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Abstract: The present paper develops a new Bernoulli–Euler theory of microbeams for the consid-
eration of small-scale effects and nonlinear terms, which are induced by the axial elongation of
the beam and Kelvin–Voigt damping. The non-resonance and primary resonance of microbeams
are researched through the application of Galerkin and multiple scale methods to the new model.
The results suggest the following: (1) Nonlinear damping slightly affects the vibration amplitudes
under the non-resonance condition; (2) nonlinear damping can significantly change the bifurca-
tion points that induce a jump in the vibration amplitudes under the primary resonance condition.
The current researches indicate that nonlinear damping is necessary for an accurate description of
microbeam vibrations.

Keywords: Bernoulli–Euler microbeam; modified couple stress theory; nonlinear vibrations; damping;
multiple scale method

1. Introduction

A study of the dynamics and energy dissipation of microbeams is necessary, since
slender beams are frequently used in micro-scale devices and systems, such as microelec-
tromechanical systems (MEMS) [1–3].

A crucial issue of the mechanical properties of microbeams is the size-independent
behavior observed in micro-scale experiments [4–6]. McFarland and Colton observed that
the microbeam’s flexural rigidity is at least four times larger than the one predicted by the
classical beam theory [4]. Fleck found that the dimensionless torque increases the classical
torque theory by three times when the wire diameter decreases from 170 to 12 µm [5].
Stölken and Evans found that the dimensionless flexural rigidity increases significantly
as the beam thickness decreases from 50 to 12.5 µm [6]. However, the classical slender
beam models based on the classical elasticity cannot describe this size effect due to the
lack of material length scale parameters. This disadvantage motivated the development
of beam theories using nonlocal elasticity theories to model nanobeams [7,8] and higher-
order strain gradient theories to model microbeams [3,9–11]. Moreover, almost all of the
existing microbeam models are based on linear constitutive relations. However, the material
nonlinearity also influences the mechanical properties of nanobeams [12].

The modified couple stress theory is widely accepted to model the mechanical prop-
erties of microbeams [13]. The couple stress tensor is symmetric and only involves one
internal material length scale parameter in the modified couple stress theory. Based on
this theory, the linear and nonlinear Bernoulli–Euler and Timoshenko microbeam models
have been proposed [14–20]. Nevertheless, most of the studies on microbeam vibrations
have overlooked the nonlinear terms, which are induced by damping. For example, the
authors of [3,11,19] only considered the linear term of damping, while the authors of [11,16]
completely overlooked it. The energy dissipation is related to the vibration frequencies
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of the structures [21]. In macrostructures, nonlinear damping is almost smaller than the
geometrical nonlinear, which is induced by the finite deformations [22]. However, since
the vibration frequencies of microbeams are significantly higher than the macrobeams,
nonlinear damping significantly affects the microstructure vibrations. Based on the mod-
ified couple stress theory, the present paper will propose a new Bernoulli–Euler model
that includes the small-size effect and nonlinear terms, which are induced by the axial
elongation of the beam and Kelvin–Voigt damping. Then, the effects of nonlinear damping
are studied for the non-resonance and primary resonance.

2. Methods

In the modified couple stress theory, the symmetric couple stress characterizes the
small-scale effect, and the strain energy density can be written as [13,23]:

U =
1
2
(
σijεij + mijχij

)
, (i, j = x, y, z) (1)

where εij and σij are the stress and strain, mij = 2Gξ2χij is the couple stress tensor,

