanoparticles. Adv. Mater. Res. 2013, 631, 127–134. [Google Scholar]
- Elhambakhsh, A.; Keshavarz, P. Investigation of carbon dioxide absorption using different functionalized Fe3O4 magnetic nanoparticles. Energy Fuels 2020, 34, 7198–7208. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Z.; Fan, J.; Yu, J.; Bi, D.; Li, B.; Zhao, Z.; Jia, M.; Mu, A. Experimental study on comprehensive carbon capture performance of TETA-based nanofluids with surfactants. Int. J. Greenh. Gas Control 2019, 88, 311–320. [Google Scholar] [CrossRef]
- Elhajj, J.; Al-Hindi, M.; Azizi, F. A review of the absorption and desorption processes of carbon dioxide in water systems. Ind. Eng. Chem. Res. 2014, 53, 2–22. [Google Scholar] [CrossRef]
- Ma, X.; Su, F.; Chen, J.; Bai, T.; Han, Z. Enhancement of bubble absorption process using a CNTs-ammonia binary nanofluid. Int. Commun. Heat Mass Transf. 2009, 36, 657–660. [Google Scholar] [CrossRef]
- Periasamy, S.M.; Baskar, R. Assessment of the influence of graphene nanoparticles on thermal conductivity of graphene/water nanofluids using factorial design of experiments. Period. Polytech. Chem. Eng. 2018, 62, 317–322. [Google Scholar] [CrossRef]
- Darabi, M.; Rahimi, M.; Dehkordi, A.M. Gas absorption enhancement in hollow fiber membrane contactors using nanofluids: Modeling and simulation. Chem. Eng. Process. Process Intensif. 2017, 119, 7–15. [Google Scholar] [CrossRef]
- Kim, J.-K.; Park, C.W.; Kang, Y.T. The effect of micro-scale surface treatment on heat and mass transfer performance for a falling film H2O/LiBr absorber. Int. J. Refrig. 2003, 26, 575–585. [Google Scholar] [CrossRef]
- Samadi, Z.; Haghshenasfard, M.; Moheb, A. CO2 absorption using nanofluids in a wetted-wall column with external magnetic field. Chem. Eng. Technol. 2014, 37, 462–470. [Google Scholar] [CrossRef]
- Jorge, L.; Coulombe, S.; Girard-Lauriault, P.-L. Nanofluids containing MWCNTs coated with nitrogen-rich plasma polymer films for CO2 absorption in aqueous medium. Plasma Process. Polym. 2015, 12, 1311–1321. [Google Scholar] [CrossRef]
- Salimi, J.; Salimi, F. CO2 capture by water-based Al2O3 and Al2O3-Si, O2 mixture nanofluids in an absorption packed column. Rev. Mex. Ing. Química 2016, 15, 185–192. [Google Scholar]
- Ghasem, N. Modeling and simulation of CO2 absorption enhancement in hollow-fiber membrane contactors using CNT–water-based nanofluids. J. Membr. Sci. Res. 2019, 5, 295–302. [Google Scholar]
- Rezakazemi, M.; Darabi, M.; Soroush, E.; Mesbah, M. CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor. Sep. Purif. Technol. 2019, 210, 920–926. [Google Scholar] [CrossRef]
- Hafizi, A.; Rajabzadeh, M.; Khalifeh, R. Enhanced CO2 absorption and desorption efficiency using DETA functionalized nanomagnetite/water nano-fluid. J. Environ. Chem. Eng. 2020, 8, 103845. [Google Scholar] [CrossRef]
- Esmaeili-Faraj, S.H.; Esfahany, M.N. Absorption of hydrogen sulfide and carbon dioxide in water based nanofluids. Ind. Eng. Chem. Res. 2016, 55, 4682–4690. [Google Scholar] [CrossRef]
- Elhambakhsh, A.; Zaeri, M.R.; Mehdipour, M.; Keshavarz, P. Synthesis of different modified magnetic nanoparticles for selective physical/chemical absorption of CO2 in a bubble column reactor. J. Environ. Chem. Eng. 2020, 8, 104195. [Google Scholar] [CrossRef]
- Karamian, S.; Mowla, D.; Esmaeilzadeh, F. The effect of various nanofluids on absorption intensification of CO2/SO2 in a single-bubble column. Processes 2019, 7, 393. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Lee, J.W.; Kang, Y.T. CO2 absorption/regeneration enhancement in DI water with suspended nanoparticles for energy conversion application. Appl. Energy 2015, 143, 119–129. [Google Scholar] [CrossRef]
- Ansaripour, M.; Haghshenasfard, M.; Moheb, A. Experimental and numerical investigation of CO2 absorption using nanofluids in a hollow-fiber membrane contactor. Chem. Eng. Technol. 2017, 41, 367–378. [Google Scholar] [CrossRef]
- Choi, I.D.; Lee, J.W.; Kang, Y.T. CO2 capture/separation control by SiO2 nanoparticles and surfactants. Sep. Sci. Technol. 2014, 50, 772–780. [Google Scholar] [CrossRef]
- Manikandan, S.P.; Sundar, G.D.; Perumal, C.C.; Aminudin, U. CO2 absorption using TiO2 nanoparticle suspended water solvent in a packed bed absorption column. Int. J. Appl. Innov. Eng. Manag. 2019, 8, 51–55. [Google Scholar]
- Budzianowski, W.M. Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption: Compounds, Blends and Advanced Solvent Systems; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Pineda, I.T.; Lee, J.W.; Jung, I.; Kang, Y.T. CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber. Int. J. Refrig. 2012, 35, 1402–1409. [Google Scholar] [CrossRef]
- Pang, C.; Jung, J.-Y.; Lee, J.W.; Kang, Y.T. Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles. Int. J. Heat Mass Transf. 2012, 55, 5597–5602. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghel, B.; Janati, S.; Alobaid, F.; Almoslh, A.; Epple, B. Application of Nanofluids in CO2 Absorption: A Review. Appl. Sci. 2022, 12, 3200. https://doi.org/10.3390/app12063200
Aghel B, Janati S, Alobaid F, Almoslh A, Epple B. Application of Nanofluids in CO2 Absorption: A Review. Applied Sciences. 2022; 12(6):3200. https://doi.org/10.3390/app12063200
Chicago/Turabian StyleAghel, Babak, Sara Janati, Falah Alobaid, Adel Almoslh, and Bernd Epple. 2022. "Application of Nanofluids in CO2 Absorption: A Review" Applied Sciences 12, no. 6: 3200. https://doi.org/10.3390/app12063200
APA StyleAghel, B., Janati, S., Alobaid, F., Almoslh, A., & Epple, B. (2022). Application of Nanofluids in CO2 Absorption: A Review. Applied Sciences, 12(6), 3200. https://doi.org/10.3390/app12063200