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Abstract: The smartphone is a must-have mobile device for the military forces to accomplish critical
missions and protect critical infrastructures. This paper explores the applicability of a technology
prediction methodology to manage technological obsolescence while pursuing the acquisition of
advanced commercial technology for military use. It reviews the Technology Forecasting using
Data Envelopment Analysis (TFDEA) methodology and applies an author-written Stata program for
smartphone technology forecasting using TFDEA. We analyzed smartphone launch data from 2005 to
2020 to predict the adoption of smartphone technology and discuss the pace of technological change.
The study identifies that the market is undergoing reorganization as new smartphone models expand
the market and increase their technical performance. The average rate of technological change,
the efficiency change, and the technology change were 1.079, 1.004, and 1.011 each, respectively,
which means that the technology progressed over the period. When dividing before and after 2017,
technological change and efficiency change generally regressed except for Huawei, Xiaomi, and
Oppo. This means that Chinese smartphones are expanding the global market in all directions and
the technology is reaching maturity and market competition is accelerating.

Keywords: Technology Forecasting using Data Envelopment Analysis (TFDEA); Malmquist Produc-
tivity Index (MPI); smartphone; state-of-the-art technology; dual-use technology; Stata

1. Introduction

Smartphones have been widely distributed around the world since 2010 and are
being applied not only in the private sector but also in military applications. As Samsung
Electronics unveiled in 2020, the tactical mobile solution ‘Galaxy S20 Tactical Edition (TE)’
was jointly developed with the US federal government and the Ministry of Defense [1].
The Republic of Korea (ROK) military also saw its applicability as a military tactical
operation, and as a first step, introduced commercial smartphones to the military for
general administrative work. In the military, the difference between the life cycle of
weapon systems hardware and the life cycle of software is significant and the rate of
obsolescence of software with rapid technological progress is relatively fast, so component
obsolescence management is essential [2–4]. Efforts such as technology prediction for
component obsolescence management are required to procure commercial smartphones for
military tactical application. In Korea, in 1999, the dual-use technology development project
was legislated and promoted, with the main tasks being defense technology transfer, civil-
military standard unification, and technology information exchange [3,4]. Additionally,
there were various studies and policy considerations that the concept of open technological
innovation should be applied for defense science and technology innovation [5–7]. In
2014, the Institute of Civil-Military Technology Cooperation was established for civil-
military technology development and cooperation [8]. As smartphones become widely
used militarily, it becomes important to acquire devices that can counter potential threats.
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In order to use a smartphone with commercial technology for military purposes, it is
necessary to select an alternative that can meet the military needs and target level.

In terms of national security, new technologies are both a challenging threat to the
protection of national key infrastructure and an important asset. The US Patriot Act of
2001 and Cybersecurity and Infrastructure Security Agency (CISA) states that “Critical
infrastructure includes the assets, systems, facilities, networks, and other elements that
society relies upon to maintain national security, economic vitality, and public health and
safety. Additionally, there are four designated lifeline functions—transportation, water,
energy, and communications, which means that their reliable operations are so critical
that a disruption or loss of one of these functions will directly affect the security and
resilience of critical infrastructure within and across numerous sectors. For example, energy
stakeholders provide essential power and fuels to stakeholders in the communication,
transportation, and water sectors, and, in return, the energy sector relies on them for fuel
delivery (transportation), electricity generation (water for production and cooling), as
well as control and operation of infrastructure (communication)” [9]. ROK also manages
national critical infrastructures that are closely related to national operation and people’s
lives by ministries, and the communication infrastructure is considered as the critical
infrastructure [10].

The development of smartphone technology has continued over the past 30 years, and
about half of the world’s population uses a smartphone in June 2021 [11]. Smartphones
have rapidly spread since they were introduced to the world in the early 1990s and have
become an essential tool in daily life, and there have been epochal changes in shape and
performance. In addition, the foldable smartphone and 5G communication expected in the
past have become a reality.

Technological advances are good news for consumers, but companies that make
products need a competitive strategy to survive. Technology-based companies need a
strategy to develop core technology through technology prediction to respond to rapid
technological change. Technology forecasting is a structured discipline which started by
the United States Department of Defense and the RAND Corporation in the 1950s and
was closely associated with military affairs [12]. Technological prediction began in the
1950s as a military competition between the United States and the Soviet Union. After
World War II, while promoting national development through scientific and technological
innovation, technology prediction played an important role in establishing R & D priorities
and development strategies for the development of new weapons in the military field as
well. However, over the last 70 years, many technology forecasting methods have been
developed and used by governments, companies, and other organizations to ease the
uncertainty of the future.

Countries around the world, including the Korean military, are paying attention to
new technologies that will lead to the fourth industrial revolution in military capability
building. The Korean Agency for Defense Development (ADD) chose 57 technologies
that correspond to the core fields of the fourth industrial revolution, such as robots, new
materials, internet of things, artificial intelligence, synthetic biology, and smart medical care,
in a booklet titled “Patented Defense Technology to Lead the Fourth Industrial Revolution”.
In 2021, the Ministry of National Defense and the Ministry of Science and ICT decided to
establish a defense Information and Communications Technology (ICT) support group and
prepared a Digital New Deal/Smart Defense Innovation Workshop to explore a role for
smart defense innovation at the academic level. From July 2020, South Korean soldiers
were allowed to use smartphones during after-work hours. With the development of IT
technology, smartphones are now becoming the unparalleled comrades of soldiers in the
military base.

Defense Acquisition Program Administrations (DAPA), which is responsible for ac-
quiring Korea’s weapon systems, has signed a contract with Samsung Electronics for the
rapid trial acquisition of a commercial smartphone-based small unit combat command
system in 2020 in order to quickly apply innovative technologies in the civil sector that will
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change the future battlefield to the defense sector [13]. The ‘Commercial Smartphone-based
Small Unit Combat Command System’ is a personal combat device that integrates Samsung
Electronics’ Galaxy S20 military tactical version and radio. It communicates with real-time
encrypted data and voice through the module. It also features a night vision mode to
ensure operational security and combatant survivability (night displayed adjustment),
stealth mode (communication interruption), and intelligence capture mode (night video
capture and sharing) functions.

Considering the trend of rapid technological development in the era of the fourth
industrial revolution, it is necessary to quickly apply and utilize advanced technologies
in the civilian field to the military for efficient defense acquisition. Through the Rapid
Demonstration Acquisition Project (RDAP), the DAPA purchases privately developed
products to which the fourth industrial revolution-based technology is applied; the military
conducts a pilot operation to confirm military utility, and the results are fed back to the
private sector. In addition, products whose military utility has been confirmed are promoted
through an official acquisition program such as additional mass production according to
military requirements. The RDAP is a new system for rapidly acquiring weapon systems
in line with the speed of technological development of the fourth industrial revolution
and was first introduced in the defense sector in 2020 led by the DAPA. Smartphones are a
representative product that integrates the core technologies of this era and can be used for
both dual-use purposes, civilian and national defense. This study is about a technology
prediction methodology that can be used for technology prediction, which is the main
activity of defense technology planning. Considering that technological superiority is an
important factor that can determine victory or defeat due to the competitive nature of the
military, the technology prediction methodology was selected, and its applicability was
examined for smartphones, which are representative products of dual use.

Despite the merits of the acquisition program that applies the superior technology of
the private sector to the military, it is necessary to solve the problems of the obsolescence
of products and parts by private companies and technological obsolescence [2–4]. The
Korean Ministry of National Defense (MND) must follow the reinforced parts obsolescence
management task for newly promoted projects in accordance with “the Parts Obsolescence
Management Work Order” implemented in 2019. In Article 5 of the Order, the basic princi-
ple of component obsolescence management manages component obsolescence throughout
the entire life cycle of a weapon system, and emphasizing the need to focus on management,
it is specified to minimize the impact on the acquisition, operation, and logistics support of
weapon systems by predicting parts obsolescence problems in advance and establishing
alternatives [14]. Against this background, it is necessary to analyze technology obso-
lescence and component discontinuation through application of technology prediction
methodology before applying civilian advanced technology to the military. The purpose
of this study is to confirm the significance of the application of technology prediction
methodology to high-tech private sector and to draw implications from the analysis of
technological development and obsolescence. The case of smartphones withdrawn from the
market offers implications for what to consider when predicting disruptive technologies.
The R-based TFDEA program is provided by Shott and Lim [15], and in this paper, the
author-written Stata programs dea.ado and malmq.ado are additionally provided [16,17]
(Supplementary materials). Additionally, it tries to give some implications on defense
technology obsolescence management when we procure the advanced technology from the
civilian side.

