Offloading of Atomic Tasks in Satellite Networks: A Fast Adaptive Resource Collaboration Method
Abstract
:1. Introduction
- Although the time cost consumption of the traditional method is low, its performance cannot satisfy the high time-effective requirements for offloading atomic tasks in Spatio-temporal dynamic characteristics network environments.
- The traditional satellite task offloading method does not consider the concept of inter-satellite collaborative computing, the inter-satellite resource coordination capability is low.
- There is no optimization method for on-board task cache.
- We propose the OCMF model, which divides the original problem into three parts and designs the maximum flow transmission, task offload, and task cache optimization models.
- We introduce the maximum flow calculation method to increase the number of unloaded atomic calculation tasks in the satellite network.
- We propose a method for high-orbit satellites to offload tasks to idle medium-earth satellites, which reduces the computational pressure of high-orbit satellites and makes full use of the remaining idle satellite resources.
- We have analyzed and compared the performance of various algorithms. The OCMF method has certain advantages in terms of time complexity and task execution timeliness.
2. Related Work
3. Task Offloading Model
3.1. Traffic Model
3.2. Local Calculation Model
3.3. Atomic Task Cache Model
3.4. Atomic Task Offloading Model
3.5. Problem Formulation
4. Method
4.1. Problem Conversion
4.2. Algorithm Design
4.2.1. Maximum Task Flow Transmission
Algorithm 1 Optimal allocation of task offloading quantity |
Input: Given a directed graph , Given time range , Given the atomic task request queue on each satellite. Output: The number of atomic tasks that can be unloaded by each satellite in a certain period . 1: set 2: set 3: repeat 4: repeat 5: Calculate the number of tasks that need to be unloaded by the satellites ; 6: [, f]=FordFulkerson(); 7: if then 8: 9: else 10: 11: end if 12: until V 13: until
14: return
|
4.2.2. Optimal Task Offloading
Algorithm 2 Satellite mission offloading optimization calculation |
Input: Given a directed graph , Given time range , Given the atomic task request queue on each satellite. Output: An array of offloading tasks 1: set 2: set 3: repeat 4: repeat 5: Calculate the maximum number of tasks that can be uninstalled 6: set 7: set 8: set 9: until V 10: until
11: return
|
4.2.3. Optimal Task Cache
Algorithm 3 Satellite mission buffer calculation method |
Input: Given a directed graph , Given time range , Given the atomic task request queue on each satellite. Output: An array of offloading tasks set set repeat repeat set until V repeat until until
return
|
5. Numerical Experiments
5.1. Time Complexity
5.2. Experimental Fundamentals
5.3. Parameter Setting
5.4. Results Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, H.; Wang, L.; Wang, X.; Lu, Z.; Liu, Y. The space-terrestrial integrated network: An overview. IEEE Commun. Mag. 2018, 56, 178–185. [Google Scholar] [CrossRef]
- Gür, G. Spectrum sharing and content-centric operation for 5G hybrid satellite networks: Prospects and challenges for space-terrestrial system integration. IEEE Veh. Technol. Mag. 2019, 14, 38–48. [Google Scholar] [CrossRef]
- Bi, Y.; Han, G.; Xu, S.; Wang, X.; Lin, C.; Yu, Z.; Sun, P. Software defined space-terrestrial integrated networks: Architecture, challenges, and solutions. IEEE Netw. 2019, 33, 22–28. [Google Scholar] [CrossRef]
