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Abstract: Cloud detection is an important step in the processing of optical satellite remote-sensing
data. In recent years, deep learning methods have achieved excellent results in cloud detection tasks.
However, most of the current models have difficulties to accurately classify similar objects (e.g.,
clouds and snow) and to accurately detect clouds that occupy a few pixels in an image. To solve
these problems, a cloud-detection framework (Cloudformer) combining CNN and Transformer is
being proposed to achieve high-precision cloud detection in optical remote-sensing images. The
framework achieves accurate detection of thin and small clouds using a pyramidal structure encoder.
It also achieves accurate classification of similar objects using a dual-path decoder structure of CNN
and Transformer, reducing the rate of missed detections and false alarms. In addition, since the
Transformer model lacks the perception of location information, an asynchronous position-encoding
method is being proposed to enhance the position information of the data entering the Transformer
module and to optimize the detection results. Cloudformer is experimented on two datasets, AIR-CD
and 38-Cloud, and the results show that it has state-of-the-art performance.

Keywords: cloud detection; mask classification; remote-sensing images; transformer

1. Introduction

Recently, space technology has been developing continuously [1]. The performance of
remote-sensing satellites has been greatly improved and the remote-sensing data service
system based on spatial information has been formed [2]. However, according to statistics,
more than 65% of the Earth’s surface is covered by clouds [3], most of the optical remote-
sensing data are affected, and its analysis value is greatly reduced. As the “first step”
of remote-sensing image processing tasks [4], cloud detection is an important means to
assist researchers in evaluating the quality of remote-sensing data and in speeding up
remote-sensing data processing. In addition, the cloud detection task is more challenging
because of the diversity of the cloud layer itself and the complexity of the background in
the remote-sensing data. Therefore, it is of great significance to study high-precision and
high-university cloud detection methods.

At present, the research on cloud detection of optical remote-sensing image data is
being widely carried out, and a large number of methods have emerged [5]. There are
three main types of cloud detection methods: (1) traditional image processing methods
based on thresholding and texture analysis, (2) statistical learning methods based on hand-
designed features of physical attributes [6], and (3) deep learning methods based on deep
convolutional neural networks (CNN).

FMask [7–9] is a well-known cloud detection method based on thresholds. This
method supports multiple Landsat series satellites and has been applied for some scenarios.
However, taking the Fmask3.2 algorithm as an example, it is necessary to use the atmo-
spheric apparent reflectance image of the multispectral band as the main input, and at
the same time use the atmospheric reflectance image of the cirrus bands as the auxiliary
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inputs to get good results. This limits the university of the FMask method. Although
statistical-based processing methods have been designed on the basis of learning, the
feature extraction methods of the models are still mainly designed manually. For example,
Xu et al. propose a model that uses multiple spectra to extract temporal and spatial fea-
tures and put the features of a Bayesian probability model for classification. Handcrafted
traditional image processing methods mostly require manual designs of parameters such
as thresholds, which will cause the quality of the model to be highly dependent on the
designer’s professional knowledge and professional experience. When the model requires
multiple spectral band data, this will further reduce the versatility of the model.

Cloud detection methods based on convolutional neural networks (CNN) [10] have
achieved advanced results for a variety of scenes [11], and the idea of semantic segmentation
of images by pixel classification has joined the current mainstream. The CNN-based
method has made important breakthroughs in cloud detection with its excellent local
feature extraction capabilities. For example, Cloud-Net+ [12] is a fully convolutional neural
network model that focuses on using Landsat8 satellite data. It achieved state-of-the-
art (SOTA) on the 38-Cloud public dataset. The deep learning method has the ability
of automatic feature extraction and automatic learning, which can still guarantee good
results when only a small amount of spectral band data is used as input. Consequently, the
cloud detection method based on deep learning has strong versatility [13]. However, these
methods still have some limitations. The receptive field of CNN is limited by the size of the
convolutional kernel, leading to the shortcomings of CNN-based methods in extracting
global features.

With the development of computer vision technology, the Transformer [14] network,
which itself is used in the direction of natural language processing, began to be introduced
into the field of computer vision and demonstrated excellent performance. By dividing
the image of multiple patches, the image can be smoothly sent to the Transformer. Using
Transformer’s attention mechanism to establish connections between different patches
can commendably capture the global characteristics of the image. Recently, many works
have begun to try to apply the mask-classification to semantic segmentation tasks. The
learnable queries of the Transformer can well integrate mask-classification into the model.
From another point of view, the Transformer model requires a lot of calculation and cannot
effectively capture the regional features. At the same time, the Transformer model is
difficult to converge on the training process.

