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Abstract: In order to improve the accuracy of underwater object classification, according to the
characteristics of sonar images, a classification method based on depthwise separable convolution
feature fusion is proposed. Firstly, Markov segmentation is used to segment the highlight and
shadow regions of the object to avoid the loss of information caused by simultaneous segmentation.
Secondly, depthwise separable convolution is used to learn the deep information of images for feature
extraction, which produces less network computation. Thirdly, features of highlight and shadow
regions are fused by the parallel network structure, and pyramid pooling is added to extract the
multi-scale information. Finally, the full connection layers are used to achieve object classification
through the Softmax function. Experiments are conducted on simulated and real data. Results show
that the method proposed in this paper achieve superior performance compared with other models,
and it also has certain flexibility.

Keywords: sonar image; Markov segmentation; depthwise separable convolution; highlight; shadow;
underwater object classification

1. Introduction

Underwater automatic target recognition (ATR) technology is widely used in military
and civil fields, and object classification in sonar images is an important research field [1–3].
The highlighted echo and black shadow in sonar images are the important attributes of the
object, both of which have rich features and are the focus in the field of object classification.
In ref. [4], by minimizing the Euclidean distance between the points on the shadow contour
and the hyper ellipse, the shadow is fitted as a hyper ellipse. The hyper ellipse parameters
are then used to achieve the classification of the object in side-scan sonar images. In ref. [5],
the mean clustering method is used to separate the shadow region in the image and fuse
their features into the classification process as an auxiliary feature set. Different from
refs. [4,5], the highlight regions in sonar images are segmented by level set in [6], then the
invariant moment features are extracted and SVM is used to realize the recognition of ships.

The above research indicates the significance of highlight and shadow regions in sonar
images for object classification. However, these studies achieve object classification by
using only the highlight or shadow region. Due to the large interference of underwater
noise, small objects are often submerged in the noise. Conversely, in the process of sonar
image acquisition, there may be no shadow in the image, or objects of different shapes
may produce the same shadow at some special angles. Therefore, it has certain limitations
to realize object classification only relies on the highlight region or shadow region in
sonar images.

On this basis, the method based on feature description [7] segments sonar image
into the highlight region and shadow region, and then finds the optimal classification
feature set based on their features. In ref. [8], the image is divided into two parts by
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fuzzy morphology, and the object classification is achieved through the extracted shape
features combined with Markov Chain Monte Carlo theory (MCMC). In addition, several
other studies have used the idea of segmenting the sonar image into different parts for
classification or detection [9–11], but there are some deficiencies in feature extraction. In
recent years, a convolutional neural network has a mature application in the field of image
processing [12,13], such as image denoising, image restoration, and image separation.
It also has been used in the classification of objects in sonar images. For example, a
convolutional neural network is used [14] to classify moment features extracted from
a shadow region which are obtained by graph cut algorithm. The method of transfer
learning [15] is introduced to realize classification, and the requirement of the amount of
data is reduced while training the network. Therefore, the use of depthwise convolution
may be to improve the classification performance by joint using highlight and shadow
features of the underwater object in sonar images.

In this paper, Markov random field theory is used to segment highlight and shadow
regions of the object in sonar images respectively. The features of the two regions are
extracted through the depthwise separable convolution. Then, the extracted feature maps
are fused at the last convolution layer. The fusion features are used to achieve the object
classification through full connection layers. The contribution of the proposed method
is stated below. The object information is preserved to a large extent by segmenting the
object image separately. The feature extraction capability and lightweight advantage of
depthwise separable convolution are utilized to improve the classification capability of
the network. Pyramid pooling is added in front of the full connection layer to extract the
multi-scale information. This method can also be used to achieve classification by a single
region when the highlight is blocked or the shadow is missing.

The remainder of this paper is organized as follows. In Section 2, we introduce
the structure of the underwater object classification method proposed in this paper. The
methods and material including the image classification method, improved depthwise
separable convolution, single feature extraction network, and classification network are
presented in Section 3. Data set description and experimental results for the classification
tasks are demonstrated in Section 4. The conclusions of this work are highlighted in
Section 5.