χij =
1
2

[
∇ω+ (∇ω)T

]
is the symmetrical curvature tensor,ω = (∇× u)/2 with u being

the displacement vector [13], and G = E/[2(1 + ν)]. Here, E and ν are the Young’s modulus
and Poisson’s ratio, ξ is the material length scale parameter obtained from the experimenta-
tions. Based on the modified couple stress theory, Xia established an integral differential
equation to model the mechanical properties of microbeams, as shown in Figure 1. This
theory takes into account the small-scale effect and nonlinear damping, which are induced
by the elongation of the microbeam [16]:

m
∂2w
∂t2 +

(
EI + GSξ2

)∂4w
∂x4 +

P0 −
ES
2L

L∫
0

(
∂w
∂x

)2
dx

∂2w
∂x2 = F(x, t) (2)

where w is the vertical deflection, P0 and m are the initial axial load and mass per unit length,
respectively, S and I are the cross-sectional area and moment of inertia. From Equation (2),
it is found that the small-scale effect significantly affects the static bending and vibration
frequencies of microbeams [16]. However, Equation (2) is an integral differential equation,
and it is not easy to find solutions to the equation. As shown below, we will develop a new
differential equation to replace Equation (2).
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Suppose that the average axial force, which is induced by the axial elongation of the
beam, is P1, thus we obtain:

P1 =
ES
(

L̃− L
)

L
≈ ES

2L

L∫
0

(∂w/∂x)2dx (3)

where L̃ =
L∫

0

[
1 + (∂w/∂x)2/2

]
dx is the deformed length of the beam axle. On the beam

element, the z component of the axial force increment is (dP1) · sin θ, and θ is the rotation an-
gle of the cross-section, as shown in Figure 1c. Considering P1 ≈ P1, sin θ ≈ θ, θ ≈ ∂w/∂x,
and using Equation (3), we obtain:

∂

∂x
(P1 sin θ)dx ≈ ∂

∂x

(
P1

∂w
∂x

)
dx ≈ ES

2L


∂2w

∂x2

L∫
0

(
∂w
∂x

)2
dx

dx (4)

The right part of Equation (4) is also the nonlinear term of Equation (2). Equation (3)
indicates that the accurate axial force P1 is replaced by the average axial force P1 in
Equation (2). The accurate force, which is induced by the axial elongation, can be writ-
ten as P1 = ES(∆L/dx) ≈ (ES/2)(∂w/∂x)2, where ∆ L is the elongation of the element.
Considering d(P1 sin θ) ≈ (3ES/2)(∂w/∂x)2(∂2w/∂x2)dx, and Equation (4), we obtain:ES

2L

L∫
0

(
∂w
∂x

)2
dx

∂2w
∂x2 ≈

3ES
2

(
∂w
∂x

)2 ∂2w
∂x2 (5)

Equation (5) indicates that the nonlinear differential term can replace the nonlinear
term of Equation (2). Furthermore, Equation (2) does not consider the structural damping.
Here, we suppose that Kelvin–Voigt damping is in the beams, thus E in Equation (2) will
be replaced by E + Ẽ∂/∂t [21,24], where Ẽ is the viscous damping coefficient. Substituting
Equation (5) into Equation (2), the nonlinear equation, which includes the small-scale effect
and nonlinear damping term, can be obtained as:

m ∂2w
∂t2 + Ẽ ∂

∂t

[
I ∂4w

∂x4 − 3S
2

(
∂w
∂x

)2
∂2w
∂x2

]
+ P0

∂2w
∂x2

+
(
EI + GSξ2) ∂4w

∂x4 − 3ES
2

(
∂w
∂x

)2
∂2w
∂x2 = F

(6)

Kahrobaiyan et al. studied the primary resonance, super-resonance, and sub-resonance
of microbeams using Equation (2) with linear damping Ẽ∂w/∂t [11]. In the present paper,
we will focus on the effects of nonlinear damping. Let x̃ = x/L, w̃ = w/L, t̃ = ω0t
normalize the variables in Equation (6), thus we obtain:

∂2w
∂t2 + π− 4 ∂4w

∂x4 + P ∂2w
∂x2 + C1

∂5w
∂t∂x4

−D
(

∂w
∂x

)2
∂2w
∂x2 − C2

∂
∂t

[(
∂w
∂x

)2
∂2w
∂x2

]
= f

(7)

The parameters in Equation (7) can be written as:

