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Abstract: Pre-processing associated with massive multiple input-multiple output (MIMO) systems
can lead to signals with high envelope fluctuations, which are very prone to nonlinear effects,
especially when massive MIMO schemes are combined with orthogonal transform multiplexing
(OFDM) modulations. If the nonlinear characteristics that affect a given system are known, we can
design appropriate receivers that take into account the nonlinear effects introduced by the transmitter.
Cubic systems are particularly important, not only because they can approximate many nonlinear
effects (e.g., due to the power amplifier or clipping effects), but also because many more complex
nonlinear characteristics in communication schemes can be replaced by equivalent lower-order
nonlinear characteristics in general, and cubic characteristics in particular. To compensate the effects
at the receiver side (e.g., by using the so-called Bussgang receivers), we need to estimate the nonlinear
operation that was introduced at the transmitter, and this should be done blindly, without the need
of training symbols. The paper contains a description of a mathematical approach for modeling
and identification of nonlinear kernels in cubic systems. Based on theoretical tools of HOC in
cubic systems, we build a new formula which relates the second- and fifth-order cumulants. Our
performance results indicate that the proposed approach allows an accurate identification, yielding
the desired kernels via fifth-order cumulants, and ensures a very good convergence, outperforming
existing adaptive methods. This is achieved blindly, by exploiting the maximum information of the
output system, making it suitable for many practical nonlinear effects.

Keywords: nonlinear distortion effects; cubic system identification; fifth-order cumulants; polyspectra;
massive MIMO; OFDM

1. Introduction

In digital communication, strong nonlinear effects throughout the transmission chain
can have a negative impact on the overall system’s performance [1]. Pre-processing associ-
ated with massive MIMO systems can lead to signals with envelope fluctuations, which
are very prone to nonlinear effects, especially when massive MIMO schemes are combined
with OFDM modulations [1–10]. Several works focused on MIMO systems and their im-
portant parameters such as mutual coupling [11–14]. Pre-processing techniques employed
at the transmitter side of MIMO systems, such as the ones used by MIMO singular value
decomposition (MIMO-SVD) techniques, can lead to signals with large envelope fluctu-
ations and high peak to-average power ratio (PAPR) [3]. The same occurs with the Zero
Forcing Transmitter (ZFT), Maximum Ratio Transmitter (MRT), and Equal Gain Transmitter
(EGT), when used in m-MIMO implementation with pre- or post-processing [4]. On the
other hand, several authors have qualified nonorthogonal multiple access (NOMA) as the
main candidate to support fifth-generation (5G) wireless communication. This has been
investigated in several works (see, e.g., [15–17]). By combining signals with different power
levels, NOMA schemes can also be very prone to nonlinear effects.
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If the nonlinear characteristics that affect a given system are known, we can design ap-
propriate receivers that take into account the nonlinear effects introduced by the transmitter.
In fact, efficient receivers that jointly perform detection and estimation and cancellation of
nonlinear distortion effects, can have excellent performance/complexity trade-offs [2,8]. On
the other hand, taking into account nonlinear distortion effects in the receiver design can
have significant performance improvements [18], sometimes even outperforming the linear
case [10,18–20]. As an alternative, we can employ receivers such as the Bussgang receiver,
which estimate and cancel nonlinear distortion [21–23]. All these techniques require the
knowledge of the nonlinear characteristic used by the transmitter, which can be obtained
blindly using higher-order cumulants (HOC) theory. We propose to study the issue of
nonlinear system identification using the fifth-order cumulants domain.

One of the first uses of HOC in signal processing has been devoted to the problem of
blind system identification. These systems, which can be linear or nonlinear, are excited
by an unobservable, zero-mean, independent and identically distributed (i.i.d), stationary,
ergodic and non-Gaussian signal under the presence of Gaussian noise. Linear systems iden-
tification has been very deeply investigated in the literature (see, e.g., [24–28]). The primary
existing blind approaches are based on second-order cumulants (usually called autocor-
relation function). The second- and third-order cumulants were used by Alshebeili et al.
to identify the nonminimum phase (NMP) of finite impulse response (FIR) systems [24].
Likewise, Giannakis et al. [25] presented an identification method by using both second-
and higher-order statistics of an NMP output system and many approaches devoted to
the same issue have been reported in the literature (see, e.g., [26]). However, these second-
order-based methods are not able to identify correctly the linear system’s model and their
performance was degraded when the output is affected by additive Gaussian noise. To
overcome these inconveniences, other linear algebraic methods involving only HOC of
output system have been reported in the literature (see, e.g., [29–34]), which present several
advantages such as effectiveness to reject additive Gaussian noise and ability to reconstruct
the phase. Other authors showed, both analytically and by simulations, that better results
can be obtained using these approaches. The case when the noise is non-Gaussian was
studied deeply by Sadler et al. by using HOC tools [35]. A binary random signal was also
used in the issue of blind identification of linear systems using symbolic dynamics [36,37].

Most of these existing blind algorithms are focused on linear system models due of
their simplicity. However, many practical systems are nonlinear, and these nonlinearities
cannot be ignored without serious performance degradation. This applies to many practical
fields, including signal processing, prediction, communication channels, biomedicine,
control of industrial processes, detection, equalization and many others [38–41].