2. Structure of Underwater Object Classification Method

The classification system of underwater object joints using highlight and shadow in
sonar images is shown in Figure 1. Starting from the whole process of object classification,
three steps are mainly considered in model structure design, namely the image segmenta-
tion part, feature extraction part, and fusion classification part. The main content of the
image segmentation part is to complete the segmentation of the input images. The feature
extraction part mainly introduces the depthwise separable convolution and its improved
methods, including the introduction of activation function, by aiming at the construction
of a single feature extraction network. The fusion classification part mainly includes the
fusion and classification process of the previous feature extraction network results. The
specific implementation process of each part is as follows:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 14 
 

 
Figure 1. Joint classification system of highlight and shadow of small objects in underwater sonar 
images. 

2.1. Image Segmentation 
It is usually necessary to segment the sonar image before classifying suspicious ob-

jects in the images. The image segmentation algorithm based on Markov random field 
makes use of the relevant information between adjacent pixels, which can describe the 
local statistical characteristics of the image and segment the image with noise effectively. 
Markov random field theory combined with the conditional iterative algorithm is used to 
segment the image preliminarily. The morphological corrosion and expansion operation 
is applied for post-processing. After obtaining the highlight and shadow of the object in 
the sonar image, the binary image dataset of the object is established. 

2.2. Feature Extraction 
Feature extraction is mainly achieved by improved depthwise separable convolution. 

In this part, the defect of depthwise separable convolution is improved, and the feature 
extraction network is designed and optimized according to the image characteristics. The 
binary images of the segmented highlight and shadow segmented by method in Section 
2.1 are input into the feature extraction network to obtain the depth convolution features 
of the object. 

2.3. Fusion Classification 
In the process of fusion classification, the above convolution features are fused by a 

connection function and predicted by the Softmax classification function. The depth con-
volution features extracted from the two parts are fused to obtain multi-scale features, 
which are input into the Pyramid pooling. Then the feature vector of the object is put into 
the full connection layer to obtain the classification result of the object.  

3. Implementation of Proposed Method 
The implementation process of the method proposed in this paper is described. Spe-

cifically, the segmentation method of sonar image is introduced in Section 3.1; then, the 
basic depthwise separable convolution is provided in Section 3.2, including its shortcom-
ings and improvement measure, as well as the design of single feature extraction network; 
finally, the parallel classification network architecture is explained in Section 3.3, and the 
process of feature fusion and object classification is further presented. 

3.1. Highlight and Shadow Segmentation 
It is well known in the machine learning community that the interference of back-

ground information may affect the accuracy of network classification if the original sonar 
image is directly used as the input of the network. Conversely, the huge amount of com-
putation brought by the large image size will increase the network training and prediction 
time. Based on these reasons, the original sonar image is firstly segmented before input 
into the network. This can make the network pay attention to the key regions in the sonar 

Figure 1. Joint classification system of highlight and shadow of small objects in underwater sonar images.



Appl. Sci. 2022, 12, 3268 3 of 13

2.1. Image Segmentation

It is usually necessary to segment the sonar image before classifying suspicious objects
in the images. The image segmentation algorithm based on Markov random field makes
use of the relevant information between adjacent pixels, which can describe the local
statistical characteristics of the image and segment the image with noise effectively. Markov
random field theory combined with the conditional iterative algorithm is used to segment
the image preliminarily. The morphological corrosion and expansion operation is applied
for post-processing. After obtaining the highlight and shadow of the object in the sonar
image, the binary image dataset of the object is established.

2.2. Feature Extraction

Feature extraction is mainly achieved by improved depthwise separable convolution.
In this part, the defect of depthwise separable convolution is improved, and the feature
extraction network is designed and optimized according to the image characteristics. The
binary images of the segmented highlight and shadow segmented by method in Section 2.1
are input into the feature extraction network to obtain the depth convolution features of
the object.