In Section 2, we briefly explain the concept and procedure of the TFDEA and Malmquist
Productivity Index using DEA. Section 3 shows empirical examples using smartphone data,
and Section 4 suggests a conclusion.
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2. Technology Forecasting Methodology
2.1. Concepts of Technology Forecast

Technological forecasting is premised on a certain orderliness of the innovation pro-
cess [18]. Technological forecasting is the study of new trends, technologies, or new forces
that arise due to policies, social changes, or scientific inventions. Martino [19] defines it as:
“A prediction of the future characteristics of useful machines, procedures or techniques”.
The classification of technology forecasting methods varies according to experts. According
to Cho and Daim [20], technology forecasting methods could be traditionally categorized
into three groups: exploratory, normative, and combined (normative/experimental) meth-
ods. Exploratory methods try to predict future technological state of the art (SOA) from
the present by extrapolating past technological trends. Trend extrapolation, Growth Curve,
Bibliometrics, and Cross impact analysis are kinds of experimental methods. Normative
methods set up a possible future that ought to be or needs to be, then suggest a strategy
to achieve this future. Morphological analysis, Relevance tree, Analytic Hierarchy Pro-
cess (AHP), and Backcasting are normative methods. Combined (normative/exploratory)
methods use two different methods, normative and experimental, in forecasting. Delphi,
Scenario Planning, Trend impact analysis, and Technology roadmapping could be cate-
gorized as these methods. Anderson et al. [21] introduced a new exploratory forecasting
methodology, Technology Forecasting using Data Envelopment Analysis (TFDEA), at the
PICMET 01 Conference for assessing the change of database market.

TFDEA extends the traditional Data Envelopment Analysis (DEA) for technology
forecasting, so it has inherited DEA’s nonparametric and non-statistic characteristics. Tech-
nological SOA frontiers are estimated using DEA and measuring the rate of change (ROC)
by observing the evolution of SOA frontiers. After being introduced in 2001, TFDEA has
been used in a variety of sectors including jet fighter aircraft, wireless communications,
microprocessors, hybrid electric vehicles (HEV), Research and Development (R & D) target-
setting, etc. [21–29]. The TFDEA methodology can be said to be a technology prediction
centered on SOA technology in that it predicts future technology by considering the degree
of change in the technology frontier. TFDEA provides better forecasting results than regres-
sion when forecasting technological SOA because it chooses SOA based observation and
predicts future SOA according to ROC [21–29]. Because TFDEA is modeled based on DEA,
it retains the strengths and limitations of DEA’s methodology. There is another reason to
consider TFDEA as a research methodology because it has the advantage of being able
to make technology predictions for multiple inputs and multiple outputs that regression
models cannot handle. Smartphone technology, the subject of this study, had characteris-
tics such as enlarged screen size, increased battery capacity, applied next-generation data
communication, sensors, applied advanced camera technology, and expanded applications.
On the other hand, discussions about the prospect of sixth generation communication
technology applicable to smartphones, expansion of IoT technology, and application of
artificial intelligence technology are revealing the limitations of predicting future smart-
phone technology due to technological changes in the past. In addition, the equipment
required to achieve a strategic advantage militarily in the new battlefield environment in
the future requires a new technology that is different from the past. Therefore, despite the
advantages of TFDEA as a technology prediction methodology, an approach to supplement
the limitations of TFDEA classified as an exploratory methodology is needed.

It was first developed for military use, such as the Internet, GPS, computers for de-
cryption, microwave ovens, and drones that we use in our daily life, but it is a case that
has spread to the public. On the other hand, considering that civil-military compatibility
is great at the stage of low technological maturity, there is an investment efficiency of
applying technologies led by the private sector, such as commercial satellite communica-
tion technology, for military use. Therefore, predicting technologies with great military
applicability starts with identifying promising technologies that can grow into necessary
technologies. However, if the dependence on the general market grows, it is necessary to
be able to receive the military-necessary products continuously and stably, and this needs
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to be considered. In addition, the competition for technological hegemony between the
United States and China is accelerating in fields such as semiconductors, 5G, quantum
computing, and artificial intelligence. Therefore, to adopt commercial technology that can
be used for military purposes, it is necessary to understand the growth of companies that
develop products.

The technology prediction approach proposed in this study to develop military prod-
ucts based on commercial technology is as follows. First, as an exploratory study, TFDEA is
used to measure the rate of technological change. Then, a candidate product that can satisfy
the performance of the product to be launched at the time of the military target is selected.
Finally, it is to prepare basic data for product selection decision-making by analyzing the
growth trend of companies that produce products.

The TFDEA technique applied to measure the rate of technological change is intro-
duced in Sections 2.2 and 2.3. Figure 1 shows the approach in this study to select future
commercial equipment that can meet the performance level of smartphones required for
military purposes through technology prediction. It can be used for basic analysis to select
an alternative that can satisfy military needs among products from A to E. The Malmquist
index was used for the analysis of productivity, which is the core of the growth potential of
a company that develops products, and the introduction of the methodology is described
in Section 2.4.
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2.2. Measuring Technological SOA Frontiers Using DEA

Farrell [30] suggests measuring efficiency using linear programming. He estimates the
efficient point of each observed enterprise based on the production function. Additionally,
he suggests measuring the relative efficiency of each enterprise according to the isoquants
of efficient points using fraction programming. In 1978, Charnes, Cooper, and Rhodes
(CCR) [31] introduced Data Envelopment Analysis (DEA), which could measure the rel-
ative efficiency of Decision-Making Units (DMUs) based on given observation without
assuming any production functions. They composed a Production Possibility Set (PPS)
using observations, i.e., input and output combination of DMUs, and then inference of
the production frontiers, which is the boundaries of PPS. Then, DEA estimates the relative
efficiency of each DMUs according to production frontiers. In 1984, Banker, Charnes, and
Cooper (BCC) [32] suggested Variable Returns to Scale (VRS) models, which complemented
the assumption of Constant Returns to Scale (CRS) with the economy of scales.

Basic DEA models, such as CCR and BCC, use Farrell’s measurement method [30]
or Shephard’s directional distance functions [33] to estimate the efficiency of each DMU.
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Because Farrell’s efficiency [30] and Shephard’s distance functions [33] have a reciprocal
relationship, Shephard’s method [30] is usually used for convenience. Directional distance
functions measure the Euclidean distances from DMUs’ current position to its projection
point to the frontier. If there is a production possibility set that has (1 × p) input variables,
(1 × q) output variables, and n observations, then an output-oriented efficiency of arbitrary
DMU K (xk, yk) is calculated using the following Equation (1),

θ̂
CRS
k = max{θ | θyk ≤ Yλ, xk ≥ Xλ, λ ≥ 0} (1)

where θ is an efficiency estimate, X is a (n × p) matrix of input variables, Y is a (n × q)
matrix of output variables, and λ is a (1 × n) vector of reference weights [17,34].

In DEA, efficient DMU means the best-performed products, companies, or organi-
zations in each input and output variable. The definition of efficient is “performing or
functioning in the best possible manner with the least waste of time and effort, having
and using requisite knowledge, skill, and industry” [34,35]. This definition of efficient is
very similar to that of SOA. Dodson [36] defined SOA as the “state of best-implemented
technology as reflected by the physical and performance characteristics achieved during
the period in question”. SOA is usually represented as a boundary or planar surface in
which one or more characteristics have a trade-off relationship with other characteristics. If
a DMU was efficient, then it could produce the best performance; it can produce an output
level with a minimum input level or maximum output level within a fixed input level. SOA
technology is a technology belonging to the frontier, which consists of a set of DMU’s that
are efficient at a certain time.