Blind nonlinear system identification has received great attention in the literature
(see, e.g., [42–45]). In the nonlinear domain, discrete Volterra representations were used
to describe the input–output relation, thus that characterization, analysis and synthesis
are easily amenable [42]. Stathaki et al. [43] proposed to identify the Volterra kernels by
using the third cumulant with a constraint of the second-order cumulant. It has been
demonstrated that this constrained optimization approach can achieve excellent results
for nonlinear system identification. An inconvenience of this method is its sensitivity
to additive Gaussian noise since it is based on second-order cumulant, as pointed out
in [44]. To overcome this issue, Chen et al. [44] used a fourth-order-based method link as
alternative solution of the second-order cumulant to smooth out the additive Gaussian
noise and improve the convergence by proposing a hybrid optimization method of simplex
and genetic algorithms. In the same frame, Glentis et al. [38] contributed to Volterra
system identification by developing an efficient adaptive transversal algorithm, with the
advantages of low complexity and modular structure. There are also many existing works in
the context of nonlinear Volterra system identification (see, e.g., [46–48]). In [47], the authors
used the third-order moment (TOM) domain for blind identification of nonlinear Volterra
systems with studies on the computational complexity and demonstrated via simulation
that the proposed approach can be applied in a practical scenario to identify blindly the
primary path of active-noise-control. A class of truncated sparse Volterra systems was
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identified blindly by using the second-order moment (SOM) or TOM sequences of the
system outputs in [48]. The authors of [42] investigated the third-order Volterra nonlinear
systems with a novel approach based only second-order statistics and proved that was
able to remove white noise with any distribution offering significant reduction in the
computational burden. A complex random sequence input coupled with output HOC was
employed in [40] to identify blindly the linear quadratic Volterra systems by examining
different cases and the simulations were also used to illustrate the performance of the
proposed approaches. The authors in [45] proposed an extension of the main concept
behind the error whitening criterion (EWC) in the linear case to the unbiased identification
by analytically examining the true parameters of order-2 Volterra series models of nonlinear
dynamical systems. It was emphasized by the authors that this extension does not apply to
higher-order Volterra systems. A hydroturbine shaft system modeled as a quadratic Volterra
system has been identified blindly using third-order cumulants and a reversely recursive
method by Bai and Zhang in [46]. The proposed method was tested using engineering
applications and three numerical experiments, and their applicability was demonstrated
by the blind identification of the hydroturbine shaft system. Furthermore, identification of
the quadratic nonlinear systems has been reported in the past (see, e.g., [49–52]). In [49],
the properties of higher-order moment sequences and the calculation of the higher-order
spectral moments of an i.i.d for various frequencies were used to develop algorithms to
identify time-invariant quadratic nonlinear systems. A concrete application of higher-order
statistics theory with more experimental discussion was developed by Chow et al. [50],
to identify machine faults through vibration measurements using higher-order statistics-
based methods, such as a nonparametric phase-bearing and a parametric linear or nonlinear
modeling approach. Another application was developed in [51] to model the delay of video-
packets transmission by identification of quadratic nonlinear systems using fourth-order
cumulants-based blind approaches, which were compared to the Levenberg–Marquardt
algorithm, least mean square (LMS) and recursive least square (RLS). A HOC was also
used by Zidane et al. [52] to develop both extending approaches, developed for the linear
and nonlinear case, which uses fourth-order only and combined third- and fourth-order
cumulants, to identify the diagonal parameters of nonlinear quadratic systems. Numerical
simulations were presented to verify the theoretical results with comparison to the exiting
method in terms of the normalized mean-squared error (NMSE) and the fluctuations
around the true kernels. Motivated by reductions in computational requirements and the
mathematical tractability of nonlinear system identification issue, Ralston et al. [41] used a
Hammerstein series to build a new method to identify a specific time invariant nonlinear
system when the input is a non-Gaussian stationary signal.

As previously indicated, several authors considered the issue of nonlinear system
identification using HOC theory, but most works focused on second-order or quadratic
system identification, and the order of cumulants was limited to fourth-order cumulants.
The fifth-order received little attention up to now. Indeed, crosscumulants up to the
fifth-order were used by Koukoulas et al. [39] to identify the input–output quadratic
system. Cubic system identification has also received so far little attention. Indeed, the
Volterra kernels of the cubic system identification method using higher-order moments
were developed by Tseng and Powers in [53]. The authors showed that the proposed
method reduces the complexity of Volterra kernel identification compared to the non-
Gaussian and non-i.i.d. input case. The authors of [54] used the TOM from the extending
SOM to identify the nonlinear cubic system. It was shown that more statistical knowledge
can be obtained in the third-order statistics domain for blind system identification. In [55],
mixed third- and fourth-order cumulants were used to extend linear HOC-based methods
to nonlinear systems.

In general, when we increase the nonlinearity degree in the model, the performances
of methods relying on cumulants with small orders can degrade substantially in the
presence of Gaussian noise. Therefore, we increase the order of the proposed approach by
considering the fifth-order. In this framework, we consider cubic nonlinear systems, which
can be used to describe a wide range of nonlinear systems, requiring only a small number
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of kernels in the Volterra series. The main contributions of this work are the development
of new fifth-order cumulants which exploit the maximum information of the output cubic
system without the need of training signals, i.e., blindly. The methodology of the proposed
blind approach is based on the main theoretical tools of HOC using the link between Fourier
transform of second-order and fifth-order cumulants in the case of cubic systems which are
established to build a new formula which relates the second- and fifth-order cumulants by
using the inverse Fourier transform. Based on this formula, which relates the second- and
fifth-order cumuants, we can propose an approach based only on fifth-order under some
assumptions for the kernels of systems and the properties of the autocorrelation function.
To analyze the convergence and test the effectiveness of the proposed blind approach, a set
of simulations is carried out for various signal to noise ratio (SNR) levels and the proposed
approach is compared with adaptive existing algorithms [56] that use the input–output
relations to identify the kernels of cubic systems.

The outline of this paper is organized as follows. We start in the Section 2 with the
problem formulation and some assumptions regarding the system model representation.
Section 3 describes the main theoretical tools of HOC in the case of cubic systems. Theoreti-
cal development based using polyspectra are provided in the Section 4 to propose a blind
approach based only on fifth-order cumulants. A set of performance results is supplied to
support the theoretical development of the proposed blind approach, which is compared
with an adaptive algorithm [56] in Section 5.

2. Mathematical Definitions

The characteristic function of the vector X = (x1, x2, . . . , xk)
T composed of k real

random variables xi is defined by

ΦX(V) = E[exp(jVTX)], (1)

where VT = (v1, v2, . . . , vk) is vector composed of k random variables. VTX = v1x1 +
v2x2 + · · ·+ vkxk represents the scalar product of V and X and E[.] is the mathematical
expectation operator.