2.3. Fusion Classification

In the process of fusion classification, the above convolution features are fused by
a connection function and predicted by the Softmax classification function. The depth
convolution features extracted from the two parts are fused to obtain multi-scale features,
which are input into the Pyramid pooling. Then the feature vector of the object is put into
the full connection layer to obtain the classification result of the object.

3. Implementation of Proposed Method

The implementation process of the method proposed in this paper is described. Specif-
ically, the segmentation method of sonar image is introduced in Section 3.1; then, the basic
depthwise separable convolution is provided in Section 3.2, including its shortcomings and
improvement measure, as well as the design of single feature extraction network; finally,
the parallel classification network architecture is explained in Section 3.3, and the process
of feature fusion and object classification is further presented.

3.1. Highlight and Shadow Segmentation

It is well known in the machine learning community that the interference of back-
ground information may affect the accuracy of network classification if the original sonar
image is directly used as the input of the network. Conversely, the huge amount of compu-
tation brought by the large image size will increase the network training and prediction
time. Based on these reasons, the original sonar image is firstly segmented before input
into the network. This can make the network pay attention to the key regions in the
sonar image that affect the classification decision to improve the accuracy and efficiency of
object classification.

The image segmentation algorithm based on Markov random field uses Gibbs field
and maximum posterior probability MAP to achieve image segmentation, which has good
robustness to noise images. For each sonar image, the image segmentation algorithm of
the Markov random field (MRF) [16–19] is used in this paper. Hammersley–Clifford theo-
rem [20] proves that the joint probability of Markov random fields obeys Gibbs distribution,
so it can be obtained:

p(x|β) = 1
Z(β)

exp(−H(x|β)), (1)

where Z(β) is the regular constant and H is the energy function defined by potential
function Vc and a nonnegative scalar constant β:

H(x|β) = ∑c Vc(xc|β), (2)
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After that, a conditional iterative model (ICM) algorithm is applied to optimize the
noise and model parameters to obtain the region of highlight and shadow. Morphological
expansion and corrosion operations [21] are used to reprocess the segmentation results,
and then the small connected regions were removed to obtain a relatively complete binary
image of highlight and shadow. The segmentation result of a measured object in a synthetic
aperture sonar (SAS) image is shown in Figure 2. Figure 2a is the original sonar image,
Figure 2b is the corresponding highlight region of the object, and Figure 2c is the shadow
image of the object. Through the above operations, the highlight and shadow regions of
the underwater object are completely segmented.
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Figure 2. Synthetic aperture sonar image object segmentation results. (a) Original sonar image.
(b) The highlight area of the object. (c) The shadow area of the object.

3.2. Single Feature Extraction Network
3.2.1. Depthwise Separable Convolution

The standard convolution operation has the effect of filtering features based on the
convolutional kernels and combining features to produce a new representation. The filter-
ing and combination steps can be split into two steps via the use of factorized convolutions
called depthwise separable convolutions for substantial reduction in computational cost.
Depthwise separable convolution proposed by Howard in [22] are made up of two lay-
ers: depthwise convolutions and pointwise convolutions. Depthwise convolutions are
applied on each input channel, and pointwise convolutions are then used to create a linear
combination of the output of the depthwise layer.

As shown in Figure 3a, a standard convolutional layer takes as input a DF × DF ×M
feature map F and produces a DF × DF × N feature map G where DF is the width and
height of the input feature map, M is the number of input channels, DG is the width and
height of the output feature map, and N is the number of the output channel. The standard
convolutional layer is parameterized by convolution kernel K of size DK × DK ×M× N,
where DK is the size of the kernel, M is the number of input channels, and N is the number
of output channels. Standard convolutions have the computational cost of:

DK·DK·M·N·DF·DF, (3)
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where the computational cost depends multiplicatively on the number of input channels
M, the number of output channels N, the kernel size DK × DK, and the feature map size
DF × DF. Depthwise separable convolution decomposes a standard convolution into a
depthwise convolution and a pointwise convolution [22]. It can break the interaction
between the number of output channels and the size of the kernel [23–25].
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Depthwise convolution in Figure 3b has a computational cost of:

