On the Reliability of CNNs in Clinical Practice: A Computer-Aided Diagnosis System Case Study
Abstract
:1. Introduction
2. Background and Related Works
2.1. Medical Background
2.2. Related Works
3. Experimental Setup
3.1. Materials
3.1.1. Data Set
3.1.2. Synthetic Images
- We selected the ith candidate position and its relative bounding box;
- We filtered the candidate WBC by preserving the ones whose sizes are ≤ the bounding box size;
- We randomly extracted a single WBC among the filtered WBC;
- We transformed the selected WBC with random rotations (multiples of 90 degrees), horizontal and vertical flipping (note that the size and appearance of the WBC remain unaltered);
- We placed the WBC in the candidate position by simply replacing the original image content with the foreground region of the binary mask;
- We applied an average filter of size 3 × 3 along the new WBC borders to better blend it into the original image.
3.2. Methods
3.3. Setup
4. Experimental Results
4.1. Evaluation on Real Images
4.2. Evaluation on Synthetic Images
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PBS | Peripheral Blood Smear |
RBC | Red Blood Cells |
WBC | White Blood Cells |
ALL | Acute Lymphoblastic Leukaemia |
AML | Acute Myeloid Leukaemia |
CLL | Chronic Lymphocytic Leukaemia |
CML | Chronic Myeloid Leukaemia |
CAD | Computer-Aided Diagnosis |
ALL-IDB | Acute Lymphoblastic Leukaemia Image Database |
BB | Bounding Boxes |
CNN | Convolutional Neural Network |
TP | True Positive |
TN | True Negative |
FN | False Negative |
FP | False Positive |
A | Accuracy |
P | Precision |
R | Recall |
S | Specificity |
F1 | F1-score |
References
- Zhao, Z.; Zheng, P.; Xu, S.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems-NIPS’12, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 1, pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, W.; Gao, R.; Jin, Z.; Wang, X. Recent advances in the application of deep learning methods to forestry. Wood Sci. Technol. 2021, 55, 1171–1202. [Google Scholar] [CrossRef]
- Sindagi, V.A.; Patel, V.M. A survey of recent advances in CNN-based single image crowd counting and density estimation. Pattern Recognit. Lett. 2018, 107, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.; Chaudhury, S.; Sarkar, M.; Soin, A.S. Ultrasound image enhancement using structure oriented adversarial network. IEEE Signal Process. Lett. 2018, 25, 1349–1353. [Google Scholar] [CrossRef]
- Qin, F.; Gao, N.; Peng, Y.; Wu, Z.; Shen, S.; Grudtsin, A. Fine-grained leukocyte classification with deep residual learning for microscopic images. Comput. Methods Programs Biomed. 2018, 162, 243–252. [Google Scholar] [CrossRef]
- Zhou, B.; Khosla, A.; Lapedriza, À.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Zheng, Y.; Huang, J.; Chen, T.; Ou, Y.; Zhou, W. Transfer of Learning in the Convolutional Neural Networks on Classifying Geometric Shapes Based on Local or Global Invariants. Front. Comput. Neurosci. 2021, 15, 1–13. [Google Scholar] [CrossRef]
- Ward, C.M.; Harguess, J.; Crabb, B.; Parameswaran, S. Image quality assessment for determining efficacy and limitations of Super-Resolution Convolutional Neural Network (SRCNN). In Applications of Digital Image Processing XL; International Society for Optics and Photonics: San Diego, CA, USA, 2017; Volume 10396, p. 1039605. [Google Scholar]
- Biesseck, B.J.G.; Junior, E.R.A.; Nascimento, E.R. Exploring the Limitations of the Convolutional Neural Networks on Binary Tests Selection for Local Features. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2019, Volume 4: VISAPP, Prague, Czech Republic, 25–27 February 2019; Trémeau, A., Farinella, G.M., Braz, J., Eds.; pp. 261–271. [Google Scholar]
- Xu, Y.; Vaziri-Pashkam, M. Limits to visual representational correspondence between convolutional neural networks and the human brain. Nat. Commun. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Sabottke, C.F.; Spieler, B.M. The Effect of Image Resolution on Deep Learning in Radiography. Radiol. Artif. Intell. 2020, 2, e190015. [Google Scholar] [CrossRef]
- Genovese, A.; Hosseini, M.S.; Piuri, V.; Plataniotis, K.N.; Scotti, F. Acute lymphoblastic leukemia detection based on adaptive unsharpening and deep learning. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processings, Toronto, ON, Canada, 6–11 June 2021; pp. 1205–1209. [Google Scholar] [CrossRef]