2.3. Technology Forecasting Using TFDEA

A fundamental concept of TFDEA is estimating technological frontier using DEA
and measuring a change of frontiers as new DMUs appear even though there is a slight
variation according to an objective of forecasting. Rate of Change (ROC) is measured by
observing a DMU that existed in the frontier when it appeared but moved inside as new
DMUs are presented and forecasting a future technology or product using ROC. In TFDEA,
the frontier is state-of-the-art (SOA) which means the most efficient status that can be
achieved at that time, and DMUs that exist on a frontier are regarded as SOA. Thus, ROC is
measured with a change of efficiency estimates of DMUs which were SOA when they first
appeared but became non-SOA as time goes by. This method has excellence in measuring
technological ROC because it uses only SOA, which means widespread and cutting-edge
technology compared with all other observations. The process of TFDEA is composed of
two phases. In phase 1, it estimates the technological frontier using DEA and measures an
ROC of the frontier. Additionally, it then forecasts a technology or product in the future
using ROC in phase 2.

2.3.1. Phase 1. Measuring Technological Rate of Change

A technological ROC is measured by an algorithm of Inman et al. [22] and Inman [37].
An Algorithm for measuring technological ROC in TFDEA.

1. For the input and output specified in Equation (1), compose production possibility set
as accumulating DMUs from first appearance date (tk= t0) to current date (tf);

2. Select an SOA DMU which is efficient at the date it first appeared (θtk
i = 1), using an

output-oriented DEA model;
3. Select a non-SOA DMU which was selected in the previous step 2 but not any more

efficient (θtf
i > 1) according to current (tf) frontier. Additionally, project these non-SOA

DMUs to the current frontier to calculate an effective date (ti,eff) by Equation (2).

ti,eff = ∑n
j=1 λjtj/ ∑n

j=1 λj∀j = 1, . . . , n; λj reference weight (2)
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4. Compute rate of change each DMU which selected in the previous step 3 using the
following Equation (3).

γ
tf
i =

(
θ

tf
i

)( 1
ti,eff−tk

)
∀j = 1, . . . , n (3)

5. Compute technological ROC (
−
γ) by averaging the rate of change each DMU.

−
γ = ∑n

j=1 λj,kγk/ ∑n
j=1 λj,k (4)

A calculation of technological ROC is performed by iterating through 1–3 from the
date of first DMU released (t0) to the current date (tf). We can select DMUs that were SOA
when released but become non-SOA as new DMUs appeared during this process. We
except DMUs which remain on the frontier when measuring a technological ROC because
that is still an SOA. The ROC of each DMU is calculated in 1–5 with selected DMUs using
Equation (3). Additionally, the elapsed time of each DMU is from its released date (tk) to
the effective date (ti,eff), which was calculated using Equation (2). An effective date (ti,eff) is
a projected point on the current frontier, a weighted average of DMU’s reference set and its

released dates. The annual average ROC (
−
γ) is a weighted average of each DMU’s ROC by

Equation (4).

2.3.2. Phase 2. Forecasting Future Technological SOA

Before the forecasting, we need to measure the super-efficiency of target DMUs.
Anderson and Petersen [38] and Rousseau and Semple [39] suggested the super-efficiency
DEA models identify relative rank among the efficient DMUs. First, it composes PPS
without the specified DMU. Then, it measures the efficiency score of the specified DMU
using distance functions. Suppose the efficiency score of DMU K is less than unity (θSE

k < 1),
it is considered that DMU K is located inside the production frontier. Additionally, if the
efficiency score is greater than the unity (θSE

k > 1), it is considered that DMU K is located
outside of the production frontier.

In TFDEA, if the super-efficiency score of the target DMU is greater than the unity,
it means that the technology is more advanced than the current technological SOA fron-
tiers. Inman et al. [22] and Inman [37] forecast the releasing date of target DMU K using
Equation (5)

tk,expected = teff +
ln
(

1/θSE,tf
k

)
ln
(−
γ
) (5)

where tK,expected is releasing date of target DMU K and teff is the effective date of DMU K.
The effective date of DMU K is calculated using Equation (2), and then super-efficiency score
(θSE,tf

k ) is measured according to the current (tf) technological frontiers. The technology
forecasting estimates the releasing date of target DMU by calculating the required time that
current technological frontiers are moving to that of futures by the rate of annual average
ROC.

2.4. Efficiency and Technology Change Analysis Using Malmquist Index

The Malmquist Productivity Index (MPI) measures the productivity changes along
with time variations and can be decomposed into changes in efficiency and technology
with DEA, such as a nonparametric approach. Productivity decomposition into technical
change and efficiency catch-up necessitates the use of a contemporaneous version of the
data and the time variants of technology in the study period. The MPI can be expressed in
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terms of distance function (E) as Equations (6) and (7) using the observations at time t and
t + 1 [40].

MPIt
I =

Et
I(x

t+1, yt+1)

Et
I(x

t, yt
) (6)

MPIt+1
I =

Et+1
I (x t+1, yt+1)

Et+1
I (x t, yt

) (7)

where I denotes the orientation of MPI model.
The geometric mean of two MPI in Equations (6) and (7) gives Equation (8).

MPIG
I = (MPI t

IMPIt+1
I )

1
2 = [(

Et
I
(
xt+1, yt+1)

Et
I(xt, yt)

)·(
Et+1

I
(
xt+1, yt+1)

Et+1
I (xt, yt)

)]1/2 (8)

The input oriented geometric mean of MPI can be decomposed using the concept of
input oriented technical change (TECHCH) and input oriented efficiency change (EFFCH)
as given in Equation (9).

MPIG
I = EFFCHI·TECHCHG

I = (
Et+1

I
(
xt+1, yt+1)

Et
I(xt, yt)

)·[( Et
I(x

t, yt)

Et+1
I (xt, yt)

)·(
Et

I
(
xt+1, yt+1)

Et+1
I (xt+1, yt+1)

)]

1/2

(9)

The first and second terms represent the efficiency change and the technology change,
respectively. MPI given by Equations (8) and (9) can be defined using DEA, such as
distance function. That is, the components of MPI can be driven from the estimation of
distance functions defined on a frontier technology. Fare, Grosskopf, Norris, and Zhang [40]
provided the formal derivation of MPI and it is the most popular method among the various
methods that have been developed to estimate a production technology [41]. By utilizing
both CRS and VRS DEA frontiers to estimate the distance functions in Equation (9), the
technical efficiency can be decomposed into scale efficiency and pure technical efficiency
components. A scale efficiency change (SECH) is given in Equation (10).

SECH = [(
Et+1

vrs
(
xt+1, yt+1)/Et+1

crs
(
xt+1, yt+1)

Et+1
vrs (xt, yt)/Et+1

crs (xt, yt)
)·(

Et
vrs

(
xt+1, yt+1)/Et

crs
(
xt+1, yt+1)

Et
vrs(xt, yt)/Et

crs(xt, yt)
)]1/2 (10)

Additionally, a pure efficiency change (PECH) is given in Equation (11).

PECH =
Et+1

vrs
(
xt+1, yt+1)

Et
crs(xt, yt)

(11)

When measuring changes in productivity, if you measure changes in production
changes organized by year, transitivity is not established so that you can compose produc-
tion changes including data for all periods. Global Malmquist productivity index (GMPI)
constructs a production set that includes all data from all time periods and measures the
change in productivity relative to the boundaries of the production set [34,40–42].