DK·DK·M·DF·DF, (4)

It only filters input channels, it does not combine them to create new features. So,
the pointwise convolution computes a linear combination of the output of depthwise
convolution via 1 × 1 convolution and generates new features [11], as seen in Figure 3c.
Pointwise convolution has a computational cost of:

M·N·DF·DF, (5)

Therefore, the cost of depthwise separable convolutions can be described as:

DK·DK·M·DF·DF + M·N·DF·DF, (6)

which is the sum of the depthwise and pointwise convolutions. By expressing convolution
as the process of filtering and combining, we obtain a reduction in the computation of:

(DK·DK·M·DF + M·N·DF·DF)/(DK·DK·M·N·DF·DF) = 1/N + 1/D2
K, (7)

When 3 × 3 depthwise separable convolutions are used, the computation can be
reduced to one-ninth of the standard convolutions. Compared with standard convolu-
tion, using depthwise separable convolution can save computing resources better, reduce
classification time, and improve classification performance.

3.2.2. Improved Depthwise Separable Convolution

To extract features better, reduce the dependency between parameters, and alleviate
the phenomenon of overfitting, the nonlinear activation function of Rectified Linear Unit
(ReLU) [26], which is defined as Equation (8), is used after each depthwise convolution
and pointwise convolution in the feature extraction network to strengthen the nonlinear
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expression ability. At the same time, a Batch Normalization layer (BN) [27] is usually
added before the activation function to accelerate the convergence of the network and
prevent gradient explosion. It can also improve the accuracy of the model. The calculation
formula of layer BN can be seen from Equation (9), where ∑m

i=1 xi is the output of the
convolution layer, µB and σ2

B are mean and variance respectively, and yi is the output result
after normalization.

ReLU(x) = max(x, 0), (8)
µB ← 1

m ∑m
i=1 xi

σ2
B ←

1
m ∑m

i=1 (xi − µB)
2,

x̂i = (xi − µB)/
√

σ2
B + ε

yi ← γx̂i + β

(9)

However, the use of ReLU activation function may leave part of the neural network in
a “dead” state, resulting in the loss of information. Suppose that there is a large gradient in
the forward conduction process of the network so that the weight of the neural network is
greatly updated, a negative value will be given by neuron for all inputs. Then the output of
this negative value becomes zero after ReLU, and the gradient flowing through this neuron
will always be zero. In this case, the neuron remains inactive, and the weight cannot be
updated so that the network will not be able to learn normally.

In order to avoid the occurrence of this phenomenon, we improve the network activa-
tion function, and replace the ReLU activation function with linear activation function after
pointwise convolution [28,29]. The linear activation function is expressed as Equation (10),
where x is the input, f (x) represents the output, W represents the weight of the function,
and b is the bias.

f (x) = Wx + b, (10)

Linear activation does not increase the computation amount of depthwise separable
convolution compared with ReLU activation function, so it retains the advantage in com-
putation amount. More importantly, the linear output can preserve the information of each
channel and provide more reliable features for subsequent object classification.

3.2.3. Structure of Single Feature Extraction Network

The feature extraction network designed in this paper mainly uses the improved
depthwise separable convolution described in Section 3.2.2, and has the following con-
siderations: (i) The dataset of sonar images is small, so fewer network layers are used to
reduce the complexity of the network; (ii) The size of the convolution kernel is closely
related to the amount of model parameters and computation. Larger convolution kernel
will lead to excessive model parameters and loss of image details, so we tend to use a small
convolution kernel in this paper; and (iii) Pooling layer will lose several original features
while controlling for overfitting, so it is necessary to reduce the use of pooling layer in
feature extraction.