For cloud detection, the physical characteristics of the cloud make detection more
difficult. For example, a small cloud that occupies a small number of pixels has a greater
probability of being ignored in the feature extraction process. When the cloud cover is thin,
the combination of the cloud and the background makes the model wrong. In some scenes
where clouds and snow coexist, the cloud pixels are visually very similar to the snow pixels,
causing the model to incorrectly classify snow as clouds.

We try to use the latest achievements in the field of semantic segmentation to solve
the above problems, as well as the new cloud detection method (Cloudformer) that we
propose. Cloudformer integrates CNN and Transformer. Cloudformer uses convolutional
structure to initially extract features, and then uses Transformer’s excellent Global feature
extraction capabilities to help the model better predict the spatial information of the cloud.
The local features extracted by CNN will help the architecture distinguish similar objects
(such as clouds and snow). In addition, since the Transformer cannot capture the sequential
relationship of the input sequence, it is necessary introduce positional information in the
calculation in most cases. For this issue, we propose an asynchronous position encoding
to enhance the position information of the data entering the Transformer module and to
optimize the detection results.

Most importantly, the main contributions of this work are as follows:

1. We have designed a set of Spatial pyramid structure encoder (SPS encoder), which
can efficiently to extract features from remote-sensing images and provide a basis for
the work of the entire architecture.
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2. To better integrate the deep features and shallow features, and to maximize the
potential relationship between them, we designed a pixel-level decoder structure
(SupA decoder) with a supplementary aggregation layer.

3. To protect the position information about the feature map, we propose a position
asynchronous coding method. It enlarges the position information on the feature map
as much as possible, allowing the features extracted from the pixel-level encoder to
enter the Transformer module in a more reasonable way.

The rest of this article is organized as follows. In Section 2, recent works in the field of
semantic segmentation and cloud detection are introduced. In Section 3, we will show our
framework in detail. Section 4 discusses the results of the experiment. Finally, Section 5
summarizes our work.

2. Related Works

Cloud detection has been noticed recently because of the development of optical
remote-sensing technology. In this section, we will introduce some works related to
our model.

2.1. Cloud Detection with CNN-Based

Thanks to the excellent performance of convolution in computer vision [15], the
deep learning method has been widely used in remote sensing. For example, Biserka
Petrovska et al. used deep learning methods to extract features from remote-sensing images
and perform classification [16], and their experiments achieved good results. Jacob H et al.
designed a cloud detection method named RS-Net [17], which is a framework based on
U-net. RS-Net shows SOTA performance, especially on smaller satellites with limited
multi-spectral capabilities. Meanwhile, Zhen Feng Shao et al. proposed a MF-CNN [18]
model based on multi-scale feature extraction. This method takes the combined spectral
information as input of MF-CNN to enhance the model’s ability to detect thin clouds.
Li et al. introduced a weakly supervised deep-learning-based cloud detection method
abbreviation WDCD [9]. WDCD uses the block-level labels to indicate whether there is
cloud of the image block, thus reducing the workload of image annotation.

Mohajerani et al. proposed an End-to-End Algorithm Cloud-Net [19] that consists of a
fully convolutional network. This method not only achieves good precision performance,
but also seldom requires complex data preprocessing. Ding et al. designed a method based
on Fully Convolutional Neural Networks named CM-CNN for FY-3D MERSI [20]. This
model has good performance while only using mid-infrared and long-infrared band data.
Kai Zheng et al. proposed an Encoder–Decoder Deep Convolutional Neural Network [21].
This network is used to perform cloud and snow segmentation.

However, most of these methods do not pay attention to the feature extraction of small
clouds. This will lead to frequent omissions when a large number of broken clouds appear
in remote-sensing images.

2.2. Transformer-Based Computer Vision Method

In 2017, Google proposed the Transformer framework [14]. The method abandoned
the traditional CNN and RNN, the further constructs a model based on the self-attention
mechanism. Transformer has demonstrated powerful performance in Natural Language
Processing (NLP) years ago. Recently, it also began to emerge in computer vision.