MPIt,t+1
G =

EG
I (x

t+1, yt+1
)

EG
I (x

t, yt
) (12)

While MPI can measure productivity changes over two years, Global MPI can analyze
productivity changes over three years or more. In this study, the productivity change of
smartphones by year was analyzed through MPI, and the relative productivity change of
each smartphone in the overall market was analyzed through Global MPI.
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3. Data and Results
3.1. Date and Models

In this study, the rate of technological change was calculated using the technical data
of smartphones, which are evaluated to have a high rate of technological development.
Smartphone manufacturers for this study are selected considering dual-use technology,
global market share, and growth rate [15,43–46]. The main data sources are from the
websites https://www.kaggle.com/msainani/gsmarena-mobile-devices (accessed on 13
February 2022) and www.gsmarena.com (accessed on 3 March 2022).

The dataset, initially introduced by Sainani [45], has 10,105 observations that include
performance and characteristics parameters of smartphone data that were firstly flown from
1994 to 2020. Missing values are supplemented if there is data provided by the GSMARENA
site [46], and smartphone models with insufficient data necessary for analysis are deleted,
and data are constructed focusing on representative models of each manufacturer. Table 1
shows the final smartphone dataset used for the analysis. The analysis of this study covered
technical data of 107 smartphones released between 2005 and 2020.

In the case of TFDEA application, an output-oriented VRS model was used in con-
sideration of previous studies and the characteristics of the model [24,25,28]. The input
variables are price and body weight, and output variables are network speed (ntwk), dis-
play resolution (resolution), battery capacity (btrycpcty), sensors (sensors), CPU speed
(cpus), and primary camera performance (pcamp).

As analysis software, TFDEA R program of Shott and Lim [15] and Stata programs,
dea.ado, tfdea.ado, malmq.ado, supereff.ado, of Lee [16,17,42] were used in parallel.

Smartphone specification data were selected in terms of performance required for the
military use of commercial products of interest in this study, and input/output variables
were determined as follows. Although it is the leading technology for commercial smart-
phones, the military requirement may be low, and conversely, it may not be considered
important in commercial smartphones but may have high military requirements. In this
study, performance variables in the military field were selected in consideration of the
performance parameters of military radios presented in Jane’s Defense Data Service (JDDS).
The performance indicators of military radios included frequency range, operable channels,
display performance, battery duration, sensitivity, weight, operable temperature, size, and
audio output in common. Table 2 shows the input and output variables used in the analysis.
Srivastava [47] was referred to quantify qualitative variable values.

• DMU: name of the smartphone
• year: year of smartphone introduction
• price: retail price announced in EUD
• bdywgt: body weight in kg
• ntwk: network bands in generation
• scrnsize: display size in square inches
• resolution: display resolution in ppi
• sensors: sensors in generation
• ntwk.1: network speed in Mbps
• cpus: cpu speed in MHz
• pcamp: main camera performance in MP
• btycpcty: battery capacity in mAh
• comlev: WLAN in generation

https://www.kaggle.com/msainani/gsmarena-mobile-devices
www.gsmarena.com
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Table 1. Smartphone Dataset from 2005 to 2020.

OEM DMU Year Price Body
weight

Network
Band Screen Size Resolution Sensors Network

Speed
CPU

Speed
Camera

Performance
Battery

Capacity
WLAN

Genaration

1 Motorola A1200 2005 160 122 1 2.4 76,800 1 0.5 312 0.1 850 0.1
2 LG U830 2006 160 93 2 2.2 76,800 1 2 1 1 800 0.1
3 Motorola RAZR V3xx 2006 160 107 2 2.2 76,800 1 2 1 0.1 940 0.1
4 Samsung i607 BlackJack 2006 240 105 2 2.3 76,800 1 1 220 0.1 1200 0.1
5 Apple iPhone 2007 420 135 1 3.5 153,600 2 0.5 412 0.1 1400 2
6 LG U960 2007 70 123 2 2.2 76,800 1 2 1 0.1 1000 0.1
7 Motorola RIZR Z10 2007 150 119 2 2.2 76,800 1 2 300 1 1130 0.1
8 Samsung i780 2007 150 120 2 2.55 102,400 1 2 624 0.1 1480 2
9 Apple iPhone 3G 2008 90 133 2 3.5 153,600 2 1 412 0.1 1150 2
10 LG KF900 Prada 2008 140 130 2 3 96,000 1 4 1 2 950 2
11 Motorola RAZR2 V9x 2008 130 125 2 2.2 76,800 1 2 1 0.1 950 0.1
12 Samsung i900 Omnia 2008 160 122 2 3.2 96,000 1 4 624 1 1440 2
13 Motorola XT701 2009 230 140 2 3.7 409,920 3 7 600 1 1420 2
14 Apple iPhone 3GS 2009 110 135 2 3.5 153,600 3 4 600 0.1 1219 2
15 Huawei U8220 2009 230 135 2 3.5 153,600 1 5 1 0.1 1500 2
16 LG GM750 2009 290 120 2 3 96,000 1 5 528 0.1 1500 2
17 Samsung I7500 Galaxy 2009 140 116.7 2 3.2 153,600 2 6 528 1 1500 2
18 Apple iPhone 4 2010 200 137 2 3.5 614,400 4 6 1000 2 1420 4
19 Huawei U9000 IDEOS X6 2010 90 143 2 4.1 384,000 4 8 1000 1 1400 5
20 LG Optimus 2X 2010 150 139 2 4 384,000 4 6 1000 1 1500 5
21 Motorola DROID PRO XT610 2010 110 134 4 3.1 153,600 3 7 1000 1 1420 5
22 Samsung M110S Galaxy S 2010 220 121 2 4 384,000 3 6 1000 0.1 1500 3
23 Apple iPhone 4s 2011 190 140 4 3.5 614,400 4 8 1000 2 1432 4
24 Huawei M886 Mercury 2011 110 139 2 4 409,920 4 5 1400 2 1900 4
25 LG Optimus 4G LTE P935 2011 220 135 3 4.5 921,600 4 13 1500 1 1830 6
26 Motorola RAZR XT910 2011 220 127 2 4.3 518,400 3 8 1200 1 1780 6
27 Samsung I9100 Galaxy S II 2011 170 116 2 4.3 384,000 4 12 1200 1 1650 8
28 Oppo Find 2012 100 125 2 4.3 384,000 4 12 1500 3 1500 4
29 Apple iPhone 5 2012 340 112 5 4 727,040 4 26 1300 2 1440 6
30 Huawei Ascend P1 LTE 2012 150 135 3 4.3 518,400 4 25 1500 2 2000 6
31 LG Optimus Vu F100S 2012 240 168 4 5 786,432 4 14 1500 1 2080 8
32 Motorola DROID RAZR MAXX HD 2012 270 157 5 4.7 921,600 4 14 1500 1 3300 8
33 Samsung I9300 Galaxy S III 2012 190 133 2 4.8 921,600 5 12 1400 1 2100 8
34 Sony Xperia T LTE 2012 350 148 3 4.55 921,600 4 25 1500 1 1850 8
35 Xiaomi Mi 2 2012 250 145 2 4.3 921,600 4 24 1500 2 2000 4
36 vivo Y15 2013 110 130 2 4.5 409,920 3 1.5 1300 1 1900 4
37 Oppo R1 R829T 2013 300 140 1 5 921,600 3 12 1300 3 2410 6
38 Apple iPhone 5s 2013 330 112 5 4 727,040 5 26 1300 2 1560 6
39 Huawei Ascend P6 2013 230 120 3 4.7 921,600 5 25 1500 2 2000 6
40 LG G2 2013 270 143 5 5.2 2,073,600 4 26 2260 2 3000 9
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Table 1. Cont.