All the above considerations are to make the network more suitable for underwater
object classification and achieve better results. The structure of the single feature extraction
network designed in this paper is shown in Figure 4, which has two traditional convolutions
and seven depthwise separable convolution blocks (Block). Among the structure, each
Block is composed of several improved depthwise separable modules. The network layer
structure and parameters of the improved depthwise separable module are shown in
Table 1, which is composed of three different convolutions. The structure and parameters
of the whole feature extraction network are shown in Table 2, where t is the extension factor
of the convolution layer in the depthwise separable module, c and n are the numbers of
output channels of the network layer and the repetition times of the depthwise separable
module, and s is the convolution stride.
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Table 1. Structure of improved depth separation module.

Layer Kernel Size Activation Function

Convolution 1 × 1 ReLU
Depthwise Convolution 3 × 3 ReLU
Pointwise Convolution 1 × 1 Linear

Table 2. Structure of feature extraction network.

Layer t c n s

Conv1 - 32 1 2
Block1 1 16 1 1
Block2 6 24 2 2
Block3 6 32 3 2
Block4 6 64 4 2
Block5 6 96 3 1
Block6 6 160 3 2
Block7 6 320 1 1
Conv2 - 128 1 1

3.3. Fusion Classification Network

In order to make full use of the object features extracted by the single feature extraction
network in Section 2.2 and achieve better results, we fuse the features of the two parts
and use the fusion features for object classification. In the process of feature extraction,
the shallow features of the network reflect more original information of the image, while
the deep features of the network are more suitable for object classification. Therefore, we
complete the fusion operation in the position of the last convolution layer of the single
feature extraction network. In general, the classification of objects can be realized by using
the full connection layer with fixed input channel. However, the structure of the image
may be damaged if we adjust all images to the same size forcibly when the size of the
sonar image is different. Spatial pyramid pooling [30,31] can convert a feature map of
any size into a feature vector of fixed size, which can be sent to the full connection layer.
Moreover, pyramid pooling can extract multi-scale features and improve the effect of object
classification [32,33].

Pyramid pooling is added to the classification part, and the structure of the classi-
fication network is seen in Figure 5. Firstly, the output of the last convolution layer of
the two single feature extraction networks is fused by Equation (11), where input1 is the
highlight images of the input, F1 is the single feature extraction network, and F1(input1) is
the highlight feature map of the last layer of the feature extraction network. The shadow
region is in the same way. F is the fusion feature map to realize the combination of highlight
and shadow features.

F = Concate(F1(input1), F2(input2)), (11)

Secondly, after fusing the features, a pyramid pooling layer is added to obtain the
features of fixed size. Thirdly, full connection layer1 is added to reduce data dimension,
and full connection layer2 is applied to realize object classification.

In order to improve the network fitting, the dropout function is added after both full
connection layers to randomly drop out some cells; and the drop-out rate is set to 0.5. The
output value of multiple categories can be converted into probability distribution in the
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range of [0, 1] by Softmax function, as shown in Equation (12), where zi is the output value
of the ith node and C is the number of output nodes, the number of classification categories.

So f tmax(zi) =
ezi

∑C
c=1 ezi

, (12)
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4. Experiments and Analysis

The experimental dataset includes object images of three shapes, which are used
for training and testing under different models to verify the accuracy of the proposed
method in the underwater object classification task. The GPU of the experiment computer
is RTX2070 and the CPU is 6-core i7-10750H. The network is built on Keras deep learning
framework and accelerated by CUDNN.

4.1. Dataset

The dataset used includes real sonar images collected by lake and sea trials and
simulated images obtained by three-dimensional modeling software, including sphere,
cylinder, and truncated cone. The specific number of which is shown in Table 3. Simulated
images are used for auxiliary training of the model. During the simulation, the grazing
angle between sonar and the object is 30~45◦, and the angle between the object axis and the
incident acoustic wave is 0~180◦. Some experimental images can be seen in Figure 6.
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Table 3. Number of experimental data set.