- Matek, C.; Schwarz, S.; Spiekermann, K.; Marr, C. Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nat. Mach. Intell. 2019, 1, 538–544. [Google Scholar] [CrossRef]
- Khandekar, R.; Shastry, P.; Jaishankar, S.; Faust, O.; Sampathila, N. Automated blast cell detection for Acute Lymphoblastic Leukemia diagnosis. Biomed. Signal Process. Control 2021, 68, 102690. [Google Scholar] [CrossRef]
- Anilkumar, K.; Manoj, V.; Sagi, T. Automated detection of Leukemia by Pretrained Deep Neural Networks and Transfer Learning: A comparison. Med. Eng. Phys. 2021, 98, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Meher, S. An efficient deep Convolutional Neural Network based detection and classification of Acute Lymphoblastic Leukemia. Expert Syst. Appl. 2021, 183, 115311. [Google Scholar] [CrossRef]
- Vogado, L.; Veras, R.; Aires, K.; Araújo, F.; Silva, R.; Ponti, M.; Tavares, J. Diagnosis of leukaemia in blood slides based on a fine-tuned and highly generalisable deep learning model. Sensors 2021, 21, 2989. [Google Scholar] [CrossRef] [PubMed]
- Al-qudah, R.; Suen, C.Y. Improving blood cells classification in peripheral blood smears using enhanced incremental training. Comput. Biol. Med. 2021, 131, 104265. [Google Scholar] [CrossRef]
- Kalbani, N.A.; Weitzman, S.; Abdelhaleem, M.; Carcao, M.; Abla, O. Acute lymphoblastic leukemia presenting with gross hematuria. Paediatr. Child Health 2007, 12, 573–574. [Google Scholar] [CrossRef] [Green Version]
- National Cancer Institute. Leukemia. 2021. Available online: https://www.cancer.gov/types/leukemia/hp (accessed on 11 June 2021).
- Smith, M.; Arthur, D.; Camitta, B.; Carroll, A.J.; Crist, W.; Gaynon, P.; Gelber, R.; Heerema, N.; Korn, E.L.; Link, M.; et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J. Clin. Oncol. 1996, 14, 18–24. [Google Scholar] [CrossRef]
- Merino, A.; Boldú, L.; Ermens, A. Acute myeloid leukaemia: How to combine multiple tools. Int. J. Lab. Hematol. 2018, 40, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Filho, A.; Piñeros, M.; Ferlay, J.; Soerjomataram, I.; Monnereau, A.; Bray, F. Epidemiological patterns of leukaemia in 184 countries: A population-based study. Lancet Haematol. 2018, 5, e14–e24. [Google Scholar] [CrossRef]
- Medicine, Y. Diagnosing Leukemia. Available online: https://www.yalemedicine.org/conditions/leukemia-diagnosis (accessed on 1 March 2022).
- National Cancer Institute. Adult Acute Lymphoblastic Leukemia Treatment. Available online: https://www.cancer.gov/types/leukemia/patient/adult-all-treatment-pdq (accessed on 1 March 2022).
- Alomari, Y.M.; Sheikh Abdullah, S.N.H.; Zaharatul Azma, R.; Omar, K. Automatic detection and quantification of WBCs and RBCs using iterative structured circle detection algorithm. Comput. Math. Methods Med. 2014, 2014, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ruberto, C.D.; Loddo, A.; Putzu, L. A leucocytes count system from blood smear images Segmentation and counting of white blood cells based on learning by sampling. Mach. Vis. Appl. 2016, 27, 1151–1160. [Google Scholar] [CrossRef]
- Mahmood, N.H.; Lim, P.C.; Mazalan, S.M.; Razak, M.A.A. Blood cells extraction using color based segmentation technique. Int. J. Life Sci. Biotechnol. Pharma Res. 2013, 2, 2250–3137. [Google Scholar]
- Gupta, A.; Gupta, R. ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging; Springer Nature: Singapore, 2019. [Google Scholar]
- Ruberto, C.D.; Loddo, A.; Putzu, L. Detection of red and white blood cells from microscopic blood images using a region proposal approach. Comput. Biol. Med. 2020, 116, 103530. [Google Scholar] [CrossRef] [PubMed]
- Shafique, S.; Tehsin, S. Acute Lymphoblastic Leukemia Detection and Classification of Its Subtypes Using Pretrained Deep Convolutional Neural Networks. Technol. Cancer Res. Treat. 2018, 17, 1533033818802789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semerjian, S.; Khong, Y.F.; Mirzaei, S. White Blood Cells Classification Using Built-in Customizable Trained Convolutional Neural Network. In Proceedings of the 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 5–7 March 2021; pp. 357–362. [Google Scholar]