- Chan, V.W. Optical satellite networks. J. Light. Technol. 2003, 21, 2811. [Google Scholar] [CrossRef]
- Xu, S.; Wang, X.W.; Huang, M. Software-defined next-generation satellite networks: Architecture, challenges, and solutions. IEEE Access 2018, 6, 4027–4041. [Google Scholar] [CrossRef]
- Kota, S.L. Multimedia satellite networks: Issues and challenges. In Multimedia Systems and Applications; International Society for Optics and Photonics: Bellingham, WA, USA, 1999; Volume 3528, pp. 600–618. [Google Scholar]
- Tang, Z.; Zhao, B.; Yu, W.; Feng, Z.; Wu, C. Software defined satellite networks: Benefits and challenges. In Proceedings of the IEEE Computers, Communications and IT Applications Conference, Beijing, China, 20–22 October 2014; pp. 127–132. [Google Scholar]
- Zhou, S.; Wang, G.; Zhang, S.; Niu, Z.; Shen, X.S. Bidirectional mission offloading for agile space-air-ground integrated networks. IEEE Wirel. Commun. 2019, 26, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Shang, B.; Yi, Y.; Liu, L. Computing over space-air-ground integrated networks: Challenges and opportunities. IEEE Netw. 2021, 35, 302–309. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J.; Min, G.; Zomaya, A.Y.; Georgalas, N. Fast Adaptive Task Offloading in Edge Computing based on Meta Reinforcement Learning. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 242–253. [Google Scholar] [CrossRef]
- Gao, Z.; Hao, W.; Han, Z.; Yang, S. Q-Learning-Based Task Offloading and Resources Optimization for a Collaborative Computing System. IEEE Access 2020, 8, 149011–149024. [Google Scholar] [CrossRef]
- Liu, L.; Qin, X.; Zhang, Z.; Zhang, P. Joint Task Offloading and Resource Allocation for Obtaining Fresh Status Updates in Multi-Device MEC Systems. IEEE Access 2020, 8, 38248–38261. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, T.; Li, H.; Zhang, Y.; Wu, W. Energy-Efficient Multimedia Task Assignment and Computing Offloading for Mobile Edge Computing Networks. IEEE Access 2020, 8, 36702–36713. [Google Scholar] [CrossRef]
- Zhang, N.; Guo, S.; Dong, Y.; Liu, D. Joint task offloading and data caching in mobile edge computing networks. Comput. Netw. 2020, 182, 107446. [Google Scholar] [CrossRef]
- Lu, H.; Gu, C.; Luo, F.; Ding, W.; Liu, X. Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning. Future Gener. Comput. Syst. 2020, 102, 847–861. [Google Scholar] [CrossRef]
- Yan, P.; Choudhury, S. Optimizing Mobile Edge Computing Multi-Level Task Offloading via Deep Reinforcement Learning. In Proceedings of the International Conference on Communications (ICC)—ICC 2020, Dublin, Ireland, 7–11 June 2020; pp. 1–7. [Google Scholar]
- Lu, H.; Gu, C.; Luo, F.; Ding, W.; Zheng, S.; Shen, Y. Optimization of Task Offloading Strategy for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning. IEEE Access 2020, 8, 202573–202584. [Google Scholar] [CrossRef]
- Yan, J.; Bi, S.; Zhang, Y.J.A. Offloading and Resource Allocation With General Task Graph in Mobile Edge Computing: A Deep Reinforcement Learning Approach. IEEE Trans. Wirel. Commun. 2020, 19, 5404–5419. [Google Scholar] [CrossRef]
- Zhang, Q.; Gui, L.; Hou, F.; Chen, J.; Zhu, S.; Tian, F. Dynamic Task Offloading and Resource Allocation for Mobile-Edge Computing in Dense Cloud RAN. IEEE Internet Things J. 2020, 7, 3282–3299. [Google Scholar] [CrossRef]