Shape Simulated Images Real Images

sphere 1200 24
cylinder 2410 18

truncated cone 2410 27

4.2. Experiment1: Performance of Single-Channel Classification Network with Different Feature
Extraction Module

The whole network model proposed is a parallel fusion network, including two input
layers, two parallel feature extraction networks, a fusion layer, and a classification layer.
The two channels input different images respectively. However, the existing classification
network is usually a single-channel network with only one input. Therefore, to objec-
tively compare them with other models, we use the single-channel classification network
composed of one input layer, one feature extraction network, and a classification layer
compared with other models. Except that the feature extraction module is different (VGG16,
Resnet50 and feature extraction network in this paper), the other structures are the same.
The experimental data are highlight images segmented from simulated data of the object
with three shapes. It is worth noting that the classification layer of VGG16 and Resnet itself
is the same as that used in this paper, so the comparison of the feature extraction network
is equivalent to the comparison of the whole single-channel model.

In this experiment, 80% of the images are randomly selected for training, and the
remaining are used as a test set to verify network performance. The cost function of the
network is classified as cross entropy to calculate the distance between the predicted value
and the real label. Optimizer RMSProp is used to optimize the parameters of the whole
network. During network training, the dropout rate is set to 0.5, the batch size is 16, the
learning rate is 0.0001, and the number of iterations is 100. After feature extraction is
completed, classification results are obtained by using the full-connection classification
layer. The object classification performance on the single-channel classification network
with different feature extraction modules is shown in Table 4.

Table 4. Classification performance of single-channel classification network with different feature
extraction modules.

Model Train Time/ms Test Time/ms Flops/M Paras/M Accuracy/%

VGG16 6 3 781 65.1 90.7
Renet50 8 2 549 45.7 80.7

This Paper 2 0.7 23 1.9 90.1

We use the network training time (Train Time), test time (Test Time), the amount of
calculation (Flops), the number of parameters (Paras), and classification accuracy (Accuracy)
to measure the classification performance of the network. The train time and test time
of the network refers to the time that the network classifies each image in the training
and testing process. The amount of computation and the number of parameters are two
important indicators to measure the complexity of the model. The amount of computation
corresponds to the time complexity of the model, that is, the length of the network execution
time. The number of parameters corresponds to the space complexity of the model, that
is, the amount of computer memory that needs to be occupied. Accuracy is the degree to
which the model classifies objects correctly.

Results in Table 4 show that VGG16, as a feature extraction network, has the best
classification accuracy of 90.7%, but its time cost is also high when the classification time
is 6 ms during training and the test time is up to 3 ms per image. Moreover, its amount
of calculation and the number of parameters are the largest of these models. When using
Resnet50 for feature extraction, its time complexity and memory occupation are generally
smaller than VGG16; however, its accuracy is also reduced to a certain extent. Due to
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that, it is not suitable for the underwater object classification task. The model with feature
extraction network designed in this paper reduces the classification time to some extent on
average, compared with the other two networks, in achieving object classification. That
is, the classification accuracy is only 0.6% worse than VGG16. Meanwhile, it has the least
computational cost and the lightest model structure, which is more suitable for the object
classification task.

4.3. Experiment2: Validation of Joint Classification Network

Using the network proposed in Figures 4 and 5, experiments are conducted on sim-
ulated images and real data. The parameters of the network are the same as previous
experiments and the experimental process is as follows: (i) Using the joint classification
method proposed in this paper, the binary images of highlight and shadow are input in
pairs into the feature extraction network shown in Figure 4 for feature extraction; the
network shown in Figure 5 is used to complete feature fusion and classification; (ii) the
feature extraction network shown in Figure 4 is used to input the segmented highlight,
shadow, and original images respectively, and realize classification process through this
single network.

The average classification accuracy obtained after ten experiments is shown in Table 5.
Results show that the classification accuracy obtained by feature extraction using the
original image of the object is the lowest with 67.1% of real data, followed by the shadow
image of the object with 81.3%. When using highlight images for object classification,
the accuracy of simulated data is increased by 11.4% and 6.6%, respectively. Compared
with original and shadow images, the accuracy of real data is increased by 18.6% and
4.4%, respectively. The joint classification method proposed in this paper has the highest
classification accuracy, reaching 93.1% and 90.8% respectively. The reason may be that
the segmented images are binary, and the extracted features are shape features. In some
angles, different objects will have the same shape, which is easy to cause the possibility of
misclassification. The method proposed in this paper uses the feature information of both
two parts at the same time to get higher classification accuracy.