OEM DMU Year Price Body
weight

Network
Band Screen Size Resolution Sensors Network

Speed
CPU

Speed
Camera

Performance
Battery

Capacity
WLAN

Genaration

41 Motorola Moto X 2013 250 130 3 4.7 921,600 6 26 1700 3 2200 8
42 Samsung I9502 Galaxy S4 2013 460 132 2 5 2,073,600 8 24 1600 2 2600 9
43 Sony Xperia Z1 2013 330 170 3 5 2,073,600 4 25 2200 3 3000 9
44 Xiaomi Mi 3 2013 200 145 2 5 2,073,600 4 24 2300 2 3050 7
45 vivo X5 2014 229 141 3 5 921,600 4 1.8 1500 3 2250 7
46 Apple iPhone 6 2014 360 129 5 4.7 1,000,500 6 26 1400 2 1810 7
47 Huawei Ascend Mate7 Monarch 2014 500 185 3 6 2,073,600 5 25 1800 3 4100 8
48 LG G3 2014 300 149 3 5.5 3,686,400 4 25 2500 3 3000 9
49 Motorola Nexus 6 2014 420 184 4 5.96 3,686,400 5 25 2700 3 3220 9
50 Samsung Galaxy S5 2014 250 145 3 5.1 2,073,600 8 25 2500 3 2800 8
51 Sony Xperia Z3 2014 180 152 3 5.2 2,073,600 5 25 2500 3 3100 9
52 Oppo R5 2014 400 155 3 5.2 2,073,600 3 13 1700 3 2000 7
53 Xiaomi Mi 4 LTE 2014 230 149 3 5 2,073,600 4 25 2500 3 3080 9
54 Apple iPhone 6s 2015 500 143 5 4.7 1,000,500 6 26 1840 2 1715 7
55 Huawei P8lite 2015 170 131 3 5 921,600 3 25 1200 3 2200 5
56 LG V10 2015 250 192 3 5.7 3,686,400 7 25 1800 3 3000 9
57 Motorola Droid Turbo 2 2015 330 170.1 5 5.4 3,686,400 4 26 2000 2 3760 7
58 Samsung Galaxy S6 2015 280 138 3 5.1 3,686,400 8 25 2100 3 2550 8
59 Sony Xperia Z5 2015 220 154 3 5.2 2,073,600 6 26 2000 3 2900 9
60 Oppo R7 2015 360 147 3 5 2,073,600 3 13 1500 3 2320 6
61 vivo X6 2015 322 135.5 3 5.2 2,073,600 5 13 1700 3 2400 4
62 Xiaomi Mi 4i 2015 260 130 3 5 2,073,600 4 25 1700 3 3120 8
63 Apple iPhone 7 2016 550 138 5 4.7 1,000,500 6 26 2340 2 1960 7
64 Huawei P9 lite 2016 210 147 3 5.2 2,073,600 5 25 2000 2 3000 5
65 LG V20 2016 350 174 3 5.7 3,686,400 7 26 2150 3 3200 9
66 Motorola Moto Z 2016 220 136 5 5.5 3,686,400 5 26 2150 3 2600 8
67 Samsung Galaxy S7 2016 290 152 3 5.1 3,686,400 8 25 2300 3 3000 8
68 Sony Xperia XZ 2016 250 161 3 5.2 2,073,600 7 25 2150 3 2900 9
69 Oppo R9s 2016 450 145 5 5.5 2,073,600 5 25 2000 3 3010 8
70 vivo X9 2016 460 154 4 5.5 2,073,600 4 25 2000 3 3050 8
71 Xiaomi Mi 5s 2016 250 145 5 5.15 2,073,600 6 25 2150 3 3200 9
72 Apple iPhone 8 2017 700 148 3 4.7 1,000,500 6 26 2390 2 1821 7
73 Huawei Mate 10 Pro 2017 400 178 3 6 2,332,800 6 25 2400 4 4000 9
74 Oppo R11s 2017 450 153 5 6.01 2,332,800 5 25 2200 3 3200 8
75 LG V30 2017 420 158 3 6 4,147,200 7 25 2450 3 3300 9
76 Motorola Moto G5S 2017 150 157 3 5.2 2,073,600 5 25 1400 3 3000 6
77 Samsung Galaxy S8 2017 390 155 3 5.8 4,262,400 9 25 2300 3 3000 8
78 Sony Xperia XZ1 2017 260 155 3 5.2 2,073,600 7 25 2450 3 2700 9
79 vivo X20 2017 390 159 4 6.01 2,332,800 5 25 2200 3 3250 8
80 Xiaomi Mi 6 2017 330 168 3 5.15 2,073,600 6 25 2450 3 3350 9
81 Oppo R15 2018 460 175 4 6.28 2,462,400 5 25 2000 3 3450 8
82 Apple iPhone XR 2018 850 194 5 6.1 1,483,776 6 25 2500 2 2942 7
83 Huawei Mate 20 Pro 2018 880 189 3 6.39 4,492,800 7 25 2600 4 4200 9
84 LG V40 ThinQ 2018 800 169 5 6.4 4,492,800 6 25 2700 3 3300 9
85 Motorola Moto G6 2018 180 167 5 5.7 2,332,800 5 25 1800 3 3000 7
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Table 1. Cont.

OEM DMU Year Price Body
weight

Network
Band Screen Size Resolution Sensors Network

Speed
CPU

Speed
Camera

Performance
Battery

Capacity
WLAN

Genaration

86 Samsung Galaxy S9 2018 490 163 5 5.8 4,262,400 9 25 2700 3 3000 8
87 Sony Xperia XZ2 2018 460 198 3 5.7 2,332,800 7 25 2700 3 3180 9
88 vivo X23 2018 500 160.5 4 6.41 2,527,200 4 25 2000 3 3400 8
89 Xiaomi Mi 8 2018 380 175 4 6.21 2,427,840 7 25 2800 3 3400 9
90 Xiaomi Mi 9 Pro 5G 2019 600 196 5 6.39 2,527,200 5 26 2960 3 4000 9
91 Oppo Reno3 5G 2019 440 181 6 6.4 2,592,000 5 26 2200 3 4025 9
92 Apple iPhone 11 2019 614 194 5 6.1 1,483,776 6 26 2650 2 3110 8
93 Huawei P30 Pro 2019 880 192 3 6.47 2,527,200 6 25 2600 4 4200 8
94 LG V50 ThinQ 5G 2019 950 183 5 6.4 4,492,800 6 26 2840 3 4000 9
95 Motorola Moto G7 Power 2019 210 193 3 6.2 1,130,400 5 25 1800 3 5000 4
96 Samsung Galaxy S10 5G 2019 287 198 5 6.7 4,377,600 8 25 2730 3 4500 9
97 Sony Xperia 1 2019 1000 180 3 6.5 6,312,960 7 25 2840 4 3330 9
98 vivo X30 2019 420 196.5 5 6.44 2,592,000 5 26 2200 3 4350 8
99 Xiaomi Mi 10 Pro 5G 2020 744 208 4 6.67 2,527,200 6 26 2840 3 4500 10
100 Oppo Reno4 5G 2020 370 183 6 6.43 2,592,000 5 26 2400 3 4000 8
101 Sony Xperia 1 II 2020 1117 181.4 4 6.5 6,312,960 7 26 2840 5 4000 10
102 Huawei P40 Pro 2020 757 209 4 6.58 3,168,000 7 26 2860 4 4200 9
103 LG V60 ThinQ 5G 2020 700 213 6 6.8 2,656,800 6 26 2840 3 5000 10
104 Motorola Edge+ 2020 1200 203 6 6.7 2,527,200 6 26 2840 2 5000 9
105 Samsung Galaxy S20 5G 2020 674 163 6 6.2 4,608,000 6 26 2730 3 4000 9
106 Apple iPhone SE (2020) 2020 403 148 5 4.7 1,000,500 6 26 2650 3 1821 8
107 vivo X50 Pro 2020 430 181.5 5 6.56 2,566,080 6 26 2400 3 4315 8
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Table 2. Selected inputs and outputs.

Input Outputs

Price in EUD (price) Network bands-2G–5G (ntwk)
Display size in inches (scrnsize)

Body weight in g (bdywgt)

Display resolution in pixels (resolution)
Sensors (sensor)

Network speed in Mbps(ntwk.1)
CPU speed in MHz (cpus)

Main camera performance (pcamp)
Battery capacity in mAh (btycpcty)
Communication WLAN (comlev)

The screen of the smartphone takes over the role of a video display and information
input device. There is a limit that it is difficult to use the communication function of
a commercial smartphone in military operations, but there is no better alternative to a
high-performance personal computer dedicated to information processing. It is of interest
to see how the higher military requirements, such as military security requirements, than
commercial products will affect the technological change of smartphones in the future.