- Gavras, A.; Karila, A.; Fdida, S.; May, M.; Potts, M. Future Internet Research and Experimentation: The FIRE Initiative. ACM SIGCOMM Comput. Commun. Rev. 2007, 37, 89–92. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Liu, X.; Jolfaei, A. Task Offloading Strategy Based on Reinforcement Learning Computing in Edge Computing Architecture of Internet of Vehicles. IEEE Access 2020, 8, 173779–173789. [Google Scholar] [CrossRef]
- Sun, J.; Gu, Q.; Zheng, T.; Dong, P.; Valera, A.; Qin, Y. Joint Optimization of Computation Offloading and Task Scheduling in Vehicular Edge Computing Networks. IEEE Access 2020, 8, 10466–10477. [Google Scholar] [CrossRef]
- Yang, S. A Task Offloading Solution for Internet of Vehicles Using Combination Auction Matching Model Based on Mobile Edge Computing. IEEE Access 2020, 8, 53261–53273. [Google Scholar] [CrossRef]
- Xiao, Z.; Dai, X.; Jiang, H.; Wang, D.; Chen, H.; Yang, L.; Zeng, F. Vehicular Task Offloading via Heat-Aware MEC Cooperation Using Game-Theoretic Method. IEEE Internet Things J. 2020, 7, 2038–2052. [Google Scholar] [CrossRef]
- Raza, S.; Liu, W.; Ahmed, M.; Anwar, M.R.; Wang, S. An efficient task offloading scheme in vehicular edge computing. J. Cloud Comput. Adv. Syst. Appl. 2020, 9, 28. [Google Scholar] [CrossRef]
- Xiao, K.; Gao, Z.; Shi, W.; Qiu, X.; Yang, Y.; Rui, L. EdgeABC: An architecture for task offloading and resource allocation in the Internet of Things. Future Gener. Comput. Syst. 2020, 107, 498–508. [Google Scholar] [CrossRef]
- Lan, Y.; Wang, X.; Wang, D.; Liu, Z. Task Caching, Offloading and Resource Allocation in D2D-Aided Fog Computing Networks. IEEE Access 2019, 7, 104876–104891. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, C. Distributed task offloading strategy to low load base stations in mobile edge computing environment. Comput. Commun. 2020, 164, 240–248. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Chen, Y.; Li, Z. Mobile Edge Computing Based Task Offloading and Resource Allocation in 5G Ultra-Dense Networks. IEEE Access 2019, 7, 184172–184182. [Google Scholar] [CrossRef]
- Fan, Y.; Zhai, L.; Wang, H. Cost-Efficient Dependent Task Offloading for Multiusers. IEEE Access 2019, 7, 115843–115856. [Google Scholar] [CrossRef]
- Feng, W.; Yang, C.; Zhou, X. Multi-user and multi-task offloading decision algorithms based on imbalanced edge cloud. IEEE Access 2019, 7, 95970–95977. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Wang, J.; Liu, C.; Yan, Y. A Task Oriented Computation Offloading Algorithm for Intelligent Vehicle Network With Mobile Edge Computing. IEEE Access 2019, 7, 180491–180502. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, X.; Zhang, X.; Zhang, P.; Hou, Y.T. Cooperative Task Offloading in Three-Tier Mobile Computing Networks: An ADMM Framework. IEEE Trans. Veh. Technol. 2019, 68, 2763–2776. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, K.; Li, K.; Zhou, M.T.; Yang, Y. Parallel Scheduling of Multiple Tasks in Heterogeneous Fog Networks. In Proceedings of the 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh City, Vietnam, 6–8 November 2019. [Google Scholar]
- Shan, F.; Luo, J.; Jin, J.; Wu, W. Offloading Delay Constrained Transparent Computing Tasks with Energy-Efficient Transmission Power Scheduling in Wireless IoT Environment. IEEE Internet Things J. 2018, 6, 4411–4422. [Google Scholar] [CrossRef]