Alexey Dosoviskiy et al. proposed the Vision Transformer (ViT) in 2020 [22]. This
was an attempt made in Computer Vision. ViT was used for Image Classification and
obtained a satisfactory performance. This work proves the feasibility of Transformer in
Computer Vision.

A few months after that, more than 100 Transformer-based methods have been pro-
posed by researchers [23]. This phenomenon shows us the vitality and attraction of Trans-
former. For example, the DETR [24] proposed by Facebook has made Transformer a
breakthrough in Object Detection. DETR not only abandons Non-Maximum Suppression
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(NMS), but it also detects object by set prediction and object query. These designs made it
the very first End-to-End Transformer detector.

Recently, Swin Transformer [25] and CSwin Transformer [26] made unnecessary the
discussion over whether Transformer or CNN were better. These methods introduced the
concept of “window”. At the same time, all components in the model began to integrate
the idea of CNN. It also brings some inspiration to the method proposed in this paper.

2.3. Mask Classification

In an instance-level segmentation task, mask classification is very common. For
example, Mask-R CNN [27] is an excellent instance segmentation algorithm first proposed
by He et al. in 2017. However, per-pixel classification is still the mainstream in semantic-
level segmentation tasks. Bowen Cheng et al. proposed the MaskFormer [28], which applied
mask classification to semantic-level segmentation tasks. Meanwhile, its performance
exceeded that of per-pixel classification baselines.

Skillfully applying learnable query embeddings is the key to the Transformer com-
bined with mask classification. Researchers are committed to using queries to directly
predict masks. The main ideas are as follows: to replace object queries with mask embed-
dings and then to perform classification and mask prediction directly through multiple
embeddings from Transformer. Several methods based on Transformer with mask embed-
dings have been proposed, such as Max-Deeplab [29] and Segmenter [30].

Because the background of a remote-sensing image is complex, and the object charac-
teristics are similar, we hope to design a framework that combines the advantages of CNN,
Self-attention, and Transformer with mask embeddings. The details will be described in
the next section.

3. Methodology

Cloudformer is a semantic segmentation framework that incorporates the mask pre-
diction branch. On the one hand, we constructed the pixel-level branch through traditional
convolution. In this branch, we extracted multi-scale features and establishing the depen-
dency relationships between deep semantic features and shallow spatial features was the
main goal. On the other hand, the mask-level branch built by the Transformer decoder will
make the final predictions based on the pixel-level branch.

The structure of the proposed Cloudformer is shown in Figure 1. It contains four key
modules: (1) the multi-scale extraction module Spatial Pyramid Structure Encoder (SPS
Encoder), (2) the Supplementary Aggregation Decoder (SupA Decoder), (3) the Transformer
module, and (4) mask segmentation.

3.1. Overview

First, we apply the Cloudformer to a remote image-sensing cloud detection task. To
avoid cloud feature loss consisting only of a few pixels, features will be extracted from
different scale spaces by the Spatial Pyramid module. Then the feature representation
with the deep branch and shallow branch becomes complementary, and there is no com-
munication between them. To enhance communication, we proposed a Supplementary
Aggregation Layer. In addition, the deep semantic features that get by the SPS Encoder will
be sent to the Transformer module. Calculations are made concerning the N embeddings
through the self-attention mechanism. These embeddings will help the framework make
more accurate predictions. In mask segmentation, the binary mask prediction diagram is
obtained by using the mask embeddings of the N embeddings under MLP mapping; the
class probability prediction is carried out using class predictions, and the output prediction
is obtained after combination.
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Figure 1. There are four key components in the framework: SPS Encoder, SupA Decoder, Transformer
module, and mask segmentation. The remote-sensing data are input into the SPS encoder to extract
the feature of the cloud through convolution. Then the feature is sent to the SupA decoder for
pixel-level decoding. The feature will also be sent to the Transformer module to use the attention
mechanism for further calculations to obtain mask information and classification embeddings of
information. Finally, the two parts of information are combined in the mask segmentation to obtain
the prediction result.