P =
P0

mL2ω2
0

, C1 =
ẼI

mL4ω0
, C2 =

3ẼS
2mL2ω0

, D =
3ES

2mL2ω2
0

, f =
F

Lmω2
0

(8)

whereω0 =
√

π4(EI + GSξ2)(mL4)
−1 is the natural frequency of the microbeam. For the

same I/L 4, the microbeam’s natural frequencyω0 is more than the macrobeam, since the
macrobeam’s mass per unit length is less than the microbeam. Therefore, the nonlinear
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damping term of the microbeam is larger than the correspondent term of the macrobeam
due to D/C2 = E/

(
Ẽω0

)
. The boundary conditions for hinged–hinged microbeams can

be written as:

w
(
0, t
)
= w

(
1, t
)
= 0,

∂2w
∂x2

(
0, t
)
=

∂2w
∂x2

(
1, t
)
= 0 (9)

Moreover, it is not easy to obtain an accurate analytical solution, since Equation (7) is
the nonlinear differential equation. Therefore, we will use the Galerkin method to obtain
an approximate analytical solution [24–26]. Suppose that the solution of Equation (7) can
be written as:

w =
∞

∑
j=1

sin(jπx) ηj
(
t
)

(10)

Substituting Equation (10) into Equation (7), then multiplying sin πx by both sides of
the equations, and integrating it in [0, 1], the first-mode truncation of Galerkin method [24],
which is an ordinary differential equation in time, can be obtained as:

..
η + 2c̃1

.
η +ω2η + dη3 + c2

.
ηη2 = f

(
t
)
. (11)

Here, we let η = η1 andω2 = 1− Nπ2, c̃1 = π4C1/2, d = π4D/4, c2 = 3π4C2/4.

3. Results

In this section, the multiple scale method [24–26], which is widely used to solve weak
nonlinear differential equations [27–30], will be applied to Equation (11). Let c̃1 = ε2c1,
f (t) = ε f1 cos

(
Ω1t

)
+ ε3 f1 cos

(
Ω2t

)
, then we obtain:

..
η +ω2η + ε2c1

.
η + dη3 + c2

.
ηη2 = ε f1 cos(Ω1t) + ε3 f2 cos(Ω2t) (12)

Suppose
η(t; ε) = εη1(T0, T2) + ε3η3(T0, T2) (13)

where T0 = t and T2 = ε2t. Substituting Equation (13) into Equation (12), then equating the
coefficients of ε and ε3 on both sides, we obtain:

ε :
∂2η1

∂T2
0
+ω2η1 =

1
2

f1 exp(iΩ1T0) (14)

ε3 : ∂2η3
∂T2

0
+ω2η3 = −2 ∂

∂T0

(
∂η1
∂T2

)
−2c1

∂η1
∂T0
− dη3

1 − c2η2
1

∂η1
∂T0

+ 1
2 f2 exp(i Ω2T0)

(15)

The solution of Equation (14) can be written as:

η1 = A(T2) exp(iωT0) + Λ exp(iΩ1T0) + cc (16)

where Λ = 1
2 f1
(
ω2 −Ω2

1
)−1. Substituting Equation (16) into Equation (15), we obtain:

∂2η3
∂T2

0
+ω2η3 = 1

2 f2 exp(i Ω2T0)− [i2ω(A′ + c1 A)

+(i2c2ω+ 6d)Λ2 A + (ic2ω+ 3d)A2 A
]

exp(i ωT0) + NST
(17)

where NST denotes non-secular terms [26], and the prime indicates differentiation with
respect to T2 for simplicity.
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3.1. Non-Resonant Hard Excitation

When the frequency of the load Ω1 is further than the modal frequencyω, the condition
for eliminating secular terms of Equation (17) can be written as:

i2ω
(

A′ + c1 A
)
+ (i2c2ω+ 6d)Λ2 A + (ic2ω+ 3d)A2 A = 0 (18)