The coefficients of the kth-order moments are defined in the Taylor series development
of the characteristic function ΦX(V) as

ΦX(V) = ∑
0≤m≤s

jm

n1!n2! . . . nk!
Mom(xn1

1 , xn2
2 , . . . , xnk

k )

× vn1
1 vn2

2 . . . vnk
k + o(|V|s), (2)

where

Mom(xn1
1 , xn2

2 , . . . , xnk
k ) = j−m

[( ∂

∂v1

)n1
( ∂

∂v2

)n2

. . .
( ∂

∂vk

)nk
ΦX(V)

]
V=0

(3)

The kth-order moments of these random variables are given by

Mom(xn1
1 , xn2

2 , . . . , xnk
k ) = E[xn1

1 xn2
2 . . . xnk

k ], (4)

The cumulant-generating function is defined as logarithm of the first characteristic
function

ΨX(V) = ln(ΦX(V)). (5)
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The mth-order cumulant of these random variables are defined as the coefficient of
(v1, v2, . . . , vm) in the Taylor series development of the cumulant-generating function

ΨX(V) = ∑
0≤m≤s

jm

n1!n2! . . . nk!
Cum(xn1

1 , xn2
2 , . . . , xnk

k )

× vn1
1 vn2

2 . . . vnk
k + o(|V|s), (6)

where

Cum(xn1
1 , xn2

2 , . . . , xnk
k ) = j−m

[( ∂

∂v1

)n1
( ∂

∂v2

)n2

. . .
( ∂

∂vk

)nk
ΨX(V)

]
V=0

(7)

The operator Cum[·] stands for the nth-order joint cumulant of the random variables
xn1

1 , xn2
2 , . . . , xnk

k . Thus, considering a zero-mean random process {y(t)}, we have

Cn,Ψ = Cum
[
y(t), y(t + τ1), . . . , y(t + τn−1)

]
(8)

where, Ψ =
{

y(t), y(t + τ1), . . . , y(t + τn−1)
}

, and, hence, the involved real random vari-

ables are time-shifted samples of the process {y(t)}. Notice that, for stationary processes,
the nth-order statistics depend only on the n− 1 time lags τ1 = t1− t0, . . . , τn−1 = tn−1− t0.
This allows us to introduce the following notations:

Cn,y(τ1, τ2, . . . , τn−1) = Cum
[
y(t), y(t + τ1), . . . , y(t + τn−1)

]
(9)

where {y(t)} is a zero-mean stationary random process.

3. Problem

Cubic systems can approximate many nonlinear effects (e.g., due to the power am-
plifier or quantization effects), and we find that more complex nonlinear characteristics
can be replaced by equivalent lower-order nonlinear characteristics in general, and cubic
characteristics in particular [21]. Indeed, Figure 1 describes the block diagram of the non-
linear system identification problem which is represented by a Volterra series with only a
small number of kernels. The system, which we propose to identify in this work, is a cubic
nonlinearity that has the form

y0(k) =
q
∑

i=0
h(i, i, i)x3(k− i)

y(k) = y0(k) + nG(k)

(10)

where {y0(k)} is the cubic system output, and {y(k)} is the observation output, which
is contaminated by a zero-mean additive Gaussian noise {nG(k)}, assumed independent
of {y0(k)}, excluding the effect of the noise where nth-order cumulants are superior of
2 (i.e., Cn,y0(τ1, τ2, . . . , τn) = Cn,y(τ1, τ2, . . . , τn)) as indicated above. The input random
signal, {x(k)}, of the model is the unobservable zero mean, independent identically dis-
tributed (i.i.d) stationary, ergodic and non-Gaussian with known distribution statistics
γ3,x = E[x3(k)] 6= 0, γ6,x = E[x6(k)] 6= 0, γ9,x = E[x9(k)] 6= 0, γ12,x = E[x12(k)] 6= 0
and γ15,x = E[x15(k)] 6= 0. Unknown cubic kernels include of {h(i, i, i) ∀ i = 1, . . . , q},
and ∑

i
|h(i, i, i)| < ∞, which suggest that the system is stable causal implying bounded

input–output.
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Figure 1. Nonlinear cubic system.

The cubic system identification is more complex and we need even more information
to calculate the cumulants of the generated output signal. The main objective of this
investigation is to identify the kernels of the cubic nonlinear system in (10) by using
the blind approach based on fifth-order cumulants of the system’s measured output,
C5,y(τ1, τ2, τ3, τ4), and some knowledge of the properties of the input random signal {x(k)}.

4. Theoretical Tools of HOC

In this section, we focus on the theoretical development of HOC, which present the
main relationships linking diagonal kernels of cubic systems and the cumulants of the
output that received random signals up to the fifth-order for the purpose to use the HOC
to identify the cubic system described by (10).

The starting point for all linear-quadratic blind methods is the Leonov–Shiryaev
formula [57,58], which links the different order of cumulants to the moments. The latter
formula allows expressing any cumulant as a function of moments of lower or equal orders
and is well-known in the case of non-delayed cumulants [59]. It is assumed above that the
output signal is stationary and ergodic and these cumulants do not depend on time but on
the difference time between the instant of observation.

The rth-order cumulants of the output random signal are linked to the moments, where
the order p is inferior or equal to r, by the following formula of Leonov and Shiryayev [57,58]:

Cum[y1, . . . , yr] = ∑(−1)k−1(k− 1)!E
[
∏
i∈v1

yi

]
E
[
∏
j∈v2

yj

]
. . . E

[
∏

k∈vp

yk

]
, (11)

The summation extends over all ensembles {v1, v2, . . . , vp : 1 ≤ p ≤ r} forming a par-
tition {1, 2, . . . , r}. In this formula, k is the number of elements that compose the partition.