3.2. SPS Encoder

To preserve the spatial characteristics of the clouds and make the framework ignore as
little as possible the small-sized clouds that occupy fewer pixels, a structure that contains
only a few down-samplings was designed, as shown in the Figure 2. The image of size
H × W is first fed into the encoder, and the feature maps are obtained by convolution
and pooling. Then, the feature maps are fed into the pyramid structure. The three dilated
convolutions with different expansion rates are used to extract features and improve the
global receptive field while maintaining the resolution. In addition, the pyramid structure
extracts features from multiple-scale spaces to enhance the expressive information of the
clouds and enhance the mining of the hidden relationships between pixels. To ensure that
the characteristic signal can densely cover more areas, we concatenate the features extracted
from differently scaled spaces. Next, the SupA encoder further extracts the information
and adjusts the number of channels by convolution. From this framework, a set of feature
maps `deep containing rich information can be obtained as:

`deep ∈ RC`× H
Sn × W

Sn (1)

where C` is the number of channels, S is stride, and n means the down-sampling frequency.
These feature maps will be the basis of pixel-level analysis and mask-level analysis of the
whole framework.
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Figure 2. The structure of the Spatial Pyramid Structure Encoder.

3.3. SupA Decoder

As a pixel-level decoding structure, the feature maps need to be restored to the same
size. Although the deep features have rich semantic information, their spatial information
has been lost, which is inevitable and irreversible. Therefore, a large amount of spatial
information will be lost if only deep features are used for decoding. Referring to U-Net [31],
we use shallow features containing rich spatial information to help SupA decoder recover
more information when decoding. However, the simple concatenate operation disregards
the richness between the two features. To overcome this problem, the computation link of
corresponding elements is introduced into the module.

As shown in Figure 3, first we sum up the feature `shallow of size H/8×W/8 and the
deep feature `deep after an up-sampling operation for element-by-element aggregation to
obtain `s. Then we concatenate three feature maps. In addition, the context information is
supplemented by features ` with the size of H/2×W/2. We refer to BiseNet v2 [32] for
feature aggregation and use a more common operation of fusing deep and shallow features
in equal proportion. The specific process is as follows:

`decoder= Concat[ f
(
`deep), f (`shallow), f (`s),`] (2)

[`s]i,j = αi,j + βi,j(α ∈ `deep, β ∈ `shallow) (3)

where f is bilinear up-sampling. Finally, we adjust the dimensionality of `decoder by 1 × 1
convolution and reshape it to `pixel ∈ RC`×H×W by bilinear up-sampling. Cξ is the same
embedding dimension in the mask-level branch.
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Figure 3. The structure of the Supplementary Aggregation Decoder.

3.4. Transformer Module

The Transformer module is a major component of the mask-level branch. We use a
standard Transformer decoder to obtain the N embeddings output used for mask prediction
and class prediction. Converting the feature maps ` to token embeddings is a prerequisite
for feeding them into the Transformer decoder. Dimensionality reduction will lead to
the loss of element position information. To preserve this information, we introduced a
positional encoding method.

As shown on the left of Figure 4, we created a tensor with the same dimensions as the
feature map `deep, and established a Cartesian coordinate system with the first element in
the lower left corner of the tensor as the origin. The value of the element in the tensor is
the sum of the horizontal and vertical coordinates of the current element. We easily find
a lot of similarities in the position coding of the elements, although they are not close to
each other. To this end, we expand the horizontal coordinates of the elements to twice their
original size and the vertical coordinates to three times their original size. Such a change
brings two advantages: (1) it enhances distance signal between elements, and (2) increases
the sparsity of the position coding value.

Figure 4. Establish a coordinate system based on the elements in the lower left corner, and expand the
abscissa to twice the original size, and the ordinate to triple the original size. Such an encoding method
can amplify the position information between elements and reduce the encoding repetition rate.
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As shown on the right of Figure 5, this method produces a more reasonable position-
coding map.

Figure 5. The Transformer module consists of a standard Transformer decoder and a feature con-
verter. To strengthen the position information between the features, the feature converter uses an
asynchronous position code.

Afterwards, we reshape the position-coding map with the same method as feature
maps `deep to obtain a position embedding. Finally, position embeddings and token em-
beddings are added and sent into the Transformer component to calculate the N outputs
mentioned above in parallel with the N learnable queries.

3.5. Mask Segmentation

As shown in the upper right of Figure 1, the N embeddings output from the Trans-
former module are inputs into the mask segmentation module. We obtain two sets of
information through the Multilayer Perceptron (MLP) structure: (1) N class predictions,
and (2) N mask embeddings.

