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Abstract: Despite various economic crisis situations around the world, the courier and delivery ser-
vice market continues to be revitalized. The parcel shipping volume in Korea is currently 3.37 billion
parcels, achieving a growth rate of about 140% compared to 2012, and 70% of parcels are from
metropolitan areas. Given the above statistics, this paper focused on the development of an under-
ground logistics system (ULS), in order to conduct a study to handle the freight volume in a more
eco-friendly manner in the center of metropolitan areas. In this paper we first analyzed the points at
which parcel boxes were damaged, based on a ULS. After collecting image data of the parcel boxes,
the damaged parcel boxes were detected and classified using computerized methods, in particular,
a convolutional neural network (CNN), MobileNet. For image classification, Google Colaboratory
notebook was used and 4882 images were collected for the experiment. Based on the collected dataset,
when conducting the experiment, the accuracy, recall, and specificity of classification for the testing
set were 84.6%, 82% and 88.54%, respectively,. To validate the usefulness of the MobileNet algorithm,
additional experiments were performed under the same conditions using other algorithms, VGG16
and ResNet50. The results show that MobileNet is superior to other image classification models
when comparing test time. Thus, in the future, MobileNet has the potential to be used for identifying
damaged boxes, and could be used to ensure the reliability and safety of parcel boxes based on a ULS.

Keywords: urban logistics system; convolutional neural network; parcel box; MobileNet; object
classification algorithm

1. Introduction

Since 2019, the COVID-19 virus has spread globally and is having a large impact on
every industry and on people’s lives due to its unpredictable nature. With COVID-19,
internet activity has become almost routine and people spend more time at home. In
particular, the logistics industry is showing a markedly different pattern compared with
before COVID-19. Due to the change in the logistics industry, the parcel shipping market
has exponentially increased, and fast delivery services are operating. As a result, it is
logistically difficult for supplies and circulation to meet the urban demand, especially in
metropolitan areas. In fact, Korea’s parcel shipping volume amounted to 3.37 billion parcels
in 2020, which represented a growth rate of about 140% compared to 2012. The number
of individual parcel service that were used also increased, with a frequency of 9.74 per
person per month in 2020, which represented an increase of 56.5% from compared 2019,
before COVID-19. In particular, about 70% of the parcel shipping volume is concentrated
in metropolitan areas. This is associated with an increase in the entry of freight vehicles
into the metropolitan area, and social and environmental costs, such as traffic congestion
and environmental pollution, are also increasing. Therefore, there is an urgent need to
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introduce a new urban logistics system to handle the increasing parcel shipping volume
and to respond to the increasing number of freight vehicles in cities.

As the parcel delivery market is rapidly growing around the world, research into the
development of new logistics transport systems is being actively conducted to respond to
the logistics demand and to build an eco-friendly system.

Xu, Y. et al. analyzed the quantitative relationship between system implementation
and urban logistics performance under the metro-based urban logistics system (M-ULS) to
respond to parcel shipping services in the post COVID-19 era [1]. Kikuta, J. et al. proposed
a new urban logistics system that combined an existing freight vehicle with an urban
subway system to efficiently transport goods from the suburbs to metropolitan areas. As
a result, these authors conducted a pilot project and verified the effectiveness of the new
urban logistics system [2]. Cochrane, K. et al. presented a strategy to transport freight using
public transportation, and the possibility of a new public freight transportation system
was verified three times using the Delphi method [3]. Zhao, L. et al. pointed out that
urban logistics systems mainly relied on land transportation and incurred problems, such
as traffic congestion, environmental problems, and delivery delays. In order to solve this
problem, this research proposed a ULS using an urban subway for fast, one-day delivery
during times when the urban subway was not congested [4].

As in the above studies, a city logistics system using an underground system are
already widely known as an eco-friendly and sustainable means of freight transportation,
and efforts to build a freight transportation system using the underground space are
continuing. Therefore, as shown in Figure 1. This research focused on a metro-based ULS as
an environmentally-friendly, punctual, and mass-transportation option for parcel delivery.
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Figure 1. Concept of underground logistics system.