For the second-order terms, both partitions are possible (1, 2) and (1) (2). Thus, we
have the following expression:

Cum[y1, y2] = (−1)0(0)!E[y1y2] + (−1)2−1(2− 1)!E[y1]E[y2]

= E[y1y2]− E[y1]E[y2]. (12)

For the stationary random output signal, {y(t)}, its second-order cumulants, in the
cubic system case, become

C2,y(τ1) = Cum[y1, y2] = Cum[y(k), y(k + τ1)]

= E
[ q

∑
i=0

h(i, i, i)x3(k− i)
q

∑
j=0

h(j, j, j)

× x3(k + τ1 − j)
]
− E

[ q

∑
i=0

h(i, i, i)x3(k− i)
]

(13)

× E
[ q

∑
j=0

h(j, j, j)x3(k + τ1 − j)
]
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C2,y(τ1) = E
[ q

∑
i=0

h(i, i, i)x3(k− i)h(i + τ1, i + τ1,

i + τ1)x3(k− i)
]
− E

[ q

∑
i=0

h(i, i, i)x3(k− i)
]

(14)

× E
[ q

∑
i=0

h(i + τ1, i + τ1, i + τ1)x3(k− i)
]

C2,y(τ1) =
q

∑
i=0

h(i, i, i)h(i + τ1, i + τ1, i + τ1)

×
(

E
[

x3(k− i)× x3(k− i)
]

(15)

− E
[

x3(k− i)
]

E
[

x3(k− i)
])

.

Under the assumption that the input sequence x(k) is i.i.d zero mean, stationary,
non-Gaussian with γn,x = E[xn(k)] 6= 0, ∀ n = 3, 6, 9, 12, 15 and (15), the second-order
cumulants and the diagonal kernels of cubic systems are linked by the following expression

C2,y(τ1) =
(

γ6,x − γ2
3,x

) q

∑
i=0

h(i, i, i)h(i + τ1, i + τ1, i + τ1). (16)

In the case of fifth-order cumulants, we have 52 possible partitions of 7 different types:

• 1 partition of type: (1, 2, 3, 4, 5) with k = 1;
• 5 partitions of type: (1) (2, 3, 4, 5) with k = 2;
• 10 partitions of type: (1, 2) (3, 4, 5) with k = 2;
• 10 partitions of type: (1) (2) (3, 4, 5) with k = 3;
• 15 partitions of type: (1) (2, 3) (4, 5) with k = 3;
• 10 partitions of type: (1) (2) (3) (4, 5) with k = 4;
• 1 partition of type: (1) (2) (3) (4) (5) with k = 5.

Cum
[
y1, y2, y3, y4, y5

]
= E

[
y1y2y3y4y5

]
− [5]E

[
y1

]
E
[
y2y3y4y5

]
− [10]E

[
y1y2

]
E
[
y3y4y5

]
+ [10]2E

[
y1

]
E
[
y2

]
E
[
y3y4y5

]
(17)

+ [15]2E
[
y1

]
E
[
y2y3

]
E
[
y4y5

]
− [10]6E

[
y1

]
E
[
y2

]
E
[
y3

]
E
[
y4y5

]
+ 24E

[
y1

]
E
[
y2

]
E
[
y3

]
× E

[
y4

]
E
[
y5

]
.
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The fifth-order cumulants which relate the diagonal kernels of cubic systems can be
expressed as (see Appendix A):

C5,y(τ1, τ2, τ3, τ4) =
(

γ15,x − 5γ3,xγ12,x − 10γ6,xγ9,x

+ 20γ2
3,xγ9,x + 30γ3,xγ2

6,x − 60γ3
3,xγ6,x

+ 24γ5
3,x

) q

∑
i=0

h(i, i, i)h(i + τ1, i + τ1, (18)

i + τ1)h(i + τ2, i + τ2, i + τ2)

× h(i + τ3, i + τ3, i + τ3)

× h(i + τ4, i + τ4, i + τ4)

5. Proposed Blind Approach

The nth-order polyspectrum is defined as the (n − 1)-dimensional discrete-time
Fourier transform of the nth-order cumulants Cn,y(τ1, τ2, . . . , τn), i.e.,

Sn,y(ω1, ω2, . . . , ωn−1) =
+∞

∑
τ1=−∞

· · ·
+∞

∑
τn−1=−∞

Cn,y(τ1, τ2,

. . . , τn−1)exp
(
−j

n−1

∑
i=1

ωiτi

)
. (19)

The second-order polyspectrum, Fourier transform of the (16), (called power spectrum)
is linked to the cubic system transfer function H(ω, ω, ω) by

S2,y(ω) = T.F
{

C2,y(τ)
}

= φ2H(ω, ω, ω)H(−ω,−ω,−ω), (20)

where, φ2 = γ6,x − γ2
3,x.

The fifth-order polyspectrum, Fourier transform of Equation (18), of the cubic system
output is linked to the system transfer function by

S5,y(ω1, ω2, ω3, ω4) = T.F
{

C5,y(τ1, τ2, τ3, τ4)
}

= φ5H
(

ω1, ω1, ω1

)
H
(

ω2, ω2, ω2

)
× H

(
ω3, ω3, ω3

)
H
(

ω4, ω4, ω4

)
× H

(
−

4

∑
i=1

ωi,−
4

∑
i=1

ωi,−
4

∑
i=1

ωi

)
, (21)

where φ5 = γ15,x − 5γ3,xγ12,x − 10γ6,xγ9,x + 20γ2
3,xγ9,x + 30γ3,xγ2

6,x − 60γ3
3,xγ6,x + 24γ5

3,x.

