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Abstract: This study presents a prediction model for comparing the performance of six different
photovoltaic (PV) modules using artificial neural networks (ANNs), with simple inputs for the model.
Cell temperature (Tc), irradiance, fill factor (FF), short circuit current (Isc), open-circuit voltage (Voc),
maximum power (Pm), and the product of Voc and Isc are the inputs of the neural networks’ processes.
A Prova 1011 solar system analyzer was used to extract the datasets of IV curves for six different PV
modules under test conditions. As for the result, the highest FF was the mono-crystalline with an
average of 0.737, while the lowest was the CIGS module with an average of 0.66. As for efficiency, the
most efficient was the mono-crystalline module with an average of 10.32%, while the least was the
thin-film module with an average of 7.65%. It is noted that the thin-film and flexible mono-modules
have similar performances. The results from the proposed model give a clear idea about the best
and worst performances of the PV modules under test conditions. Comparing the prediction process
with the real dataset for the PV modules, the prediction accuracy for the model has a mean absolute
percentage error (MAPE) of 0.874%, with an average root mean square error (RMSE) and mean
absolute deviation (MAD) of, respectively, 0.0638 A and 0.237 A. The accuracy of the proposed model
proved its efficiency for predicting the performance of the six PV modules.

Keywords: photovoltaic; IV curve; efficiency; fill factor; ANN

1. Introduction

Solar energy has become one of the world’s most essential resources in the last decade,
leading to the development of photovoltaic (PV) cells. The photovoltaic (PV) system
contains many components such as cells, wires, inverters, structures, and mechanical
connections. The output power from this system is measured by the peak kilowatt, which
indicates the amount of electrical power delivered when the sun is at its highest point [1].
With the number of advantages of the PV system, many different applications have started
to depend on it, such as solar systems in homes, pumps, PV and thermal collector systems,
and building-integrated photovoltaic (BIPV) systems [2–6]. PV performance is influenced
by environmental factors such as wind, temperature, dust pollution, and installation factors
such as the tilt angle and area [1,7,8]. Many previous studies have focused on the result of
dust on PV systems. The position of PV cells, the type of PV cells, the type of dust product
(ash, carbon, cement, and limestone), and the type of investigated parameters (IV curve,
power, and efficiency) were the main aspects of these studies [9,10].

Many studies have compared different types of PV cells and examined how each
type will perform under different conditions from the STC. Mirzaei and Mohiabadi [11]
studied the changes for two different PV modules types. The highest monthly average
efficiency for the monocrystalline module was 15.2% in winter, while the lowest was 13.2%
in summer. Meanwhile, the polycrystalline module’s highest monthly average efficiency
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was 12.97% in summer and 11.44% in winter. Silvestre et al. [12] calculated the performance
of monocrystalline, polycrystalline, and HiT modules. This research used the performance
ratio (PR) and fill factor (FF) to compare the PV modules. The PV module with the highest
PR and FF was the HiT module, and the lowest was the polycrystalline module.

The IV curve plays a significant role in this research. This curve provides a lot of
information and important characteristics that could be useful for testing, measuring,
and modeling the performance of the system, such as the short-circuit current (Isc), the
open-circuit voltage (Voc), and the maximum power (Pm) [13]. There are two types of
measurement of the IV curve: online and offline methods. The first type of method uses
elements such as capacitors, resistors, and switches to measure the specifications of the PV
cell. The advantage of this type of measurement is the ability to extract the IV curve and
diagnose any faults in the system.

However, these methods have some drawbacks, such as their accuracy, time con-
straints, and the ability to use them in large-scale systems. Malik et al. [14] increased the
value of the resistor manually, step by step, and then calculated current and voltage using
digital multimeters in each step. In addition, Van Dyk et al. [15] measured the IV curve
for monocrystalline and polycrystalline modules using variable resistors. A high-quality
capacitor with low losses is recommended for this experiment, in order to extract the IV
curve with high accuracy. Lorenzo et al. [16] used the capacitive load. The author avoided
some of the drawbacks of the previous research, but the limitation of the power size is still
considered a major problem. Forero et al. [17] presented a system that could monitor the
performance of PV solar cells with an IV curve using several transistors in a cascade. The
system obtained the IV curve with a short testing time, avoiding some problems encoun-
tered during previous research. Kuai et al. [18] extracted the IV characteristic curve while
avoiding problems related to time constraints and the method’s use in large-scale systems.
Durán et al. [19] proposed new buck–boost converters for the same purpose. Compared to
the other online methods, flexibility and the ability to trace the IV curve in both directions
are the advantages of this research.