As shown in Figure 2, the operation procedure of a ULS starts at the railway freight
yard. After the cargo is received, the parcel boxes are sorted and stored within the railway
freight yard for an extended period. After that, the sorted parcel boxes are loaded into the
subway freight carriages and then moved between the urban subway stations. Parcel boxes
arriving at the designated station are moved to the ground subway station site to be sorted
using a vertical transfer device, and after re-sorting for last-mile delivery, the final delivery
was performed.
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According to the above operation scenario, parcel boxes pass through several loca-
tions as they are moved, and as the location changes, the person in charge of the freight
transportation continuously changes. Therefore, it is believed that detecting and classifying
damaged parcel boxes can not only speed up the response to the damage, but also clarify
responsibility. Table 1 shows the places where it is necessary to check whether or not
parcels are damaged by using the operation scenario procedure. In detail, the point where
the location of the box is changed and the place where the responsibility is changed are
designated as checkpoints to detect and classify parcel boxes.

Table 1. Required detection location of parcels.

Railway Freight Yard Subway Station Ground Site for Preparation Delivery
Last-Mile
Fright CarReceiving Sorting Originating

Station
Destination

Station Moving Receiving Sorting

Required
detection
location

√ √ √ √ √

2. Related Research

In this study, we intended to conduct an experiment to classify damaged parcels based
on the checkpoints at places where the recognition and classification of parcels should be
detected in, as shown in Table 1, under ULS.

Research to detect and classify an object’s quality using a convolutional neural network
is being applied in various fields. Research on the classification of parcel boxes is relatively
new, and there are no published studies to directly compare our results to. A large amount
of research has been conducted on the quality of fruit, road damage, waste classification,
and disease. Bird, J.J. et al. performed an experiment to distinguish defects in lemons
using VGG16, and classified healthy and unhealthy lemons with an accuracy of 88.75% [5].
Velasco, J. et al. performed a study to classify seven skin diseases using the MobileNet
algorithm, with an accuracy of 94.4% [6]. Maeda, H. et al. conducted a study using Inception
V2 and MobileNet to classify road damage into eight types using road surface images taken
while driving a vehicle, and showed an accuracy of 77% [7]. Wang, L. et al. performed
an experiment to classify damaged ceilings in large-span structures using CNN. This
study aimed to overcome the limitations of operator-based on-site inspection. As a result,
classifying two types of damaged ceilings had an accuracy of 86.22% [8]. Zhang, Q. et al.
proposed a waste image classification using DenseNet 169 to improve the efficiency and
accuracy of waste sorting and treatment by conducting a study to classify waste into five
categories, with an accuracy of 82.8% [9]. Dilshad, S. et al. conducted a study to detect and
classify COVID-19 using MobileNet using chest X-ray images, which had an accuracy of
96.33% [10]. Prasetvo E. et al. conducted an experiment to classify the freshness of fish
by detecting fish eyes and applying bottleneck and expansion to MobileNet, finding an
accuracy of 99.36% [11].
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Table 2 shows that the existing image classification research was mainly conducted
with the binary classification of objects, and the image classification model was different
according to the purpose and utilization of image classification. In this study, an experiment
was conducted to classify normal and damaged parcel boxes using MobileNet. MobileNet
was chosen as it uses a relatively small amount of disk space by using a small number of
computations and parameters compared to other models. Therefore, in order to be applied
to ULS in the future, the MobileNet model, which is lightweight, efficient and quick, was
selected as the basic model [12].

Table 2. Comparison of the literature review.

Authors Image Type Purpose Model Number of Data Accuracy

Bird, J.J. et al. [5] Lemon Lemon defect classification VGG16 4096 88.75%
Velasco, J. et al. [6] Skin Skin disease classification MobileNet 3046 94.4%

Maeda, H. et al. [7] Damaged
road Damaged road classification Inception V2

MobileNet 9053 77%

Wang, L. et al. [8] Damaged
ceiling

Damaged ceiling
classification CNN (Not mentioned) 1953 86.22%

Zhang, Q. et al. [9] Waste Waste classification DenseNet169 20,000 82.80%
Dilshad, S. et al. [10] Chest X-rays Chest X-ray classification MobileNet 864 96.33%