Defining ω =
4
∑

i=1
ωi, (20) becomes

S2,y

( 4

∑
i=1

ωi

)
= φ2H

( 4

∑
i=1

ωi,
4

∑
i=1

ωi,
4

∑
i=1

ωi

)
× H

(
−

4

∑
i=1

ωi,−
4

∑
i=1

ωi,−
4

∑
i=1

ωi

)
. (22)

From (21) and (22), we obtain



Appl. Sci. 2022, 12, 3323 9 of 22

S2,y

( 4

∑
i=1

ωi

)
=

φ2

φ5

S5,y(ω1, ω2, ω3, ω4)H
( 4

∑
i=1

ωi,
4
∑

i=1
ωi,

4
∑

i=1
ωi

)
H
(

ω1, ω1, ω1

)
H
(

ω2, ω2, ω2

)
H
(

ω3, ω3, ω3

)
H
(

ω4, ω4, ω4

) (23)

S5,y(ω1, ω2, ω3, ω4)H
( 4

∑
i=1

ωi,
4

∑
i=1

ωi,
4

∑
i=1

ωi

)
=

η5,2H
(

ω1, ω1, ω1

)
H
(

ω2, ω2, ω2

)
H
(

ω3, ω3, ω3

)
H
(

ω4, ω4, ω4

)
S2,y

( 4

∑
i=1

ωi

)
, (24)

where, η5,2 = φ5
φ2

=
γ15,x−5γ3,xγ12,x−10γ6,xγ9,x+20γ2

3,xγ9,x+30γ3,xγ2
6,x−60γ3

3,xγ6,x+24γ5
3,x

γ6,x−γ2
3,x

.

Then, we use the inverse Fourier transform of (24) to demonstrate that the second-
order, the fifth-order cumulants and the kernels of cubic systems are linked by

q

∑
i=0

h(i, i, i)C5,y(τ1 − i, τ2 − i, τ3 − i, τ4 − i)

= η5,2

q

∑
i=1

h(i, i, i)h(τ2 − τ1 + i, τ2 − τ1 + i, τ2 − τ1 + i)

×h(τ3 − τ1 + i, τ3 − τ1 + i, τ3 − τ1 + i)×
×h(τ4 − τ1 + i, τ4 − τ1 + i, τ4 − τ1 + i)C2,y(τ1 − i). (25)

Based on this, we can develop the following algorithm to determine the unknown
kernels in the cubic system case. We start by taking τ1 = 2q, and we use the properties of
the second-order cumulants of the stationary, ergodic systems which are C2,y(τ) 6= 0 for
−q ≤ τ ≤ +q, and zero elsewhere. Therefore, (25) yields

q

∑
i=0

h(i, i, i)C5,y(2q− i, τ2 − i, τ3 − i, τ4 − i) =

η5,2h(q, q, q)h(τ2 − q, τ2 − q, τ2 − q)

×h(τ3 − q, τ3 − q, τ3 − q)

×h(τ4 − q, τ4 − q, τ4 − q)C2,y(q), (26)

The assumed system is causal and truncated, i.e., h(i, i, i) = 0 if i < 0 and i > q with
h(0, 0, 0) = 1. Therefore, τ2, τ3, τ4 take values q and 2q. If we take τ2 = τ3 = q in (26),
we have

q

∑
i=0

h(i, i, i)C5,y(2q− i, q− i, q− i, τ4 − i)

= η5,2h(q, q, q)h2(0, 0, 0)

×h(τ4 − q, τ4 − q, τ4 − q)C2,y(q), (27)

where h(0, 0, 0) = 1.
Else if, τ4 = 2q, (27) becomes:

h(q, q, q)C5,y(q, 0, 0, q) = η5,2h2(q, q, q)C2,y(q), (28)
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Using (27) and (28), we obtain the following expression which links the kernels of
cubic system and fifth-order cumulants only:

q

∑
i=0

h(i, i, i)C5,y(2q− i, q− i, q− i, τ4 − i)

= C5,y(q, 0, 0, q)h(τ4 − q, τ4 − q, τ4 − q), (29)

where
q ≤ τ4 ≤ 2q. (30)

Thus, (29) and (30) are combined in the following matrix form


C5,y(2q− 1, q− 1, q− 1, q− 1) . . . C5,y(q, 0, 0, 0)
C5,y(2q− 1, q− 1, q− 1, q)− ψ . . . C5,y(q, 0, 0, 1)

...
. . .

...
C5,y(2q− 1, q− 1, q− 1, 2q− 1) . . . C5,y(q, 0, 0, q)− ψ



×



h(1, 1, 1)
.
.
.

h(i, i, i)
.
.
.

h(q, q, q)


=



ψ− C5,y(2q, q, q, q)
−C5,y(2q, q, q, q + 1)

.

.

.

.

.

.
−C5,y(2q, q, q, 2q)


, (31)

where, ψ = C5,y(q, 0, 0, q).
Equation (31) can be rewritten in other compact form as

MH = D, (32)

where, H = [h(1, 1, 1) , . . . , h(q, q, q)]T is a column vector of kernels of the cubic system
with size q, D = [ψ − C5,y(2q, q, q, q), −C5,y(2q, q, q, q + 1) , . . . , −C5,y(2q, q, q, 2q)]T is a
column vector of size (q + 1) and M the matrix of size (q + 1) × q elements. The least
square solution of (32) is expressed by

Ĥ = (MT M)−1MT D (33)

6. Performance Results

To study the effectiveness and analyze the convergence of the proposed blind approach
under various signal-to-noise levels (SNR), defined as SNR = E[y2

0(k)]/E[n2
G(k)]. We

consider 200 Monte Carlo runs and use two cubic systems.
To measure the precision of cubic kernel identification with respect to the true values,

we define the NMSE for each run as

NMSE =

q
∑

i=0

(
h(i, i, i)− ĥ(i, i, i)

)2

q
∑

i=0
h2(i, i, i)

, (34)

where ĥ(i, i, i) are the estimated kernels in each run, and h(i, i, i) are the true kernels in the
cubic system.
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System I: The third-order cubic system is
y0(k) = x3(k)− 0.15x3(k− 1)− 0.35x3(k− 2)

+0.90x3(k− 3)

y(k) = y0(k) + nG(k)

(35)

With reference to (10), in this case, we have h(0, 0, 0) = 1, h(1, 1, 1) = −0.15,
h(2, 2, 2) = −0.35 and h(3, 3, 3) = 0.90.