- Huang, P.; Wang, J.; Zhang, J.; Shen, Y.; Liu, C.; Song, W.; Wu, S.; Zuo, Y.; Lu, Z.; Li, D. Attention-Aware Residual Network Based Manifold Learning for White Blood Cells Classification. IEEE J. Biomed. Health Inf. 2020, 25, 1206–1214. [Google Scholar] [CrossRef]
- Toğaçar, M.; Ergen, B.; Cömert, Z. Classification of white blood cells using deep features obtained from Convolutional Neural Network models based on the combination of feature selection methods. Appl. Soft Comput. J. 2020, 97, 106810. [Google Scholar] [CrossRef]
- Yao, X.; Sun, K.; Bu, X.; Zhao, C.; Jin, Y. Classification of white blood cells using weighted optimized deformable convolutional neural networks. Artif. Cells Nanomed. Biotechnol. 2021, 49, 147–155. [Google Scholar] [CrossRef]
- Thanh, T.T.P.; Pham, G.N.; Park, J.H.; Moon, K.S.; Lee, S.H.; Kwon, K.R. Acute leukemia classification using convolution neural network in clinical decision support system. CS IT Conf. Proc. 2017, 7, 49–53. [Google Scholar]
- Cancer Treatment Centers of America. Types of Leukemia. 2021. Available online: https://www.cancercenter.com/cancer-types/leukemia/types (accessed on 11 June 2021).
- Institute, N.C. Childhood Acute Lymphoblastic Leukemia Treatment. Available online: https://www.cancer.gov/types/leukemia/patient/child-all-treatment-pdq (accessed on 16 November 2021).
- Labati, R.D.; Piuri, V.; Scotti, F. All-IDB: The acute lymphoblastic leukemia image database for image processing. In Proceedings of the IEEE ICIP International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 2045–2048. [Google Scholar]
- Nikolenko, S. Synthetic Data for Deep Learning; Springer International Publishing AG: New York, NY, USA, 2021; Volume 174. [Google Scholar]
- Meharban, M.; Sabu, M.; Krishnan, S. Introduction to Medical Image Synthesis Using Deep Learning:A Review. In Proceedings of the 2021 7th International Conference on Advanced Computing and Communication Systems, ICACCS 2021, Coimbatore, India, 19–20 March 2021; pp. 414–419. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Shin, H.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
Method | Work | Task | Approach |
---|---|---|---|
Det/seg | [20] | WBC detection | detection from entire images |
[36] | WBC detection | two-steps approach | |
[39] | WBC detection + classification | detection from entire images | |
[38] | WBC segmentation + classification | work on single WBC | |
Classification only | [40] | WBC types classification | single WBC approach |
[41] | WBC types classification | single WBC approach | |
[24] | Blood cells classification | work on single cells | |
[19] | WBC types classification | single WBC analysis | |
[37] | ALL classification | work on single WBC | |
[42] | ALL classification | entire image | |
[21] | ALL classification | entire image | |
[22] | ALL classification | entire image | |
[23] | ALL classification | entire image with fine-tuning |
Network | Acc (%) | Pre (%) | Rec (%) | Spe (%) | F1 (%) |
---|---|---|---|---|---|
AlexNet | 72.73 | 83.33 | 71.43 | 75.00 | 76.92 |
VGG-16 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
VGG-19 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
ResNet-18 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
ResNet-50 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
ResNet-101 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
GoogLeNet | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Inception-v3 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
ShuffleNet | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
MobileNet-v2 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loddo, A.; Putzu, L. On the Reliability of CNNs in Clinical Practice: A Computer-Aided Diagnosis System Case Study. Appl. Sci. 2022, 12, 3269. https://doi.org/10.3390/app12073269
Loddo A, Putzu L. On the Reliability of CNNs in Clinical Practice: A Computer-Aided Diagnosis System Case Study. Applied Sciences. 2022; 12(7):3269. https://doi.org/10.3390/app12073269
Chicago/Turabian StyleLoddo, Andrea, and Lorenzo Putzu. 2022. "On the Reliability of CNNs in Clinical Practice: A Computer-Aided Diagnosis System Case Study" Applied Sciences 12, no. 7: 3269. https://doi.org/10.3390/app12073269
APA StyleLoddo, A., & Putzu, L. (2022). On the Reliability of CNNs in Clinical Practice: A Computer-Aided Diagnosis System Case Study. Applied Sciences, 12(7), 3269. https://doi.org/10.3390/app12073269