Prasetyo, E. et al. [11] Fish eyes Classifying the freshness of
fish eyes

MobileNet with
bottleneck and

expansion
4392 99.36%

The remainder of this paper is structured as follows: Section 1 investigates the research
background of classifying damaged parcel boxes using a convolutional neural network
(CNN) under an underground logistics system (ULS). As a result of analyzing literature
reviews, there were no published works related to the classification of parcel boxes using
CNN that we could directly compare to this research. Section 2 introduces the CNN model,
MobileNet algorithm to classify damaged parcel boxes in a ULS procedure. Section 3
examines the construction and framework of the data environment as a basis for the
experiment. Section 4 explores how the MobileNet algorithm is applied to classify damaged
parcel boxes, and a classification experiment is conducted. Finally, Section 5 presents the
conclusions and avenues for future research.

3. Methodology

This section consists of the concept of convolutional neural networks (CNN), Mo-
bileNet and the architecture of classification tasks, and briefly introduces the MobileNet,
CNN, presenting the architecture and flowcharts of MobileNet for classifying parcel boxes.

3.1. Concept of CNN

Object recognition, classification and detection are chiefly conducted using a CNN
algorithm based on deep-learning [13]. A typical CNN algorithm consists of three different
layers stacked together: a convolutional layer, pooling layer, and fully connected layer [14].
A convolutional layer is used to extract image features and automatically learn the repre-
sentations of image features. It performs a 3D convolution with several kernels and a given
step size to produce feature maps from the input image [15]. Compared to other neural
networks of a similar type, CNN has much fewer parameters and connections. Therefore,
it is more efficient to train a CNN model, which has an excellent performance. CNN
algorithms vary with regard to building convolutional and pooling layers and training a
neural network [16].

A convolutional layer multiplies the elements corresponding to each input channel
while moving the weight filter at regular intervals. Then, the result of adding those values
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is sequentially stored in the output. The mathematical expression for this convolution
process can be defined as Equation (1) [17]:

Ox,y,n =
3

∑
c=1

3

∑
j=1

3

∑
i=1

Ki,j,c,n·Fx+i−1,y+j−1,c (1)

where O is output, K is filter, F is input, and i and j represent the horizontal and vertical
lengths of the filter, respectively. In addition, x and y represent the horizontal and vertical
lengths of input and output, respectively, c represents the input channel and n is the
output channel.

The general structure of the CNN matches a part of the input image rather than
the whole image, as shown in Figure 3, and a 3 × 3 grid is used to extract features.
After the convolution process is complete, the max pooling is called to shrink the image
stack. Window size is defined for max pooling. Then, the window is filtered across all
of the images, and the max pooling reduces the dimension of each functional map. The
normalization process of CNN is generally performed by a rectified linear unit (ReLU).
This ReLU process increases the non-linearity property of the model. A fully connected
layer, which is the next-performing layer, can be observed in the CNN and is called the
classifier [12].
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3.2. MobileNet Algorithm

The traditional CNN is proven to have an excellent performance in the image recogni-
tion field, but it requires a lot of computation to learn and test the algorithm. Therefore,
a high-performance GPU and large memory is essential. In order to solve this problem,
MobileNet, which is one of the methods of changing the convolution filter, was proposed.
MobileNet was developed by Google and has the advantage of a fast execution time be-
cause it is optimized for a small size, and is ideal for operating in mobile devices or devices
with limited resources [16].

MobileNet consists of a neural network that uses depthwise separable convolution
from the existing convolution. Depthwise separable convolution is a concept for factor-
ing an existing convolution and it consists of two steps: depthwise convolution, which
filters the convolution, and pointwise convolution, which performs summation processing.
Depthwise convolution performs a single-filter operation processing for each channel for all
channels of input data, and then outputs the result. Pointwise convolution is composed of
a 1 × 1 convolution, and it is summed and printed out through depthwise convolution [18].
The result of depthwise separable convolution, based on RGB images with a 3 × 3 filter
and a movement interval of 1, can be defined as Equations (2) and (3) [17]:

Ô =
3

∑
j=1

3

∑
i=1

Ki,j,c·Fx+i,y+j−1,c (2)
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O =
3

∑
c=1

K̂c,n + Ôx,y,c (3)

where Ô is the output of the depthwise convolution, K is the single filter of the depthwise
convolution and F represents the input. O is the output of the pointwise convolution, K̂ rep-
resents the filter of the 1 × 1 convolution. In the case that the traditional 3 × 3 convolution
is changed to a depthwise separable convolution, the amount of computation is reduced by
about eight to nine times [18].