Then, we try to increase the system order to test robustness of our approach. We
consider the fifth-order cubic system given by

System II: 
y0(k) = x3(k)− 0.25x3(k− 1) + 0.36x3(k− 2)

−0.688x3(k− 3) + 0.56x3(k− 4)
+0.227x3(k− 5)

y(k) = y0(k) + nG(k)

(36)

With reference to (10), in this case, we have h(0, 0, 0) = 1, h(1, 1, 1) = −0.25,
h(2, 2, 2) = 0.36, h(3, 3, 3) = −0.688, h(4, 4, 4) = 0.56 and h(5, 5, 5) = 0.227.

The simulation results of the estimated cubic kernels, mean and the standard devia-
tions (Std. Dev.) of system I, over 200 Monte Carlo runs with non-Gaussian sample length
input N = 2400 for various SNR are shown in Table 1. To analyze the convergence of this
proposed blind approach to identify the nonlinear system I with high levels of noise (i.e.,
SNR = 0 dB), we represent the fluctuations around the means of the estimated nonlinear
cubic kernels in Figures 2–4, respectively. To illustrate this convergence and to test and
validate it, these fluctuations are compared with those obtained using the adaptive algo-
rithm such as CIM-LLAD (µ = 0.01, ρ = 0.0001, τ = 1.2, σ = 0.02, M = 1024) developed
in [56]. The proposed blind method has lower fluctuations around the true values of the
identifying cubic kernels when compared with the CIM-LLAD algorithm of [56].
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Figure 2. Estimated cubic kernel, h(1, 1, 1) = −0.15, for system I.
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Figure 3. Estimated cubic kernel, h(2, 2, 2) = −0.35, for system I.
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Figure 4. Estimated cubic kernel, h(3, 3, 3) = 0.90, for system I.

Table 1 compares the different techniques. Clearly, the standard deviations obtained
with the proposed approach are smaller than for the CIM-LLAD algorithm proposed
in [56]. Moreover, the proposed approach uses only the output and can identify the cubic
system blindly without any information about the input model with a good precision. The
main reason is that the proposed method uses the fifth-order cumulants which exploit the
maximum information by calculating the cumulants of the output making it more robust
when we use a small sample size of non-Gaussian signal input. Additionally, Gaussian
noise had a minor effect on the estimated cubic kernels when using the proposed approach
as indicated in Table 1.

Table 1. True and estimated (means ± Std. Dev.) cubic kernels of the system I under 200 Monte
Carlo runs.

Approach ĥ(i, i, i) ± Std 0 dB 8 dB 16 dB 24 dB

ĥ(1, 1, 1) ± Std −0.1237 ± 0.0554 −0.1246 ± 0.0365 −0.1278 ± 0.0347 −0.1297 ± 0.0318
AlgCum5 ĥ(2, 2, 2) ± Std −0.3442 ± 0.0573 −0.3446 ± 0.0293 −0.3464 ± 0.0205 −0.3456 ± 0.0198

ĥ(3, 3, 3) ± Std 0.8905 ± 0.0372 0.8964 ± 0.0290 0.8982 ± 0.0275 0.8980 ± 0.0265
NMSE 4.1833× 10−4 3.5208× 10−4 2.6065× 10−4 2.2156× 10−4

ĥ(1, 1, 1) ± Std −0.1843 ± 0.2376 −0.1353 ± 0.1882 −0.1704 ± 0.2087 −0.1300 ± 0.1907
CIMLLAD [56] ĥ(2, 2, 2) ± Std −0.3880 ± 0.2272 −0.3457 ± 0.1874 −0.3788 ± 0.2206 −0.3611 ± 0.1974

ĥ(3, 3, 3) ± Std 0.8836 ± 0.2223 0.8629 ± 0.1762 0.8950 ± 0.2161 0.8773 ± 0.1903
NMSE 15× 10−4 8.2349× 10−4 6.5195× 10−4 5.2984× 10−4

The advantages of the proposed method are even more clear when we look to the
NMSE, especially for high noise levels (i.e., SNR = 0 dB). This is well supported by the
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existing literature as indicated above. Indeed, the additive Gaussian noise will almost
vanish in the higher cumulants domain (superior to second-order) and the proposed
approach, which uses fifth-order cumulants can achieve excellent identification kernels
in very noisy environments compared to the CIM-LLAD algorithm. To illustrate the
differences in the performance between the proposed and existing methods, we calculate
the corresponding NMSE for various SNR and input signal sample sizes. The corresponding
identification results are depicted in Figure 5.

Clearly, the NMSE and standard deviation values obtained using the developed
approach are much lower than those for the CIM-LLAD algorithm, for all considered
values of SNR and input data sizes, being able to improve significantly the identification of
cubic kernels of the system blindly, even in very noisy environments and/or small sample
sizes (e.g., SNR = 0 dB, N = 400).
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NMSE using AlgCum5 (N=2400)
NMSE using CIMLLAD (N=2400)

Figure 5. Comparison of NMSE in estimating the system I for different SNR and data input N.

To study the convergence of the proposed fifth-order cumulants-based approach more
clearly, an additional set of simulation results is represented in Figures 6 and 7. It describes
through system I the behavior distribution of NMSE and indicates the effect of the Gaussian
noise on the estimated cubic kernels in noisy environments for various SNR levels over
200 Monte-Carlo runs.
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Figure 6. Behavior of the distributions of estimated NMSE using the proposed approach (AlgCum5)
in system I.
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Figure 7. Behavior of the distributions of estimated NMSE using the CIM-LLAD method in system I.

Figure 8 concerns the differences between the true and estimated output signal using
the proposed blind approach (AlgCum5) and the CIM-LLAD method. We take MSE on the
true and estimated outputs as criterion of comparison, i.e.,

MSE =
1
N

N

∑
n=0

[
y(n)− ŷ(n)

]2
, (37)

where y(n) is the true output signal of the cubic system considered and ŷ(n) is the estimated
output signal of the cubic system to be identified.