The former set of information is obtained by a linear classifier and SoftMax acti-
vation. Per-segment queries in class predictions produce K + 1 prediction probabilities
{Pi | Pi∈ ∆K+1}. It contains K categories and a “no object” category. Therefore, in the cloud
detection task, `class ∈ RN×(K+1), where K = 2 (cloud and background). This classification
information is obtained by fusing deep semantic features through a multi-head attention
mechanism. Therefore, it combines semantic features and context information more effec-
tively than the pixel-by-pixel-based approach and can help distinguish objects with similar
features (such as clouds and snow).

For the latter set of information, a Multilayer Perceptron (MLP) will convert the input
N queries into N mask embeddings. The length of pre-segment embeddings is Cξ . A large
amount of spatial information is contained in the mask embeddings. We embed N mask
embeddings `mask at the mask-level into the output of the pixel-level branch through dot
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products and then apply sigmoid activation to obtain the binary spatial mask prediction.
This process can be defined as:

M = Sigmoid(`mask
T·`pixel)M ∈ RN×H×W (4)

where T means transpose.
Finally, class prediction and mask prediction are combined to obtain the standard

semantic segmentation task output. We refer to DETR [24]; a focal loss and a dice loss are
used as binary spatial mask prediction. For class prediction, cross entropy classification
loss is the best choice. The overall loss function can be written as:

L = Lcls + Lmask (5)

Lmask = λ f ocalL f ocal + λdiceLdice (6)

where λfocal, and λdice balance the weight of two losses as hyper-parameters. We set the
hyper-parameters to λfocal = 20.0 and λdice = 1.0.

4. Experiment

In this section, we conduct a detailed evaluation of Cloudformer on the AIR-CD
and 38-Cloud datasets. Specifically, we first briefly introduce the dataset processing and
experimental details, and then we show the ablation experiments on the main components
of Cloudformer. Finally, the overall performance of the model is compared and analyzed.

4.1. Evaluation Criteria and Data Processing

On the one hand, to evaluate the actual overall performance of various methods of
cloud detection tasks, we selected four widely used indicators, namely Mean Intersection
with Union (MIoU) [33], Frequency weighted Intersection over Union (FwIoU) [34], Mean
Accuracy (MAcc) [35], and Pixel Accuracy (PAcc) [36]. The selected index will evaluate the
accuracy of the model from multiple angles. The larger the value, the higher the accuracy.
In the ablation experiment, our purpose was to illustrate the effectiveness of the module, so
we only selected MIoU, MAcc, and PAcc for evaluation. In the tables of this article, for the
MIoU, FwIoU, MAcc and PAcc we bolded the highest values, while for the time is targeted
the lowest value.

On the other hand, we choose two public remote image-sensing cloud detection
datasets to test the generalization ability of the model in different scenarios. The AIR-
CD dataset contains multiple remote-sensing images of 7300 × 6908 obtained by GF-2
satellites [37]. We divide it into 640 × 640 RGB images as the training set of the network
and add random noise, such as rotation and horizontal flipping at a specific angle, before
sending it to the network to enhance the training data. The 38-Cloud dataset contains
multiple remote-sensing images 7601 × 7761 in size obtained by LandSat8 satellites. When
inputting into Cloudformer, we discarded the data on the near-infrared band, and only
stacked the visible bands, to perform the image analysis. Overlapping segmentation
constructed a dataset containing 3249 640 × 640 RGB images. In the experiments in this
section, the training set and the test set are constructed at a ratio of 8 to 2.

4.2. Compare Models and Experimental Settings

This section compares Cloudformer with several recent representative cloud detection
models. On the AIR-CD dataset, we chose DABNet [38] and CDNet [39], which perform
well on this dataset, and the classic semantic segmentation network DeepLabv3+ [40] for
comparison. On the 38-Cloud dataset, we selected the Cloud-Net [19] and Cloud-Net+ [12]
series networks proposed by the contributors of the dataset, and the classic U-net [31]
network for comparison. To ensure fairness, ResNet-50 [41] was set as the backbone
network of all segmented networks.
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In the experiment, each model is trained on two constructed datasets, using the same
division method to ensure that the training set and test set of the comparison model are
the same, and that it only detects clouds, not cloud shadows. During the training process,
we uniformly set the batch size to 8, the initial learning rate is set to 1 × 10−6, and then
the learning rate approximates an exponential decay, and a total of 160,000 batches are
trained. The Adam algorithm is used to optimize the model. All experiments in this article
are implemented using NVIDIA RTX2080TI GPU under the Pytorch framework.