Figure 4 shows the general architecture of MobileNet, which consists of a total of
28 layers. The first layer in the architecture consists of 3 × 3 convolutions and is used
for lightweight filtering that applies a single convolutional filter per input channel. The
second layer consists of a 1 × 1 convolution, also called a pointwise convolution. The
rectified linear unit (ReLU), called the activation function, has a faster computation speed
and higher accuracy than the existing sigmoid function. The ReLU function is used in each
convolutional layer [19].
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3.3. Architecture of MobileNet for Classification of Parcel Boxes

In order to recognize the damaged parcel boxes under ULS, architecture research is
conducted using CNN MobileNet. Figure 5 shows a flow chart for classification of parcel
boxes using MobileNet. MobileNet has the advantage of being faster than other image
classification models because it approaches each response channel with a separate filter [20].
For accurate classification of parcel boxes, two convolutional layers are composed in the
MobileNet algorithm. One layer is a depthwise convolution that can apply a single-input
convolution at once in the filter stage, and the other layer is a pointwise convolution that
can perform a linear combination output for the depthwise convolution. By placing the
batch normalization and ReLU layers after each convolutional layer, it is possible to reduce
the computational cost by allowing the classification to be performed faster than a general
CNN model through downscaling of the model size and simplification [21].
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3.4. Dataset of Materials and Method

The experiment for the recognition and classification of damaged parcel boxes used in
this paper was performed by Google, as shown in Table 3. Google Colaboratory (Colab) is
built to perform cloud-based deep learning works based on Jupyter notebooks. Colab is
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useful in the field of computer vision, and it has the advantage of being able to use 12 GB
of RAM and GPU, such as Tesla T4, which has similar specifications to GeForce GTX 1080.

Table 3. Experimental environment.

System Trained Model Data

Google Colaboratory MobileNet 4882 images

For the recognition and classification of parcel boxes, the dataset was divided into
three groups: training, validation, and testing. For the experiment, a 4882-image dataset
was collected and was divided into normal and damaged boxes. The collected images
were classified into training, validation, and test sets in a ratio of 8:1:1 for the two classes
in a randomized manner. Part of the image data was collected through web crawling
because there was a limit to collecting images of parcel boxes in large quantities. Figure 6
shows two classes of labeled image: (a) normal parcel boxes and (b) damaged parcel
boxes. To prevent overfitting, cross-validation was performed in the training process. The
detailed experimental environment of the training, validation and test datasets consisted of
3906 training data, 488 validation data, and 488 test data divided into two labels, as shown
in Table 4.
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Table 4. Dataset type.

Dataset Type
Number of Images

Total Number
Labeled as Normal Labeled as Damage

Trained Data 2343 1563 3906
Validation Data 293 195 488

Test Data 293 195 488
Total 2929 1953 4882

3.5. Framework of Experiments

The MobileNet framework for classifying the damage of boxes starts with segmen-
tation, as shown in Figure 7. The parcel box images are trained and validated using
MobileNet in the experimental part, and the trained model is then used to classify the test
data in the testing part.
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The testing part is necessary because it is important in the reliability process for
classifying images not seen during the experiment session [21]. Furthermore, this study
evaluated and verified the classification results from data using other CNN models.

4. Experiments and Results
4.1. Experimental Setup and Training

During the experimental process, data were modified and trained using machining
data and fine-tuning strategies to classify damaged parcel boxes. Various combinations
of parameters, such as the number of frozen convolutional layers, the number of fully
connected layers, the dropout rate, learning rate, and epochs, were modified, and optimal
parameters were applied to the training experiment. After training, the parameters of the
successful models were saved for testing, as shown Figure 8. In order to maintain better
performances of the models, the number of fully connected layers was kept the same in
all models as much as possible. Table 5 shows the number of parameters for layers after
computation, as MobileNet architecture are applied to layers in consecutive order. In the
first row, multi-adds and parameters are presented for the full convolutional layer with
input ‘F’ of size 14 × 14 × 512, and a filter ‘K’ of size 3 × 3 × 512 × 512. The second row
shows the multi-adds and parameters of the depthwise separable convolutional layer.
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Table 5. The number of parameters for the layers.