3.2. Results
3.2.1. Predicting Smartphone Technology

We inference ROC using smartphone data until 2017 and forecast a first launch date
afterward. A result of tfdea using smartphone data is shown in Table 3.

In Table 3, the first Column is the name of each DMUs’ manufacturer. The Release
year is DMU k’s first release date. Column Efficiency release is a DEA efficiency estimator
at the time of each DMU released. Column theta_tf is an efficiency estimator at the time of
tf. Column current (Effective date) is the effective date of each DMU. Additionally, column
ROC is a measured ROC of DMUs, which was an SOA at tk but changed to a non-SOA
when new DMUs appeared. SROC is an average of each ROC and the number of DMUs
chosen to infer ROC. There were 80 DMUs between 2005 and 2017, and 37 DMUs were
changed from SOA to non-SOA. In total, 22 among 37 DMUs belonged to the period from
2005 to 2011, which means that there were many cases of new smartphone products being
released and withdrawn at that time. A total of 43 other DMUs stayed as SOAs in 2017, so
they were excluded when measuring ROC. The SROC of smartphones from 2005 to 2017
is 1.07.

The A1200 smartphone made by Motorola has an efficiency value of 1 at the time of
release in 2005 and an efficiency value of 1.7837 for the production frontier in 2017, so the
rate of technological change is calculated as 1.08. The ROC from 2005 to 2012 was analyzed
as 1.09, and the ROC from 2013 to 2017 was analyzed as 1.05. The column “date forecast
(tf_exp)” shows the forecasting results of target DMUs. There was no difference between the
two groups as a result of statistical testing between the predictions from 2018 to 2020 and
the release year. From the output of the two-sample Wilcoxon rank-sum (Mann–Whitney)
test, we see that we fail to reject the null hypothesis that the populations are the same at
a 0.05 significance level. These results indicate that the rate of SOA progress up to 2017
surpasses the rate of technological change from 2018 to the present.

Samsung’s Galaxy S20 5G, launched in 2020, is in use by the ROK armed forces, and it
can be assumed that the 2021 release year is to meet high military requirements. On the
other hand, Apple’s expected release year of the iPhone SE (2000) model was 2017, but it
was actually released in 2020. Although the iPhone SE (2000) is not a flagship model, it can
be assumed that it is intended to broaden the base of consumers. To find out in more detail
about the technological change of smartphones by year, the following section analyzes the
productivity change.
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Table 3. Model forecasting results of smartphones with tf (2017) specification.

OEM DMU Release Year Efficiency Release theta_tf (1/Eff Frontier) roc current (Effective Date) sroc Forecast Date Forecast
(tf_exp)

1 Motorola A1200 2005 1 1.783708887 1.084115 2012.165
2 LG U830 2006 1 1 2006
3 Motorola RAZR V3xx 2006 1 1.354965263 1.129653 2008.492
4 Samsung i607 BlackJack 2006 1 1.446222784 1.098173 2009.94
5 Apple iPhone 2007 1 1.557142942 1.051537 2015.812
6 LG U960 2007 1 1 2007
7 Motorola RIZR Z10 2007 1 1.574705691 1.155297 2010.145
8 Samsung i780 2007 1 1.521030297 1.107063 2011.123
9 Apple iPhone 3G 2008 1 1.059066355 1.029547 2009.971
10 LG KF900 Prada 2008 1 1.499999925 1.078989 2013.333
11 Motorola RAZR2 V9x 2008 1 1.557802495 1.217863 2010.249
12 Samsung i900 Omnia 2008 1 1.384257778 1.081071 2012.171
13 Motorola XT701 2009 1 1.496109666 1.059251 2015.999
14 Apple iPhone 3GS 2009 1 1.22577591 1.085087 2011.493
15 Huawei U8220 2009 1 1.557142942 1.067165 2015.812
16 LG GM750 2009 1 1.539682625 1.10294 2013.405
17 Samsung I7500 Galaxy 2009 1 1.210779668 1.113671 2010.777
18 Apple iPhone 4 2010 1 1.448368558 1.08815 2014.385
19 Huawei U9000 IDEOS X6 2010 1 1 2010
20 LG Optimus 2X 2010 1 1.215754033 1.044796 2014.458
21 Motorola DROID PRO XT610 2010 1 1 2010
22 Samsung M110S Galaxy S 2010 1 1.180000038 1.056722 2013
23 Apple iPhone 4s 2011 1 1.154545498 1.049999 2013.945
24 Huawei M886 Mercury 2011 1 1.06617651 1.080917 2011.824
25 LG Optimus 4G LTE P935 2011 1 1.210666651 1.040631 2015.8
26 Motorola RAZR XT910 2011 1 1.17023256 1.050352 2014.2
27 Samsung I9100 Galaxy S II 2011 1 1 2011
28 Oppo Find 2012 1 1 2012
29 Apple iPhone 5 2012 1 1 2012
30 Huawei Ascend P1 LTE 2012 1 1 2012
31 LG Optimus Vu F100S 2012 1 1.116999061 1.029154 2015.85
32 Motorola DROID RAZR MAXX HD 2012 1 1 2012
33 Samsung I9300 Galaxy S III 2012 1 1.046599859 1.018896 2014.433
34 Sony Xperia T LTE 2012 1 1.039999958 1.062862 2012.643
35 Xiaomi Mi 2 2012 1 1.08333336 1.079112 2013.051
36 vivo Y15 2013 1 1 2013
37 Oppo R1 R829T 2013 1 1.059523837 1.022529 2015.595
38 Apple iPhone 5s 2013 1 1 2013
39 Huawei Ascend P6 2013 1 1 2013
40 LG G2 2013 1 1 2013
41 Motorola Moto X 2013 1 1 2013
42 Samsung I9502 Galaxy S4 2013 1 1 2013
43 Sony Xperia Z1 2013 1 1.029673544 1.010687 2015.751
44 Xiaomi Mi 3 2013 1 1.024028732 1.016863 2014.42
45 vivo X5 2014 1 1.062120902 1.039452 2015.558
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Table 3. Cont.

OEM DMU Release Year Efficiency Release theta_tf (1/Eff Frontier) roc current (Effective Date) sroc Forecast Date Forecast
(tf_exp)

46 Apple iPhone 6 2014 1 1 2014
47 Huawei Ascend Mate7 Monarch 2014 1 1.000725726 1.000243 2016.982
48 LG G3 2014 1 1 2014
49 Motorola Nexus 6 2014 1 1 2014
50 Samsung Galaxy S5 2014 1 1 2014
51 Sony Xperia Z3 2014 1 1 2014
52 Oppo R5 2014 1 1.11631014 1.04315 2016.605
53 Xiaomi Mi 4 LTE 2014 1 1.000649822 1.017088 2014.038
54 Apple iPhone 6s 2015 1 1 2015
55 Huawei P8lite 2015 1 1 2015
56 LG V10 2015 1 1 2015
57 Motorola Droid Turbo 2 2015 1 1 2015
58 Samsung Galaxy S6 2015 1 1 2015
59 Sony Xperia Z5 2015 1 1 2015
60 Oppo R7 2015 1 1.101190486 1.099942 2016.012
61 vivo X6 2015 1 1.013928231 1.054154 2015.262
62 Xiaomi Mi 4i 2015 1 1 2015
63 Apple iPhone 7 2016 1 1 2016
64 Huawei P9 lite 2016 0.970297 2017
65 LG V20 2016 1 1 2016
66 Motorola Moto Z 2016 1 1 2016
67 Samsung Galaxy S7 2016 1 1 2016
68 Sony Xperia XZ 2016 1 1.013820297 2014.718
69 Oppo R9s 2016 1 1 2016
70 vivo X9 2016 1 1.031346009 1.15334 2016.216
71 Xiaomi Mi 5s 2016 1 1 2016
72 Apple iPhone 8 2017 1 1 2017
73 Huawei Mate 10 Pro 2017 1 1 2017
74 Oppo R11s 2017 1 1 2017
75 LG V30 2017 1 1 2017
76 Motorola Moto G5S 2017 1 1 2017
77 Samsung Galaxy S8 2017 1 1 2017
78 Sony Xperia XZ1 2017 1 1 2017
79 vivo X20 2017 1 1 2017
80 Xiaomi Mi 6 2017 0.9898305 2017
81 Oppo R15 2018 2017 1.070013 2017.65
82 Apple iPhone XR 2018 2015.538 1.070013 2017.278
83 Huawei Mate 20 Pro 2018 2017 1.070013 2019.877
84 LG V40 ThinQ 2018 2015.36 1.070013 2018.658
85 Motorola Moto G6 2018 2014.878 1.070013 2017.072
86 Samsung Galaxy S9 2018 2016.276 1.070013 2019.573
87 Sony Xperia XZ2 2018 2014.364 1.070013 2015.532
88 vivo X23 2018 2017 1.070013 2017.953
89 Xiaomi Mi 8 2018 2014.594 1.070013 2015.924
90 Xiaomi Mi 9 Pro 5G 2019 2014.801 1.070013 2017.314
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Table 3. Cont.