We conclude from Figure 8 and the results summarized in Table 2 using MSE crite-
rion that no noticeable differences between true output signal of the system I and their
corresponding estimates using the proposed blind approach. On the other hand, for the
CIM-LLAD method, we have an MSE about 12 times higher.

0 500 1000 1500 2000
−50

0

50

100

150

Sample number (1−2400)

T
ru

e 
O

ut
pu

t s
ig

na
l

0 500 1000 1500 2000
−50

0

50

100

150

Sample number (1−2400)

E
st

im
at

ed
 u

si
ng

 A
lg

C
um

5

0 500 1000 1500 2000
−50

0

50

100

150

Sample number (1−2400)

E
st

im
at

ed
 u

si
ng

 C
IM

LL
A

D

Figure 8. True and estimated output signals for System I.
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Table 2. MSE of different approaches.

Approach System I System II

AlgCum5 0.0452 0.0762
CIMLLAD [56] 0.5655 0.7218

The obtained results of nonlinear system II with non-Gaussian input sample of length
N = 2400 and different SNR levels are given in Table 3. Clearly, we can make remarks
similar to those made in the case of system I. In fact, there is still a significant improvement
when compared to the CIM-LLAD method, regardless of the SNR.

Figures 9–13 illustrate the convergence of the proposed blind approach in a very noise
environment (SNR = 0 dB). From these figures and the Std. Dev. depicted in Table 3, it
is clear that our approach converges to the true values of cubic kernels with little fluc-
tuation, even if we use a small sample length input such as N = 1000. The convergence
corresponding to CIM-LLAD algorithm has more fluctuations of the estimated kernels
when the SNR varies from 0 to 24 dB values as shown in Figures 9–13, respectively, and Std.
Dev. calculated in Table 3 which is still in the same level for various SNR. For example, the
Std. Dev. of the first estimated kernels, h(1, 1, 1), obtained using the proposed method is
about 4 times lower than for CIM-LLAD, once again, with the additional advantage that
we can estimate the kernels of the cubic system blindly (i.e., without any information about
the excitation non-Gaussian signal), which is not the case of the adaptive algorithm that
requires the input and output to identify the kernels of the model.
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Figure 9. Estimated cubic kernel, h(1, 1, 1) = −0.25, for system II.
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Figure 10. Estimated cubic kernel, h(2, 2, 2) = 0.36, for system II.
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Figure 11. Estimated cubic kernel, h(3, 3, 3) = −0.688, for system II.
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Figure 12. Estimated cubic kernel, h(4, 4, 4) = 0.56, for system II.
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Figure 13. Estimated cubic kernel, h(5, 5, 5) = 0.227, for system II.

Figure 14, where we present the NMSE as function the SNR, gives us a good idea
about the precision of the estimated kernels. For high noise level (SNR = 0 dB), the NMSE
using the proposed approach is almost 9 times lower than for the CIM-LLAD. The reason is
the same as in system I: the proposed approach uses only the fifth-order cumulants, which
are able to remove most of the Gaussian noise, allowing a more accurate identification of
the cubic kernels.
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Table 3. True and estimated (means ± Std. Dev.) cubic kernels of system II.

SNR ĥ(i, i, i) ± Std 0 dB 8 dB 16 dB 24 dB

ĥ(1, 1, 1) ± Std −0.2449 ± 0.0591 −0.2562 ± 0.0396 −0.2618 ± 0.0451 −0.2587 ± 0.0432
ĥ(2, 2, 2) ± Std 0.3782 ± 0.0446 0.3705 ± 0.0332 0.3683 ± 0.0373 0.3692 ± 0.0372

AlgCum5 ĥ(3, 3, 3) ± Std −0.6842 ± 0.0556 −0.6862 ± 0.0314 −0.6841 ± 0.0328 −0.6890 ± 0.0249
ĥ(4, 4, 4) ± Std 0.5579 ± 0.0322 0.5621 ± 0.0200 0.5613 ± 0.0283 0.5647 ± 0.0248
ĥ(5, 5, 5) ± Std 0.2407 ± 0.0853 0.2373 ± 0.0550 0.2308 ± 0.0708 0.2334 ± 0.0649

NMSE 2.7712× 10−4 1.2968× 10−4 1.1822× 10−4 1.1068× 10−4

ĥ(1, 1, 1) ± Std −0.2870 ± 0.2373 −0.2790 ± 0.2128 −0.2349 ± 0.1949 −0.2611 ± 0.2103
ĥ(2, 2, 2) ± Std 0.3066 ± 0.2354 0.3429 ± 0.2117 0.3482 ± 0.2072 0.3618 ± 0.2099

CIMLLAD [56] ĥ(3, 3, 3) ± Std −0.6906 ± 0.2161 −0.6923 ± 0.2234 −0.6834 ± 0.2013 −0.7022 ± 0.2266
ĥ(4, 4, 4) ± Std 0.5775 ± 0.2157 0.5849 ± 0.2041 0.5324 ± 0.1990 0.5784 ± 0.2219
ĥ(5, 5, 5) ± Std 0.2104 ± 0.2398 0.2176 ± 0.2221 0.2273 ± 0.1969 0.2444 ± 0.2125

NMSE 24× 10−4 9.1512× 10−4 5.6523× 10−4 4.7641× 10−4

Figures 15 and 16 concern the convergence of the proposed blind approach and the
CIM-LLAD method, respectively. Figure 17 shows the differences between the true and
estimated output signal using the proposed blind approach (AlgCum5) and the CIM-LLAD
method. First, we identify the cubic kernels, then, we convolve it with the non-Gaussian
input signal. We also computed the MSE, which is depicted in Table 2, once again, showing
the clear advantages of the proposed blind approach.
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Figure 14. Comparison of NMSE in estimating the system II for different SNR and data input
lengths N.
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Figure 15. Behavior of the distributions of estimated NMSE using the proposed approach (AlgCum5)
in the system II case.
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Figure 16. Behavior of the distributions of estimated NMSE using the existing method (CIM-LLAD)
in system II.
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Figure 17. True and estimated output signals for System II.