Layer Million Multi-Adds Million Parameters

Full Conv. 460 2.65
Depthwise Separable Conv. 53 0.35

4.2. Results of the Experiments

As described in this section, we evaluated the performance of the MobileNet by
calculating the prediction accuracy and loss for damaged parcel box classification using
CNN MobileNet, and the results are shown in Figure 9. The performance of the model was
calculated using statistical measures such as precision, accuracy, F-score and recall. Each
model was trained for 33 epochs.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 12 
 

Table 5. The number of parameters for the layers. 

Layer Million Multi-Adds Million Parameters 
Full Conv. 460 2.65 

Depthwise Separable Conv. 53 0.35 

4.2. Results of the Experiments 
As described in this section, we evaluated the performance of the MobileNet by 

calculating the prediction accuracy and loss for damaged parcel box classification using 
CNN MobileNet, and the results are shown in Figure 9. The performance of the model 
was calculated using statistical measures such as precision, accuracy, F-score and recall. 
Each model was trained for 33 epochs. 

The test results showed that the maximum training accuracy and validation accuracy 
were 82% and 87.7%, respectively, at the 25th and 22nd epochs. The training accuracy was 
shown to be stable after the 22nd epoch. From these results, it can be considered that the 
training of MobileNet was sufficiently accomplished. The image classification results 
using MobileNet showed a test prediction accuracy, sensitivity and specificity of 84.6%, 
82% and 88.54%, respectively. 

 
Figure 9. Accuracy and loss values in each epoch. 

4.3. Experimental Comparisons 
In order to compare the experimental results, we conducted an experiment using 

MobileNet, VGG16 and ResNet50, which are representative CNN algorithms, to classify 
whether the delivery box was damaged. In the case of the VGG16 and Resnet50 models, 
the classification accuracy could be higher than MobileNet, as shown in Table 5, but the 
disk space and parameter values occupied were significantly higher. Therefore, the 
experiments using VGG16 and Resnet50 take a relatively long time to test. 

The learning of VGG16 and Resnet50 was performed under the same conditions as 
MobileNet, and the results of the classification experiment for each algorithm are 
presented in Table 6. As a result of testing with 488 images, VGG16 showed the highest 
performance among the three models in prediction accuracy, sensitivity and specificity of 
88.3%, 86.3% and 88.7%, respectively, as shown in Figure 10. In the case of ResNet50, the 
performances in prediction accuracy, sensitivity and specificity were 79.7%, 76.5% and 
81.5%, respectively. The prediction accuracy showed the highest performance for VGG16, 
followed by MobileNet, and it showed the lowest performance for ResNet50. 

  

Figure 9. Accuracy and loss values in each epoch.

The test results showed that the maximum training accuracy and validation accuracy
were 82% and 87.7%, respectively, at the 25th and 22nd epochs. The training accuracy was
shown to be stable after the 22nd epoch. From these results, it can be considered that the
training of MobileNet was sufficiently accomplished. The image classification results using
MobileNet showed a test prediction accuracy, sensitivity and specificity of 84.6%, 82% and
88.54%, respectively.

4.3. Experimental Comparisons

In order to compare the experimental results, we conducted an experiment using
MobileNet, VGG16 and ResNet50, which are representative CNN algorithms, to classify
whether the delivery box was damaged. In the case of the VGG16 and Resnet50 models, the
classification accuracy could be higher than MobileNet, as shown in Table 5, but the disk
space and parameter values occupied were significantly higher. Therefore, the experiments
using VGG16 and Resnet50 take a relatively long time to test.