4.3. Ablation Experiment

To verify the performance of Cloudformer, we conducted ablation experiments on a
supplementary aggregation decoder (SupA Decoder), asynchronous position coding, and
mask embeddings queries.

4.3.1. Effect of SupA Decoder

Figure 5 shows the structure of the decoder we designed. We use the deeplabv3+
model as the baseline to perform ablation experiments on the SupA Decoder. To avoid
interference from other factors, the experiment chose ResNet-50 as the backbone and added
several design schemes of the SupA Decoder in the experiment. Therefore, the data in the
table are that the deeplabv3+ decoder only combines the decoding structure of the 1/8 size
feature map, and aggregates the decoding structure of the 1/8 and 1/2 feature maps, and
the final SupA Decoder.

As Table 1 shows, the decoding structure that simultaneously aggregates the 1/8 and
1/2 feature maps is similar in accuracy to the final SupA Decoder, but the speed of inference
is greatly reduced. Therefore, the final SupA Decoder is a better choice for comprehensive
accuracy and speed.

Table 1. Pixel-level decoder ablation experiment results.

Method MIoU (%) MAcc (%) PAcc (%) Reasoning Time (s)

baseline 85.76 86.11 95.23 0.3360
+SupA (1/8) 86.32 87.26 95.77 0.3523

+SupA (1/8 + 1/2) 87.81 89.13 96.55 0.5107
+SupA (1/8) + 1/2 87.79 89.41 96.58 0.3610

4.3.2. Effect of Asynchronous Position Coding

In this experiment, we keep the other parts of the model unchanged, and only change
the operation when the pixel-level decoder extracts the feature map and sends it to the
Transformer module. We compared the effects of not adding position coding, synchronous
long position coding, and asynchronous position coding. Table 2 shows the model with
asynchronous position coding added and the performance is slightly improved. This is
because asynchronous position coding improves the difference in coding and enlarges the
position information in the coding, reducing the loss of hidden information when resizing
the feature map.

Table 2. Asynchronous position coding ablation experiment results.

Method MIoU (%) MAcc (%) PAcc (%)

Baseline 95.89 96.79 98.23
+Synchronization 96.18 97.19 98.77
+Asynchronous 96.47 97.78 98.89

4.3.3. Effect of Mask Embeddings Queries

To verify the effect of mask classification in cloud-detection tasks, we refer to the
method of Kirillov et al., and compare the structure of PerPixelBaseline with Cloudformer.
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In this experiment, the structure of PerPixelBaseline is shown in Figure 6. The figure
shows that Cloudformer has better performance for thin cloud detection. The learnable
queries in the Transformer module can use features from a more comprehensive perspective
to achieve more accurate classification. From the data point of view, Cloudformer also
performs better than PerPixelBaseline. The specific data are shown in Table 3.

Figure 6. In PerPixelBaseline, the structure of the pixel-level branch is maintained, and the
Transformer module is also retained, but, finally, a traditional cross entropy loss is used for
per-pixel classification.

Table 3. Mask embeddings queries ablation experiment results.

Method MIoU (%) MAcc (%) PAcc (%)

PerPixelBaseline 92.31 97.28 98.32
Cloudformer 96.56 98.29 99.07

At the same time, we can see from Figure 7 that the mask classification method is
better than the per-pixel classification method for thin cloud detection.

Figure 7. Comparison of mask classification method and per-pixel classification method on AIR-CD
dataset. (a) Per-pixel classification. (b) Mask classification.
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4.4. Comparison with State-of-the-Art Methods
4.4.1. AIR-CD Dataset

Table 4 and Figure 8 demonstrate the performance of Cloudformer and other methods
on the AIR-CD dataset [38]. Judging from the evaluation results, Cloudformer has an
accuracy that surpasses other cloud-detection methods. At the same time, because of the
accurate annotation of the AIR-CD dataset, each model demonstrates good performance
on this dataset. Table 4 shows that Cloudformer has surpassed other methods in the four
selected indicators. The other models in this experiment are all classic CNN-based methods.
Cloudformer adds the Transformer module based on CNN. With Transformer’s strong
global attention, the model can use features from different angles, so that Cloudformer has
a good performance in accuracy and, especially in the detection of thin clouds and small
clouds, Cloudformer has a huge advantage. As well, the design of mask classification helps
this model improve the clarity of cloud boundaries in cloud-detection tasks.