7. Conclusions

The identification kernels of cubic systems using a new blind fifth-order-based ap-
proach was carried out in this paper. The proposed method allows an accurate identification
approach and yields the desired kernels via fifth-order cumulants which exploit the maxi-
mum information of the output system, allowing estimating it blindly and being able to to
remove the Gaussian noise almost completely. The proposed technique was compared with
existing ones, showing excellent convergence capabilities and the advantage and accurate
estimation of system parameters, even for low SNR and/or small input data size. In fact,
it was shown that the proposed schemes achieve significantly better convergence with
little fluctuations around the true values of the identifying cubic kernels, even in a very
noisy environment, i.e., SNR =0 dB, and input data size N = 800 compared to the adaptive
method which presents more fluctuations.
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Appendix A

In the case of cubic systems, the fifth-order cumulants of the stationary random output
signal, {y(k)}, are given by:

C5,y(τ1, τ2, τ3, τ4) = Cum[y1, y2, y3, y4, x5] = Cum[y(k), y(k + τ1), y(k + τ2), y(k + τ3), y(k + τ4)]

= E
[ q

∑
i=0

h(i, i, i)x3(k− i)
q

∑
j=0

h(j, j, j)x3(k + τ1 − j)
q

∑
l=0

h(l, l, l)x3(k + τ2 − l)

×
q

∑
m=0

h(m, m, m)x3(k + τ3 −m)
q

∑
n=0

h(n, n, n)x3(k + τ4 − n)
]
− 5E

[ q

∑
i=0

h(i, i, i)x3(k− i)
]

× E
[ q

∑
j=0

h(j, j, j)x3(k + τ1 − j)
q

∑
l=0

h(l, l, l)x3(k + τ2 − l)
q

∑
m=0

h(m, m, m)x3(k + τ3 −m)

×
q

∑
n=0

h(n, n, n)x3(k + τ4 − n)
]
− 10E

[ q

∑
i=0

h(i, i, i)x3(k− i)
q

∑
j=0

h(j, j, j)x3(k + τ1 − j)
]

× E
[ q

∑
l=0

h(l, l, l)x3(k + τ2 − l)
q

∑
m=0

h(m, m, m)x3(k + τ3 −m)
q

∑
n=0

h(n, n, n)x3(k + τ4 − n)
]

+ 20E
[ q

∑
i=0

h(i, i, i)x3(k− i)
]

E
[ q

∑
j=0

h(j, j, j)x3(k + τ1 − j)
]

(A1)

× E
[ q

∑
l=0

h(l, l, l)x3(k + τ2 − l)
q

∑
m=0

h(m, m, m)x3(k + τ3 −m)
q

∑
n=0

h(n, n, n)x3(k + τ4 − n)
]

+ 30E
[ q

∑
i=0

h(i, i, i)x3(k− i)
]

E
[ q

∑
j=0

h(j, j, j)x3(k + τ1 − j)
q

∑
l=0

h(l, l, l)x3(k + τ2 − l)
]

× E
[ q

∑
m=0

h(m, m, m)x3(k + τ3 −m)
q

∑
n=0

h(n, n, n)x3(k + τ4 − n)
]

− 60E
[ q

∑
i=0

h(i, i, i)x3(k− i)
]

E
[ q

∑
j=0

h(j, j, j)x3(k + τ1 − j)
]

× E
[ q

∑
l=0

h(l, l, l)x3(k + τ2 − l)
]

E
[ q

∑
m=0

h(m, m, m)x3(k + τ3 −m)
q

∑
n=0

h(n, n, n)x3(k + τ4 − n)
]

+ 24E
[ q

∑
i=0

h(i, i, i)x3(k− i)
]

E
[ q

∑
j=0

h(j, j, j)x3(k + τ1 − j)
]

E
[ q

∑
l=0

h(l, l, l)x3(k + τ2 − l)
]

× E
[ q

∑
m=0

h(m, m, m)x3(k + τ3 −m)
]

E
[ q

∑
n=0

h(n, n, n)x3(k + τ4 − n)
]
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C5,y(τ1, τ2, τ3, τ4) =
q

∑
i=0

h(i, i, i)h(i + τ1, i + τ1, i + τ1)

× h(i + τ2, i + τ2, i + τ2)h(i + τ3, i,
τ3, i + τ3)h(i + τ4, i + τ4, i + τ4)

×
(

E
[

x15(k− i)
]
− 5E

[
x3(k− i)

]
× E

[
x12(k− i)

]
− 10E

[
x6(k− i)

]
× E

[
x9(k− i)

]
+ 20E

[
x3(k− i)

]
× E

[
x3(k− i)

]
E
[

x9(k− i)
]

(A2)

+ 30E
[

x3(k− i)
]

E
[

x6(k− i)
]

× E
[

x6(k− i)
]
− 60E

[
x3(k− i)

]
× E

[
x3(k− i)

]
E
[

x3(k− i)
]

× E
[

x6(k− i)
]
+ 24E

[
x3(k− i)

]
× E

[
x3(k− i)

]
E
[

x3(k− i)
]

× E
[

x3(k− i)
]

E
[

x3(k− i)
])

Under the assumption that the input sequence x(k) is i.i.d zero mean, stationary,
non-Gaussian with γn,x = E[xn(k)] 6= 0, ∀ n = 3, 6, 9, 12, 15 and (A2), the fifth-order
cumulants and the diagonal kernels of cubic systems are linked by the following expression:

C5,y(τ1, τ2, τ3, τ4) =
(

γ15,x − 5γ3,xγ12,x − 10γ6,xγ9,x

+ 20γ2
3,xγ9,x + 30γ3,xγ2

6,x − 60γ3
3,xγ6,x

+ 24γ5
3,x

) q

∑
i=0

h(i, i, i)h(i + τ1, i + τ1, i + τ1)h(i + τ2, i + τ2, i + τ2) (A3)

× h(i + τ3, i + τ3, i + τ3)h(i + τ4, i + τ4, i + τ4)
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