In comparison, this converter cannot trace the points close to Isc and Voc. Khatib
et al. [20] suggested extracting the IV curve using a DC–DC boost converter. Using no exter-
nal devices is the major advantage of this research. The disadvantage of this method is the
low accuracy. The performance of the proposed model is 63%. Considering the significant
drawbacks of these methods, many researchers have discussed new offline methods.

Offline methods are mainly based on genetic algorithms (GA) and artificial intelligence
(AI) techniques. The major drawback of some of the offline methods is the ability to detect
unusual conditions for the solar cell system. Some researchers have discussed this issue in
their research. Bai et al. [21] used the five-parameter model, while Ma et al. [22] used the
Levenberg–Marquardt method. These studies proved their high accuracy and lower testing
time than online methods. Much research, such as that of Navabi et al. [23], used numerical
techniques. However, these studies faced different challenges, such as complex calculations
and the relationship between accuracy and initial conditions. Due to the drawbacks of
some offline methods, a variety of methods, including genetic algorithms (GA) [24,25] and
hybridized evolutionary methods [26,27], were used to solve them. These methods (called
“evolutionary algorithms”) extract the IV curve with different approaches and concepts.
Table 1 highlights the accuracy of these methods.

Researchers used some AI technologies, such as artificial neural networks (ANNs),
to predict different parameters related to PV performance. One of the parameters is solar
radiation. Solar radiation in tropical regions such as Malaysia is unique because it is stable
and does not change throughout the year [28,29]. Khatib et al. [30] created a method
for predicting it in Malaysia using ANNs. The technique that was proposed had a low
percentage error compared to the previous process. In addition, El-kenawy [31] investigated
the potential for the ANN with ant colony optimization (ACO) to predict received solar
radiation. Sivaneasan et al. [32] proposed a model to improve solar forecasting using
ANNs with fuzzy logic. The model had a lower MAPE compared to models with no fuzzy
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logic. Khatib et al. [33] used ANNs to predict the IV curve. The proposed method had
a high percentage of errors in predicting the IV curve. Zhang et al. [34] predicted the IV
characteristic curve using ANNs with an explicit analytical model (EAM). Mittal et al. [35]
predicted the IV parameters (Voc, Isc, maximum current (Im), maximum voltage (Vm), and
Pm) using ANNs for different types of PV modules, while Ibrahim et al. [36] predicted
the IV curve using the random forest method. Some researchers used ANNs to predict
the output power of the PV system. Theocharides [37] predicted the output power using
ANNs. Meanwhile, Jung et al. [38] used a recurrent neural network (RNN) to predict the
output power; the mean absolute percentage error for the method was about 10.805%.
Moreover, Khandakar et al. [39] indicated the output power in Qatar using ANNs in two
different techniques.

Table 1. The accuracy of some of the methods that extracted the IV curve or output power.

Name of Author Type of Method Accuracy (%)

Malik et al. [14] Online—Variable Resistor 69
Van Dyk et al. [15] 78
Lorenzo et al. [16] Online—Capacitive load 80

Kuai et al. [18] Online—Electronic load 91.6
Khatib et al. [20] Online—DC-DC converter 63
Navabi et al. [23] Offline—Numerical models 90.5–99
Ismail et al. [24] Offline—Evolutionary algorithms 78–98.6
Dizqah et al. [25]
Khatib et al. [33] Offline—Artificial neural networks 98.5
Zhang et al. [34] 99
Mittal et al. [35] 99
Jung et al. [38] Offline—recurrent neural networks 90

The main objective of this study is to compare the predicting performance (FF, ef-
ficiency, and IV curve) for six different types of PV module (a CIGS module, a flexible
monomodule, a thin-film module, a monocrystalline module, a polycrystalline module,
and a flexible back-contact monomodule) under test conditions (solar radiation and ambi-
ent temperature) in Malaysia using GRNNs. The proposed model uses simple inputs for
both networks, such as Isc, Voc, Pm, Tc, and irradiance, which could be extracted by any
IV analyzer devices, and achieves this with higher accuracy than the online and offline
methods represented in Table 1.