OEM DMU Release Year Efficiency Release theta_tf (1/Eff Frontier) roc current (Effective Date) sroc Forecast Date Forecast
(tf_exp)

91 Oppo Reno3 5G 2019 2015.2 1.070013 2018.497
92 Apple iPhone 11 2019 2015.298 1.070013 2017.347
93 Huawei P30 Pro 2019 2014.882 1.070013 2017.751
94 LG V50 ThinQ 5G 2019 2015.949 1.070013 2019.29
95 Motorola Moto G7 Power 2019 2015.954 1.070013 2017.776
96 Samsung Galaxy S10 5G 2019 2015.382 1.070013 2018.68
97 Sony Xperia 1 2019 2017 1.070013 2022.804
98 vivo X30 2019 2016.911 1.070013 2017.985
99 Xiaomi Mi 10 Pro 5G 2020 2015.57 1.070013 2017.71

100 Oppo Reno4 5G 2020 2015.2 1.070013 2018.497
101 Sony Xperia 1 II 2020 2017 1.070013 2023.834
102 Huawei P40 Pro 2020 2014.536 1.070013 2018.346
103 LG V60 ThinQ 5G 2020 2014.5 1.070013 2020.492
104 Motorola Edge+ 2020 2015.715 1.070013 2019.181
105 Samsung Galaxy S20 5G 2020 2014.473 1.070013 2021.647
106 Apple iPhone SE (2020) 2020 2014.5 1.070013 2017.797
107 vivo X50 Pro 2020 2016.974 1.070013 2018.421
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The discrepancy between the predicted value and the actual value in Table 3 means
that the market launch of a product is not determined solely by technological superiority
but is a product of various business environments. Despite these limitations, in the long
run, technological forecasting can recognize opportunities and challenges through scientific
methods and predict technological limitations by performing technological forecasting.
Separately from this study, multiple regression analysis was performed by selecting the
dependent variable as the product release year and the independent variable as the vari-
able used in TFDEA. Because the analysis conditions are different, the results of the two
methodologies cannot be compared, but the results of the TFDEA for the year of release are
not rejected.

3.2.2. Efficiency and Technology Change Analysis

Table 4 shows the results of measuring productivity changes, technological changes,
and efficiency changes using 9 companies as panel data from 2013 to 2020, subset data of
Table 2. For Malmquist analysis, Stata code was used, and the command is as follows.

• malmq price bdywgt = ntwk cpus pcamp sensors btycpcty, ort (out) rts (bcc) pe-
riod (year)

Table 4. Results of Malmquist Productivity Analysis.

Period DMU tfpch effch techch

1 2013~2014 vivo 0.997538 1 0.997538
2 2013~2014 Oppo 0.994856 0.98368 1.01136
3 2013~2014 Apple 1.03269 1 1.03269
4 2013~2014 Huawei 0.900117 0.98836 0.910718
5 2013~2014 LG 1.17547 1.08522 1.08316
6 2013~2014 Motorola 0.907108 1 0.907108
7 2013~2014 Samsung 0.851267 1 0.851267
8 2013~2014 Sony 1.03092 1.02488 1.0059
9 2013~2014 Xiaomi 0.927269 1.00003 0.927239
10 2014~2015 vivo 0.954648 1 0.954648
11 2014~2015 Oppo 1.04094 1 1.04094
12 2014~2015 Apple 1.0053 1 1.0053
13 2014~2015 Huawei 0.968941 0.99233 0.97643
14 2014~2015 LG 0.923042 0.921472 1.0017
15 2014~2015 Motorola 1.12777 1 1.12777
16 2014~2015 Samsung 1.33963 1.13077 1.1847
17 2014~2015 Sony 0.912589 1.04128 0.876414
18 2014~2015 Xiaomi 1.03973 1 1.03973
19 2015~2016 vivo 0.891833 1 0.891833
20 2015~2016 Oppo 1.09276 1 1.09276
21 2015~2016 Apple 1.15064 1.14652 1.00359
22 2015~2016 Huawei 0.832492 1 0.832492
23 2015~2016 LG 1.03055 1 1.03055
24 2015~2016 Motorola 1.03959 1 1.03959
25 2015~2016 Samsung 0.845398 0.902084 0.93716
26 2015~2016 Sony 0.983122 0.947815 1.03725
27 2015~2016 Xiaomi 0.903028 1 0.903028
28 2016~2017 vivo 1.11549 1 1.11549
29 2016~2017 Oppo 1.01125 1 1.01125
30 2016~2017 Apple 0.913949 0.872202 1.04786
31 2016~2017 Huawei 1.23524 1 1.23524
32 2016~2017 LG 0.823203 1 0.823203
33 2016~2017 Motorola 0.959145 1 0.959145
34 2016~2017 Samsung 0.989861 0.980345 1.00971
35 2016~2017 Sony 0.9785 0.940679 1.04021
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Table 4. Cont.

Period DMU tfpch effch techch

36 2016~2017 Xiaomi 1.21739 1.00209 1.21485
37 2017~2018 vivo 1.05136 1.032 1.01876
38 2017~2018 Oppo 1.26962 1.19018 1.06674
39 2017~2018 Apple 1.04813 1 1.04813
40 2017~2018 Huawei 0.998205 1 0.998205
41 2017~2018 LG 0.89409 1 0.89409
42 2017~2018 Motorola 0.997031 1 0.997031
43 2017~2018 Samsung 1.27636 1.15796 1.10225
44 2017~2018 Sony 1.01832 0.985403 1.03341
45 2017~2018 Xiaomi 1.00028 0.997918 1.00236
46 2018~2019 vivo 0.967091 0.968994 0.998036
47 2018~2019 Oppo 0.813669 0.840206 0.968416
48 2018~2019 Apple 1.13868 1.05402 1.08032
49 2018~2019 Huawei 1.04281 1 1.04281
50 2018~2019 LG 1.22317 1 1.22317
51 2018~2019 Motorola 0.973883 1 0.973883
52 2018~2019 Samsung 0.817516 0.863575 0.946665
53 2018~2019 Sony 0.973725 1 0.973725
54 2018~2019 Xiaomi 1.02228 1.05297 0.970861
55 2019~2020 vivo 1.06505 1.1231 0.948316
56 2019~2020 Oppo 0.950499 1 0.950499
57 2019~2020 Apple 0.791447 0.948744 0.834204
58 2019~2020 Huawei 1.00505 1.07279 0.936854
59 2019~2020 LG 0.960468 1.02972 0.932745
60 2019~2020 Motorola 1.42793 1 1.42793
61 2019~2020 Samsung 1.26642 1.00002 1.2664
62 2019~2020 Sony 0.884251 1 0.884251
63 2019~2020 Xiaomi 0.949742 0.949698 1.00005

The period is a variable indicating the year for measuring the change in productivity
from period t to t + 1. tfpch, effch, and techch are variables corresponding to productivity
change, efficiency change, and technological change presented in Equations (6)–(9). The
average tfpch for the entire period was 1.0154, the efficiency change was 1.0036, and the
technology change was 1.0107. It means that progress has been made in all aspects of total
factor productivity, technological change, and efficiency change.