- Mazouzi, H.; Boussetta, K.; Achir, N. Maximizing mobiles energy saving through tasks optimal offloading placement in two-tier cloud: A theoretical and an experimental study. Comput. Commun. 2019, 144, 132–148. [Google Scholar] [CrossRef]
- Pham, Q.V.; Le, L.B.; Chung, S.H.; Hwang, W.J. Mobile Edge Computing with Wireless Backhaul: Joint Task Offloading and Resource Allocation. IEEE Access 2019, 7, 16444–16459. [Google Scholar] [CrossRef]
- Liu, P.; Li, J.; Sun, Z. Matching-Based Task Offloading for Vehicular Edge Computing. IEEE Access 2019, 7, 27628–27640. [Google Scholar] [CrossRef]
- Li, L.; Zhou, H.; Xiong, S.; Yang, J.; Mao, Y. Compound Model of Task Arrivals and Load-Aware Offloading for Vehicular Mobile Edge Computing Networks. IEEE Access 2019, 7, 26631–26640. [Google Scholar] [CrossRef]
- Tucker, A. A note on convergence of the Ford-Fulkerson flow algorithm. Math. Oper. Res. 1977, 2, 143–144. [Google Scholar] [CrossRef]
- Yu, G. Tasks Offloading Strategy with Caching Mechanism in Mobile Margin Computing. Comput. Appl. Softw. 2019, 36, 114–119. [Google Scholar]
- Wang, Y.; Sheng, M.; Ye, Q.; Zhang, S.; Zhuang, W.; Li, J. Optimal Dynamic Multi-Resource Management in Earth Observation Oriented Space Information Networks. arXiv 2019, arXiv:1907.12717. [Google Scholar]
- Guo, K.; Sheng, M.; Quek, T.Q.; Qiu, Z. Task offloading and scheduling in fog RAN: A parallel communication and computation perspective. IEEE Wirel. Commun. Lett. 2019, 9, 215–218. [Google Scholar] [CrossRef]
- Vallado, D.A.; Crawford, P.; Hujsak, R.; Kelso, T. Revisiting spacetrack report# 3. In Proceedings of the AIAA Astrodynamics Specialist Conference, Keystone, CO, USA, 21–24 August 2006; Volume 6753, p. 446. [Google Scholar]
ID | Scale | |
---|---|---|
Tasks | Satellites | |
D1 | 50 | 10 |
D2 | 100 | 20 |
D3 | 500 | 50 |
D4 | 1000 | 100 |
D5 | 1500 | 200 |
D6 | 5000 | 500 |
0.01, 0.1, 1, 10 | 2, 3, 4, 5, 6 | 10 | 3 |
Algorithms | w | F | ||||||
---|---|---|---|---|---|---|---|---|
PSO | 0 | - | - | 0.8 | 0.5 | 0.5 | - | 200 |
GA | 0 | - | 0.001 | - | - | - | - | 200 |
DE | 0 | - | 0.001 | - | - | - | 0.5 | 200 |
Algorithm | Time Consumption (s) | |||||
---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | D6 | |
ISSR | 18.94 | 31.82 | 157.46 | 294.19 | 471.91 | 1530.55 |
OCMF | 14.23 | 30.55 | 158.28 | 292.76 | 452.11 | 1523.86 |
FCFS | 48.53 | 92.22 | 543.37 | 976.78 | 1422.89 | 5019.90 |
PSO | 65.07 | 116.07 | 3635.15 | 17,667.49 | 52,237.70 | 113,016.89 |
GA | 63.16 | 107.67 | 920.51 | 17,702.55 | 50,301.48 | 44,665.74 |
DE | 66.04 | 110.88 | 7904.71 | 34,649.01 | 80,317.24 | 62,888.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhao, W.; Fan, H. Offloading of Atomic Tasks in Satellite Networks: A Fast Adaptive Resource Collaboration Method. Appl. Sci. 2022, 12, 3319. https://doi.org/10.3390/app12073319
Li Y, Zhao W, Fan H. Offloading of Atomic Tasks in Satellite Networks: A Fast Adaptive Resource Collaboration Method. Applied Sciences. 2022; 12(7):3319. https://doi.org/10.3390/app12073319
Chicago/Turabian StyleLi, Yanbing, Wei Zhao, and Huilong Fan. 2022. "Offloading of Atomic Tasks in Satellite Networks: A Fast Adaptive Resource Collaboration Method" Applied Sciences 12, no. 7: 3319. https://doi.org/10.3390/app12073319
APA StyleLi, Y., Zhao, W., & Fan, H. (2022). Offloading of Atomic Tasks in Satellite Networks: A Fast Adaptive Resource Collaboration Method. Applied Sciences, 12(7), 3319. https://doi.org/10.3390/app12073319