2. Experimental Setup and Major Parameters of the PV Module

During this research, six different types of PV panels were used to collect data using a
Prova 1011 solar system analyzer, namely, a polycrystalline panel (100 W), a monocrystalline
panel (100 W), a flexible mono-panel (100 W), a thin-film amorphous panel (100 W), a CIGS
solar panel (90 W), and a flexible back-contact mono-panel (30 W). Figure 1 shows the six
PV modules’ visual images while collecting the dataset.

The Prova 1011 solar system analyzer was used to measure the PV module perfor-
mance (IV curve), FF, Pm (Vm and Im), and efficiency under different test conditions. The
instrument connects with a wireless irradiance meter and thermometer to collect the ir-
radiance and cell temperature under the test conditions for the PV modules, as shown
in Figure 2. Moreover, the device can calculate the efficiencies and the maximum power
under test conditions by saving the specification of the PV module (area, Voc, and Isc)
by connecting the device with a special software program for the device. After that, a
considerable number of IV curves at different irradiance and temperature for the six PV
modules are extracted from the device, and the software is used during the MATLAB
program’s training process.



Appl. Sci. 2022, 12, 3349 4 of 16Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 18 
 

 
Figure 1. (a) Polycrystalline panel, (b) monocrystalline panel, (c) flexible mono-panel, (d) thin-film 
amorphous panel, (e) CIGS solar panel, and (f) flexible back-contact mono-panel. 

The Prova 1011 solar system analyzer was used to measure the PV module perfor-
mance (IV curve), FF, Pm (Vm and Im), and efficiency under different test conditions. The 
instrument connects with a wireless irradiance meter and thermometer to collect the irra-
diance and cell temperature under the test conditions for the PV modules, as shown in 
Figure 2. Moreover, the device can calculate the efficiencies and the maximum power un-
der test conditions by saving the specification of the PV module (area, Voc, and Isc) by con-
necting the device with a special software program for the device. After that, a consider-
able number of IV curves at different irradiance and temperature for the six PV modules 
are extracted from the device, and the software is used during the MATLAB program’s 
training process. 

Figure 1. (a) Polycrystalline panel, (b) monocrystalline panel, (c) flexible mono-panel, (d) thin-film
amorphous panel, (e) CIGS solar panel, and (f) flexible back-contact mono-panel.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 18 
 

 
Figure 2. Set-up for extracting IV curves by Prova 1011 solar system analyzer. 

An IV curve can represent the relationship between the current (the vertical axis of 
the curve) and voltage (the horizontal axis of the curve) at a specific irradiance and tem-
perature, as shown in Figure 3. Analyzing the figure shows several essential points in the 
IV curve. As shown in Equation (1), the Isc represents the highest current produced when 
the voltage is zero. I (at V = 0) = Iୱୡ (1)

Secondly, as shown in Equation (2), Voc represents the highest voltage produced 
when the current is zero. V (at I = 0) = V୭ୡ (2)

Other essential points and parameters for this research include the maximum power 
point (MPPT). This represents the point in the IV curve where the rectangle area below 
the IV curve is the maximum. At the same time, the efficiency is the ratio between Pm and 
the input power (Pin). Pin is the product of the solar cell irradiation of the incident light. 
Lastly, the FF is the ratio between Pm and the product of Isc and Voc. These important pa-
rameters can be given by Equations (3)–(5) [40,41]:  P୫ =  I୫ . V୫ (3)η = P୫ /P୧୬ (4)

FF =  P୫  Iୱୡ. V୭ୡൗ  (5)

Figure 2. Set-up for extracting IV curves by Prova 1011 solar system analyzer.



Appl. Sci. 2022, 12, 3349 5 of 16

An IV curve can represent the relationship between the current (the vertical axis of the
curve) and voltage (the horizontal axis of the curve) at a specific irradiance and temperature,
as shown in Figure 3. Analyzing the figure shows several essential points in the IV curve.
As shown in Equation (1), the Isc represents the highest current produced when the voltage
is zero.