Figure 2 examines total factor productivity, technological change, and efficiency change
by smartphone maker. In Figure 2a shows the mean efficiency and technology changes for
the period of 2013–2020 using Malmquist productivity index and Figure 2b using global
Malmquist productivity index.

Xiaomi was the fourth company among the sample in the period to lead techno-
logical progress and improve productivity while maintaining efficiency. Vivo continued
its upward trend after achieving significant technological advances and efficiency gains
in 2017 and 2018, with efficiency gains being key prior to 2016. While Sony retains the
momentum of technological and efficiency gains it achieved before 2014, overall, it was
rated as a productivity, efficiency, and technological setback relative to SOA. Samsung has
improved productivity through technological advances while maintaining the status quo
in all respects. Oppo is entering the global market through strong efficiency improvements,
i.e., improved price/performance ratio, which itself identifies productivity gains through
technological advances. Motorola maintained the status quo until 2018, but the evalu-
ation of edge+ released in 2019 recognized the improvement of cost–performance ratio
in the global market, and it is evaluated that there was technological progress compared
to Motorola’s own products. Looking at the accumulated results, LG seems to be in a
normal situation overall, but it seems to be an optical illusion in 2019 following a large
productivity decline over the two years of 2016–2018. Huawei maintains its position in
the global market with efficiency improvement as its main strength. Apple is trying to
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improve productivity through technological advances, but in the global market, efficiency
was assessed as temporarily regressing in 2020.
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Figure 2. Mean efficiency and technology changes for the period of 2013–2020: (a) MPI;
(b) Global MPI.

Figure 3 compares average productivity, efficiency, and technological change before
and after 2017. Figure 3a is a graph showing the efficiency change and technological change
before and after 2017. The red arrow indicates that both the efficiency change and the
technological change have regressed, the blue color indicates the progress, and the dotted
line indicates that any one has advanced or regressed. Huawei is the only company that
has advanced in both technological change and efficiency change. On the other hand, Vivo
and Apple have regressed in both efficiency changes and technological changes. Further
research is needed to interpret the cause. In other words, if the price of a product is lowered,
the change in efficiency can be larger, and if the product’s technology level is already high,
the price of the product can be higher. Although the average degree of technological change
and efficiency change decreased, it was found that there was a difference in the degree
depending on the smartphone.
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Figure 3. Comparison of productivity changes by period using global MPI: (a) transition of technology
change and efficiency change. The figure is displayed in the form of “Company name year, efficiency
change, technological change”. For example, “Samsung1317, 1.0, 1.1” means “Samsung’s average
efficiency change from 2013 to 2017 is 1.0, and technological change is 1.1”; (b) productivity change
for the period of 2013–2017 and 2017–2020; (c) technology change for the period of 2013–2017 and
2017–2020; (d) efficiency change for the period of 2013–2017 and 2017–2020.

Notably, the companies that achieved productivity gains compared to before 2017 were
Huawei, Oppo, and Motorola. The companies that achieved the efficiency improvement
were Huawei and Xiaomi. Companies that achieved technological advances were Huawei,
Motorola, and Oppo. Apple, Vivo, and Sony have largely gone backwards compared to
SOA. In the Malmquist analysis, only the global Malmquist productivity index, which
satisfies transitivity, was analyzed, and thus there is a limit in drawing conclusions about the
company’s product differentiation strategy. However, the dynamic aspects of technological
change and efficiency change of companies contributing to the global production frontier
can be confirmed.

Figure 4 is a graph showing the changes in productivity, efficiency, and technology
by year for major brand companies. Chinese companies such as Xiaomi, Oppo, Vivo,
and Huawei are trying to improve productivity through technological advances while
maintaining high efficiency in terms of price/performance. Samsung is characterized by
dynamics in which technological change, efficiency change, and productivity change are
integrated and elastically. Apple maintains a stable level of technological change, while
efficiency changes are driving the dynamics. Motorola and LG, which have market influence
in the North American market, have in common that they have stable efficiency changes, but
while Motorola is maintaining stable technological changes, LG has large fluctuations. Sony
has been regressing in technological change since 2018, and it is interested in how much it
will maintain the driving force of technological progress achieved during 2015–2017.
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(e) Samsung; (f) Apple; (g) Motorola; (h) Sony; (i) LG.

4. Conclusions

We analyzed smartphone launch data from 2005 to 2020 to predict the adoption of
smartphone technology and discuss the pace of technological change. It has been identified
that the market is undergoing reorganization as new smartphone models expand the
market and increase their price/technical performance. In particular, it was found that
China’s Huawei, Xiaomi, Oppo, and Vivo, followed by Apple and Samsung, the strong
smartphone players in the market, are achieving SOA through technological change as well
as efficiency change.

The average rate of technology change of smartphone from 2005 to 2017 is 1.07 and
since after 2013, 32 smartphones out of 45 that were SOA at the time of release maintained
the SOA status until 2017. Of the 28 smartphones released between 2008 and 2012, 7 re-
mained SOA. If the technology change rate is greater than 1, it means that the SOA change
by technological progress is being expanded. Additionally, the change in the number of
smartphones from SOA state to non-SOA state requires confirmation of whether the market
has stabilized as a major producer or whether overall technology congestion or market
diversification is in progress.

As a result of analyzing the rate of technological change, productivity change, effi-
ciency change, and technological change of the company to be analyzed, it was found that it
can be sufficiently referenced in selecting vendors to apply civilian technology to the defense
sector. For example, the U.S. Department of Defense and the Korean Ministry of National
Defense promoted joint development of smartphones through a business agreement with
Samsung in 2020, which is positive for decision-making in that Samsung has developed
flexibly through productivity changes, technological changes, and efficiency changes.

However, the technology forecasting methodology does not predict that LG will with-
draw from the smartphone market in 2021. Therefore, we need to know that companies
develop product technology at a strategic level and even consider exiting the business,
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and it is necessary to try to identify factors that can influence strategic decision-making
through technology forecasting. Additionally, further discussion is needed on the develop-
ment of the technology prediction methodology for disruptive technology and technology
prediction based on the purpose for military application. In this respect, these will be the
limitations of the technical prediction methodology and an opportunity for new research.
For example, it is of interest to see how the higher military requirements such as military
security requirements than commercial products will affect the technological change dual-
use technology in the future. Research on the military’s ability to absorb superior civilian
technology and measures of open innovation for the spin-on technology development will
also be important.

The nature of the practical and professional application of the technology under
study implies the existence of additional functions and extensions, which significantly
limit the price competitiveness of such products in the commercial market. Discussion on
the desirable direction of technological innovation or distortion of the market by defense
R & D investment is beyond the scope of this study, but a separate discussion will be
necessary, like the recent ethical and legal discussion on autonomous weapons systems. By
pointing out the limitations of exploratory research methodologies and grafting normative
techniques to predict technologies that satisfy military requirements, we tried to satisfy
the author’s need for the visibility of the TFDEA approach. If a technical point of view
not considered in this study is added, the result of technical prediction itself may become
meaningless. Therefore, to find meaning in the results of this study, it is necessary to
limit the search for technological products in the market that can meet the clearly required
military performance goals.

In addition, we provided an author-written Stata program of TFDEA and verified our
program and found that it is acceptable to compare with the existing one. Because TFDEA
is one of the younger forecasting methodologies in Technometrics, only a few programs are
available. We extend the accessibility of TFDEA by suggesting the Stata TFDEA module.

Supplementary Materials: The following are available online at [16,17]: http://sourceforge.net/p/deas/
code/HEAD/tree/trunk/ (accessed on 10 March 2022) dea.ado, malmq.ado, dea_supereff.ado module.
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