Suppose

A =
1
2

α exp(iβ) (19)

where α and β are real. Substituting Equation (19) into Equation (18), and separating the
real and imaginary parts, we obtain:

α′ =
(
−c1 − c2Λ2

)
α− 1

8
c2α3, αβ′ =

3d
ω

(
Λ2 +

1
8

α2
)

α (20)

For steady-state solutions of Equation (20), we obtain α′ = β′ = 0. Therefore, α and β
are the solutions of(

−c1 − c2Λ2
)

α− 1
8

c2α3 = 0,
3d
ω

(
Λ2 +

1
8

α2
)

α = 0 (21)

The first-order approximate solution of the non-resonant hard excitation can be
written as:

η = ε[ α cos(ωT0 + β) + Λ cos(Ω1T0)] (22)

From Equation (21), we obtain
(
−c1 − c2Λ2)α− c2α3/8 = 0. This indicates α = 0 due

to c1 > 0 and c2 > 0. Therefore, the free-oscillation solution will decay with time and the
first-order approximate solution will only include the composition excited by the external
loads. This outcome can be confirmed by numerical simulations of Equation (11), as shown
in Figure 2. While the free-oscillation term is decaying, its frequency is a function of the
amplitude α.
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Figure 2. Time evolution of the microbeam’s midpoint displacement of the non-resonance for
Ω1 = 1.5, f1 = 0.5.

3.2. Primary Resonance

When the frequency of the load Ω2 approaches the modal frequency of the microbeam
ω, the beam will appear as a relatively large amplitude response. Under this condition, let
f1 = 0 and Ω2 = ω+ ε2σ, thus the solvable condition of Equation (17) can be written as:

− i2ω
(

A′ + cA
)
− (ic2ω+ 3d)A2 A +

1
2

f2 exp(iσT2) = 0 (23)



Appl. Sci. 2022, 12, 3206 6 of 10

Substituting Equation (19) into Equation (23), then separating the real and imaginary
parts, we obtain:

α′ = −c1α− 1
8

c2α3 +
f2

2ω
sin γ, αγ′ = σα− 3

8ω
dα3 +

f2

2ω
cos γ (24)

where γ = σT2 − β. The steady-state motions occur when α′ = γ′ = 0, which correspond
to the singular points of Equation (24). The steady-state solutions can be obtained by the
following algebraic equation [26]:[

c2
1 + σ2 +

1
4

(
c1c2 −

3dσ

ω

)
a2 +

1
64

(
c2

2 +
9d2

ω2

)
α4
]

a2 =

(
f2

2ω

)2
(25)

The stability of the steady-state solutions can be judged by an investigation of the
nature of the singular points of Equation (24). Letting a = a0 + a1 and γ = γ0 + γ1,
substituting them into Equation (24), then expanding the small a0 and γ0, and maintaining
the linear terms in a1 and γ1, we obtain:

α′1 =
(
−c1 − 3

8 c2α2
0
)
α1 +

γ1 f2 cos γ0
2ω

γ′1 = −
(

f cos γ01
2ωα2

0
+ 3dα0

4

)
α1 − γ1 f2 sin γ0

2ωα0

(26)

where a0 and γ0 are the singular points of Equation (24), which are used in Equation (26).
The stability of the steady-state motions depends on the eigenvalues of the coefficient
matrix on the right-hand side of Equation (26). If the real parts of the eigenvalues are
greater than zero, the solutions are unstable [25]. Therefore, the steady-state motions are
unstable when(

3c2α2
0

8
+ c1

)(
c2α2

0
8

+ c1

)
+

(
3dα2

0
8ω
− σ

)(
9dα2

0
8ω
− σ

)
< 0 (27)

Equation (27) indicates that nonlinear damping affects the stability of the
steady-state solutions.