Table 4. Comparison of different cloud-detection methods on AIR-CD.

Method MIoU (%) FwIoU (%) MAcc (%) PAcc (%)

Deeplabv3+ [40] 89.76 90.02 94.62 95.08
CDNet [39] 91.83 93.04 97.45 96.72

DABNet [38] 92.08 93.25 97.69 98.43
Cloudformer (ours) 96.56 98.17 98.29 99.07

Figure 8. Comparison of different cloud-detection methods on the AIR-CD dataset. (a) Image.
(b) Ground truth. (c) Cloudformer. (d) DABNet. (e) Deeplabv3+. (f) CDNet.

4.4.2. 38-Cloud Dataset

Table 5 and Figure 8 show the performance of our model and other methods on the
38-cloud dataset. From the data in Table 5, we can see that Cloudformer has obtained
similar results to Cloud-Net+ on the 38-Cloud dataset. However, Cloudformer only inputs
the visible light spectrum band data, and Cloud-Net+ inputs the near-infrared spectrum
data at the same time as the visible light spectrum band data. This means that Cloudformer
has higher versatility and can be applied to remote-sensing satellites equipped with only a
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few spectral band sensors. Figure 9 shows the visual mask of the detection results of each
model. Visually, the detection results of Cloudformer are excellent.

Table 5. Comparison of different cloud-detection methods on 38-Cloud.

Method MIoU (%) FwIoU (%) MAcc (%) PAcc (%)

U-Net [31] 85.21 87.52 95.05 96.15
Cloud-Net [19] 87.32 88.26 95.86 97.60

Cloud-Net+ [12] 88.85 90.23 96.35 97.39
Cloudformer (ours) 90.71 92.31 96.33 97.89

Figure 9. Comparison of different cloud detection methods on 38-Cloud dataset. (a) Image.
(b) Ground truth. (c) Cloudformer. (d) Cloud-Net+. (e) Cloud-Net. (f) U-Net.

4.5. Versatility

To prove the versatility of the method for semantic segmentation tasks, we tested our
method on a public dataset, ADE20K [42]. The dataset contains more than 25,000 pictures
and 150 categories, is rich in scenes, and can comprehensively reflect the performance of
the model in each scene. Cloudformer achieved 47.7% of MIoU in the mission. In Table 6,
compared with the current methods [43,44] that perform well on the ADE20K dataset, the
performance of Cloudformer is similar. It is sufficient to show that Cloudformer is versatile
enough and can also be applied to segmentation tasks in other scenarios.

Table 6. Comparison of different semantic segmentation methods on ADE20K.

Method MIoU (%) Year

VIT-B [43] 48.1 2021
Cloudformer 47.7 -

ResNeSt-269 [44] 47.6 2020
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4.6. Limitation

Cloudformer can achieve good accuracy in cloud detection tasks. Meanwhile, due to
the overall complexity of the model, there is still room for improvement in inference speed,
for example, the reasoning for a remote-sensing image with a size of 1024 × 1024. The
inference running time of Cloudformer is 34% longer than that of DABNet under the same
hardware conditions. This makes Cloudformer not the first choose in scenarios where there
are strict requirements for inference speed. On the premise of ensuring accuracy, further
improving the inference speed will be our most important next step. At the same time, in
other scenarios, the accuracy of Cloudformer still has a lot of room for improvement. Next,
we will optimize the model to further improve the overall performance of the method.

5. Conclusions

This paper proposes a cloud detection method for high-resolution remote-sensing
images. Compared with the various detection methods currently released, Cloudformer
has higher accuracy and stronger versatility. In general, our method discards the idea
of pixel-by-pixel classification and uses multiple modules to integrate global and local
information for feature extraction and processing. We designed SPS Encoder and SupA
Decoder, which can extract richer features from the model. At the same time, we use
asynchronous position coding, so that the feature map retains more position information
when it enters the Transformer decoder. Experiments based on two public cloud-detection
datasets show that Cloudformer is superior to other current cloud-detection methods.
Experiments based on the ADE20K dataset also prove that our method is sufficiently
versatile. In the future, we will focus on improving the reasoning speed of the model.
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