The learning of VGG16 and Resnet50 was performed under the same conditions as
MobileNet, and the results of the classification experiment for each algorithm are presented
in Table 6. As a result of testing with 488 images, VGG16 showed the highest performance
among the three models in prediction accuracy, sensitivity and specificity of 88.3%, 86.3%
and 88.7%, respectively, as shown in Figure 10. In the case of ResNet50, the performances
in prediction accuracy, sensitivity and specificity were 79.7%, 76.5% and 81.5%, respec-
tively. The prediction accuracy showed the highest performance for VGG16, followed by
MobileNet, and it showed the lowest performance for ResNet50.
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Table 6. Comparison of disk space and parameters between models.

Model Disk Space Parameters

MobileNet 12 MB 3,017,284
VGG16 502 MB 117,237,524

ResNet50 77 MB 18,634,720
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In conclusion, when performing experiments for binary image classification, such as
the classification of damaged parcel boxes, it was considered appropriate to use MobileNet,
which shows a relatively high performance versus time compared to other complex models
as shown in Table 7.

Table 7. Comparison of CNN image classification models.

Model Test Accuracy Sensitivity Specificity Testing Time (s)

MobileNet 84.6 82 88.5 14
VGG16 88.3 86.3 89.7 98

ResNet50 79.7 76.5 81.2 21

5. Conclusions and Future Work

This paper introduces a ULS concept to reduce freight cars and handle freight volume
using subways in metropolitan areas. After checking the point where the parcel boxes
could be damaged based on a ULS, research was conducted using deep learning to detect
whether the parcel boxes were damaged. Parcel boxes are susceptible to damage, which
reduces product quality and negatively affects customer satisfaction. Therefore, inspection
procedures for parcel boxes are needed to efficiently detect and classify the defects of parcel
boxes before they are delivered to customers. As a way to solve this problem, we conducted
an experiment to classify normal parcel boxes and damaged boxes using computerized
methods under a ULS procedure. For image classification, Google Colaboratory notebook
was used and 4882 data images were collected for the experiment. The experiment was
performed using the MobileNet algorithm, which used less disk space and fewer parameters
than other models. Regarding the architecture of MobileNet, multi-adds and parameters
were presented as 460 and 2.65, respectively, for the fully convolutional layer which has
an input ‘F’ of size 14 × 14 × 512 and a filter ‘K’ of size 3 × 3 × 512 × 512. The multi-
adds and parameters of the depthwise convolutional layer were 53 and 0.35, respectively.
A MobileNet classification architecture of parcel boxes was trained and tested, with an
accuracy, recall and specificity of 84.6%, 82% and 88.54%, respectively, for the testing
set. Since the image dataset of parcel boxes is relatively new, there are no published
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studies to compare our results to. Therefore, to validate the usefulness of the MobileNet
algorithm, verification experiments were performed under the same conditions using
other algorithms, VGG16 and ResNet50. As a result of these verification experiments,
the accuracy of was 86.3% in the VGG16 algorithm, which was better than the other
image classification models. However, the testing time of the VGG16 also took longer
than MobileNet and ResNet50. Therefore, the results show that, although the accuracy of
MobileNet is 84.6%, which is relatively lower than VGG16, its testing time was seven times
faster than VGG16 algorithm. In conclusion, MobileNet has a relatively better performance
than other image classification models with regard to test time. The contribution of this
paper is twofold. Firstly, this study presents the concept of a ULS, and a search is currently
being conducted to apply the proposed ULS to metropolitan areas. Secondly, this paper
proposed a method to detect damaged parcel boxes using MobileNet, and this will be
helpful for classification of damaged parcel boxes under ULS. Future studies that focus on
a breakage-type classification of parcel boxes (contamination, leakage and damage) should
be conducted. Another study could be conducted to track the location of detected parcel
boxes in real time and to determine whether they are damaged or not.
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Abbreviation

The following abbreviations are used in this paper:
ULS Urban Logistics System
CNN Convolutional Neural Network
ReLU Rectified Linear Unit
Conv. Convolutional
Colab Colaboratory
Math symbols
F Input
O Output
K Filter
Ô Output of depthwise convolution
K̂ Filter of 1 × 1 convolution
i Horizontal length of the filter
j Vertical length of the filter
x Horizontal length of input and output
y Vertical length of input and output
c Input channel
n Output channel
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