Table 5. Classification accuracy of simulation and real data.

Input Simulated Images/% Real Images/%

Original Image 78.7 67.1
Shadow Image 86.7 81.3

Highlight Image 90.1 85.7
Joint of Both 93.1 90.8

4.4. Experiment 3: Robustness of Joint Classification Network

In the acquisition of sonar images, the object may not have shadows due to angle or
other reasons. In order to verify the classification performance of the proposed network,
classification experiments are conducted on simulated and real data. The network training
uses a pair of the complete highlight-shadow image. The test process only uses a single
highlight/shadow image, and the missing image is recorded as an empty array. The
classification results of this experiment are shown in Table 6.

Table 6. Classification accuracy of test sets.

Input Simulation Images/% Real Images/%

Shadow image Only 83.6 80.0
Highlight image Only 86.7 83.1

Under the absence of the highlight region, the joint classification method proposed
in this paper only uses a shadow image to realize the classification. The accuracy of a
simulated and real image is approximately 83.6% and 80%. Under the absence of a shadow
region, the classification accuracy of the proposed joint classification network is 86.7 and
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83.1%, respectively. Compared with the results of the experiment on normal data, the above
classification accuracy of using only one kind of image is relatively reduced by using the
proposed joint classification network. This may be due to the certain interference of the
empty array input to the network. Nevertheless, the lowest accuracy of the network can
still reach about 80%, which has certain robustness for the underwater object classification
task compared with the single network that loses the classification effectiveness under
such circumstances.

5. Conclusions

A new method for underwater object classification is studied in this paper. In this
method, Markov random field theory is used to segment the highlight and shadow regions
of the underwater sonar image respectively, which preserves the complete information of
the object compared with some methods that segment highlight the region and shadow
simultaneously. Secondly, the depthwise separable convolution is used to automatically
extract the features of the two parts, which reduces the computation and complexity of
the network, avoids the problem of incomplete manual feature extraction, reduces the
classification time, and improves efficiency. In addition, the feature fusion is realized by
parallel network structure, which makes good use of the features of shadow and highlight
regions. According to the characteristics of sonar imaging and the real shape of the
objects, the simulation data set is established, which is more effective for underwater target
classification tasks when using transfer learning.

In conclusion, this method makes use of the advantages of depthwise separable con-
volution in feature extraction, avoids the defects of manual feature extraction, could adapt
to different image sizes of the dataset, and makes full use of the effective information in the
images. The experimental results are as follows: (1) Compared with VGG16 and Resnet50
models, the classification model with feature extraction network designed in this paper
has better overall classification performance. The classification accuracy reaches 90.1%, the
average calculation cost is reduced by dozens of times, and the model is the lightest with
only 1.9 M. (2) The classification results of the proposed classification method based on
depthwise separable convolution feature fusion is higher than that of the single-channel
network. The accuracy is improved by 7.9% and 12.7% on average in the simulation and
real sonar images, which also proves the effectiveness of the parallel network architecture.
(3) In the case of partial data missing, the method proposed in this paper is still effective,
and the classification accuracy can reach at least 80%, indicating that the network has
certain robustness.

However, there are also some limitations and deficiencies in the research process. For
example, there is a certain gap between the classification accuracy of the simulated and
the real sonar image. It is the essential difference between the two images that causes
this difference, which also provides an important idea for future research. Therefore,
our subsequent research will focus on the following aspects. Firstly, the characteristics
of an object in sonar images will be studied to find a more reliable image simulation
method. Secondly, a more effective feature extraction network will be designed according
to the sonar images. Finally, a classification method suitable for the complex underwater
environment will be proposed to achieve object classification.
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