I (at V = 0) = Isc (1)
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Secondly, as shown in Equation (2), Voc represents the highest voltage produced when
the current is zero.

V (at I = 0) = Voc (2)

Other essential points and parameters for this research include the maximum power
point (MPPT). This represents the point in the IV curve where the rectangle area below the
IV curve is the maximum. At the same time, the efficiency is the ratio between Pm and the
input power (Pin). Pin is the product of the solar cell irradiation of the incident light. Lastly,
the FF is the ratio between Pm and the product of Isc and Voc. These important parameters
can be given by Equations (3)–(5) [40,41]:

Pm = Im . Vm (3)

η= Pm /Pin (4)

FF =
Pm

Isc.Voc
(5)

3. Proposed ANNs Model for Predicting the Performance of the Six PV Modules

Artificial neural networks (ANNs) are non-algorithm information-processing systems
that use previously collected data to train the networks to predict specific variables such as
current, efficiency, output power, and solar radiation [42]. Every network, in general, has
three types of layers, input, hidden, and output layers [42,43].

There are two generalized regression neural networks (GRNNs) that predict the IV
curve. The output for the first GRNN is used as an input variable in the second GRNN; the
second network predicts the current of one of the six PV modules at specific conditions.
The architecture, and the number of neurons in the input, hidden, and output layers, are the
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same for both networks. Moreover, each training dataset has one neuron for every input
with different values and weights. The input neurons in this proposed model feed their
values to the neurons in the hidden layer. After multiplying the values with a target, the
final value is transferred to the neurons in the pattern layer. In this layer, the final values
are added by weights from each hidden neuron, and the result is used as the predicted
value [30]. In this research, the mechanism recorded IV curves for the proposed ANNs
method using a Prova 1011 Solar System Analyzer. The device extracted a considerable
number of IV curves at different irradiances and temperatures for the six PV modules. Most
of these IV curve data were sent for the training process for the proposed ANNs method.
Simultaneously, some of them were used during the testing process of the method.

In the proposed model, the first GRNN is trained by IV curve data for six different
types of PV modules at different irradiances and cell temperatures, with FF, Pmax, Isc, Voc,
voltage, current, and the product of Isc and Voc. These factors are used as input for the
training process in the first network. The output for the first GRNN represents the relation
between current and voltage. The training method’s inputs contain specialized information
for one of the six PV modules covered by the device. Figure 4 shows the first proposed
GRNN used in the model.
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The testing process for the first GRNN starts by obtaining the current and voltage for
the PV module by stepping their highest value down. These parameters are used as an
input for the testing process with irradiance, cell temperature (Tc), FF, Pmax, a product of
Isc and Voc, Isc, and Voc to predict a parameter representing the relation between the x-axis
and the y-axis. Meanwhile, the second GRNN predicts the current for one of the six types
of modules at specific irradiance and temperature. The inputs for the training process are
irradiance, Tc, voltage, a product of Isc and Voc, FF, Pmax, Isc, Voc, and the output parameter
from the first GRNN. The inputs for the testing process for the network are the same as the
training process. Figure 5 shows the second GRNN proposed in this model. The proposed
model starts by entering the name of the PV module with the specifications of the module.
A “for loop” is used to upload the training dataset for the same PV module, depending on
the type of PV module chosen. After this, the test conditions for the PV module (irradiance
and Tc) should be specified. Then, the datasheet for the PV module is used to calculate Isc
and Voc under test conditions using Equations (6) and (7) as below [42]:

Voc−T = Voc−stc − ((Tc − Ta))× 0.123) (6)
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Before the testing process, another “for loop” is used to create the testing data input.
The inputs are the same as those used during the training process. The last two inputs
are calculated by stepping down Isc and Voc. As shown in Figure 5, the first GRNN is
utilized as an input for the second GRNN, which predicts the relationship between the
x-axis and y-axis in the IV curve. The second GRNN, as shown in Figure 5, predicts the
current and extracts the IV and PV curves. Finally, after repeating the same process with
the same test conditions for the six different PV modules, the output data from each test
condition are used to calculate the efficiency and FF to compare how each PV module
performs under the same test conditions in Malaysia. Figure 6 shows the flowchart of the
proposed model process.
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For this research, the accuracy of the predicted performance was evaluated by using
three types of errors: first, the mean absolute deviation (MAD). This error is an indication
to measure the dispersal of a specific set of data and is calculated using Equation (8):