4. Discussion

In this section, we use the following parameters as an example to study the effects
of nonlinear damping on microbeam vibrations [16]: E = 1.44 GPa, G = 0.5127 GPa,
and mass density ρ = 1220 kg/m3. The beam’s geometrical parameters are L = 100 µm,
b = 10 µm, and h = 20 µm, thus we have S = 2× 102 (µm)2, m = ρS = 2.44× 10−7 kg/m,
I = 2× 104/3 (µm)4. Let ξ = 20 µm and P0 = 0.188 N, thus we obtain ω0 = 1.42× 107,
ω = 0.901, d = 21.3, and C2 = 450C1. Suppose that c1 = 0.01, thus we obtain c1 = 6.75.

In Section 3.1, it is theoretically demonstrated that nonlinear damping does not affect
the vibration amplitudes under the non-resonant condition. Here, the numerical calcu-
lations of Equation (11) with ( f1, Ω1) = (0.5, 1.5) confirm this prediction, as shown in
Figure 2. However, when the exciting amplitude increases, for example ( f1, Ω1) = (10, 1.5),
multi-frequency vibrations will appear in the system without nonlinear damping, as shown
in Figure 3. In this case, the perturbation methods are no longer applicable, since the strong
excitations allow for Equation (11) to appear nonlinearly strong. When the large-amplitude
vibrations of non-resonant excitations appear, nonlinear damping significantly reduces the
vibration amplitudes, and suppresses the vibration components of non-excited frequencies,
as shown in Figure 3.
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Figure 3. The phase portraits of non-resonant excitations for Ω1 = 1.5 and f1 = 10.

The influence of nonlinear damping on primary resonance is mainly shown in the
following two aspects: First, when the exciting frequency is greater than the modal fre-
quency of the microbeam, nonlinear damping can significantly change the bifurcation
points of the load and strongly affects the dynamic behavior of the microbeam, as shown
in Figures 4 and 5. Second, when the exciting frequency is less than the modal frequency
of the microbeam, the impact of nonlinear damping is slight, as shown in Figures 5 and 6.
The numerical calculations of Equation (11) confirm the aforementioned results, as shown
in Figures 7 and 8. For example, when f2 = 3 and σ = 10, the vibration amplitude with
c2 = 0 is about six times larger than the amplitude with c2 = 6.75, as shown in Figure 7.
This difference is essential in practice.
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Nonlinear elastic effects play an essential role in the dynamics of MEMS [1,2]. Non-
linear dissipation effects in micromechanical oscillators are often overlooked. However,
our work shows that arbitrarily overlooking nonlinear damping may lead to qualitative
mistakes. In this paper, we especially focus on the system’s behavior near the bifurcation
points of primary resonance. The results show that nonlinear damping has a significant
impact on the dynamics of microbeams, as shown in Figures 4 and 6. Moreover, it is
necessary to research particular vibrations, such as the super-resonance and sub-resonance.
Furthermore, the experimental results suggest that linear Kelvin–Voigt damping cannot
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fully account for all of the experimentally observed nonlinear dissipation [22]. We be-
lieve that the effects of nonlinear damping in microbeams necessitate further studies, both
experimentally and theoretically.

5. Conclusions

In the present paper, we propose a new partial differential equation to represent non-
linear oscillations of the microbeam. The new model considers the small-scale effect and
nonlinear terms, which are induced by the axial elongation of the beam and Kelvin–Voigt
damping. Here, we solved the model using the Galerkin and multiple scale methods. The
results show that nonlinear damping affects the microbeam vibrations in the following
three aspects: First, under the non-resonant condition, nonlinear damping scarcely affects
the small-amplitude vibrations. However, in the large-amplitude vibrations, nonlinear
damping remarkably reduces the amplitudes and suppresses the multi-period vibrations.
Second, nonlinear damping slightly decreases the vibration amplitudes when the frequency
of the load is less than the modal frequency of the microbeam under the primary resonance
condition. Third, when the frequency of the load is greater than the modal frequency under
the primary resonance condition, nonlinear damping can significantly change the bifurca-
tion points of the load and strongly affects the vibrations. The present research suggests
that the accurate description of microbeam vibrations must consider nonlinear damping.
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