MAD =
1
n ∑r

i=1

∣∣xp − m(X)
∣∣ (8)

where r is the number of the value, xi is the predicted value from the proposed model, and
m(X) is the dataset’s average. Secondly, the mean absolute percentage error (MAPE) was
used, which can be given by Equation (9):

MAPE =
Experimental Value − Predicted Value

Experimental Value
× 100% (9)

This is usually used for calculating the accuracy of the new value (predicted value).
Lastly, the root mean square error (RMSE) was used, which indicates the short-term
performance and is calculated by using Equation (10):

RMSE =

√
1
n ∑r

i=1

(
xp − xe

)2 (10)

where xe is the experimental value. MAPE was used to calculate the percentage of error of
the predicting result to the experimental result. However, the results of the MAPE cannot
always indicate the real error if the value of the prediction is too small. Therefore, types of
errors such as RMSE and MAD are useful for this research.

4. Result and Discussion

In this research, six different types of PV modules were used to collect datasets for
the training and testing process of the ANN by a Prova 1011 solar system analyzer. The
technical characteristics of the PV modules at STC are described in Table 2.

Table 2. The technical characteristics at STC.

Types of PV Module Pm Voc Isc Vm Im

CIGS 90 W 26.4 V 5.1 A 21 V 4.5 A
Thin film 100 W 20 V 5.6 A 18 V 5.1 A
Flexible mono 100 W 19.2 V 5.68 A 16 V 5.15 A
Polycrystalline 100 W 21.42 V 5.76 A 18.59 V 5.38 A
Monocrystalline 100 W 21.97 V 6.07 A 17.46 V 5.73 A
Flexible back-contact Mono 30 W 21.97 V 1.75 A 18.31 V 1.64 A

There are 37,144 records for 247 IV curves that have been collected from the six
PV modules, 40 IV curves from the flexible back-contact mono-module, 50 curves from
the CIGS module, 42 curves from the thin-film module, 40 IV curves from the flexible
mono-module, 35 curves from monocrystalline module, and 40 curves from polycrystalline
module. Each record has a value for voltage, current, Voc, Isc, FF, a product of Isc and Voc,
irradiance, Tc, and Pmax. A total of 7.69% of the dataset was used for the testing process,
while the remaining data were used during the training process.

For the prediction process, the proposed model predicted the IV curve for the six
different PV modules by entering the name of the PV module and the specific desired test
conditions, as explained in Figure 6. To test the accuracy of the proposed model under
different test conditions, each predicted IV curve has a different solar radiation level and
ambient temperature for each PV module. Figures 7–12 show the predicted IV curves with
the experimental IV curves for the six modules that were extracted. For each predicted IV
curve, the proposed model starts the process of training and predicting from the start, as
shown in the flowchart in Figure 6.
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After this, to compare the prediction performance of the six PV modules under test
conditions and how each PV module will perform under the same test conditions, the
proposed model predicted the IV and PV curves for the six different types of PV modules
under the same test conditions, as explained in Figure 6. Figures 13–16 compare and show
the predicted IV and PV curves for the six modules under the same test conditions. All the
graphs were created using the MATLAB program.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18 
 

 
Figure 13. Predicted IV curves for the six PV modules at 650 W/m2 and 315K Tc. 

 
Figure 14. Predicted IV curves for the six PV modules at 500 W/m2 and 310K Tc. 

Figure 13. Predicted IV curves for the six PV modules at 650 W/m2 and 315 K Tc.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18 
 

 
Figure 13. Predicted IV curves for the six PV modules at 650 W/m2 and 315K Tc. 

 
Figure 14. Predicted IV curves for the six PV modules at 500 W/m2 and 310K Tc. Figure 14. Predicted IV curves for the six PV modules at 500 W/m2 and 310 K Tc.

From Figures 13–16, FF efficiency for the six modules under the same test conditions
were calculated, as shown in Table 3. The highest FF is the monocrystalline module, with
an average of 0.737, while the lowest FF is the CIGS module, with an average of 0.66. For
efficiency, the highest is the monocrystalline module, with an average of 10.32%, while
the lowest is the thin-film module, with an average of 7.65%. Both thin-film and flexible
mono-modules have similar performances.
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From Table 4, by using Equations (8)–(10), the overall prediction accuracy of the
proposed model was shown to have an average root mean square error (RMSE) and mean
absolute deviation (MAD) of 0.0638 A and 0.237 A, respectively, while the average accuracy
of the mean absolute percentage error (MAPE) is 0.874%. The accuracy of the proposed
model proved its efficiency compared to the previous models presented in Table 1.

From the results in Tables 3 and 4, the proposed model predicted and compared
the performance of the six different PV modules under test conditions with an accuracy
of 99.126%, which is higher than of the all offline and online methods represented in
Table 1. The model needs less than 30 s after entering the specific test conditions to predict
the performance of the PV module by using and asking for simple parameters such as
irradiance, Voc, and Isc of the PV module.
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Table 3. FF and efficiency for the six PV modules under the same test conditions.

Type of PV Module Cell
Temperature (K)

Irradiance
(W/m2) FF Efficiency (%)

CIGS
315 650 0.667845 9.6274

310 500 0.65454 8.7328

Thin film
315 650 0.676499 8.083

310 500 0.685678 7.223

Flexible mono
315 650 0.677629 8.0899

310 500 0.698835 7.323

Polycrystalline 315 650 0.696921 10.9832

310 500 0.702558 8.4353

Monocrystalline 315 650 0.73124 11.2789

310 500 0.742875 9.3722

Flexible back-contact
mono

315 650 0.71744 8.828

310 500 0.725462 7.2522

Table 4. Values of MAD, MAPE, and RMSE under different test conditions for the six PV modules.

Type of PV Module Irradiance
(W/m2) Tc (K) MAD MAPE

(%) RMSE

Flexible back-contact mono 547 312 0.112 0.532 0.026
CIGS 716 321 0.263 0.517 0.080

Polycrystalline 550 310 0.393 1.173 0.092
Flexible back-contact mono 695 308 0.154 0.347 0.034

Thin film 401 310 0.198 0.872 0.052
Flexible mono 395 314 0.232 0.985 0.064

Flexible back-contact mono 865 315 0.196 1.069 0.035
Monocrystalline 750 327 0.34 1.186 0.098

CIGS 840 315 0.237 0.953 0.075
Polycrystalline 473 311 0.248 1.065 0.082

Thin film 570 313 0.174 0.775 0.041
Monocrystalline 380 308 0.291 1.024 0.087

5. Conclusions

This research proposed a model for comparing the prediction performance (IV curves,
efficiency, and FF) of six different PV modules using an ANN. The ANN that is used for
this model is a generalized regression neural network (GRNN). The model inputs for the
ANN are irradiance, Tc, a product of Isc and Voc, FF, and the technical characteristics of the
six PV modules. In this research, 37,144 records for 247 IV curves were collected from the
six PV modules under different test conditions. The MATLAB program was used to train
and test the data that were extracted from the device. Under the test conditions in Malaysia
(solar radiation and ambient temperature), the monocrystalline module had the highest
FF and efficiency, while the CIGS module had the lowest FF. As for efficiency, the lowest
was the thin-film module. The overall prediction accuracy for the proposed model has
an RMSE and MAD of 0.0638 A and 0.237 A, respectively. At the same time, the accuracy
of the MAPE is 0.874%. In future, a different device with a higher accuracy for collecting
training data sets and more variation in the training data and test conditions could improve
the accuracy of the proposed model. These results proved the accuracy of the model for
predicting the performance of the six PV modules.
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Abbreviations

PV Photovoltaic
IV Current–voltage
BIPV Building-integrated photovoltaic
Isc Short-circuit current
Voc Open-circuit voltage
Tc Cell temperature
FF Fill factor
PR Performance ratio
MPPT Maximum power point
Pm Maximum power
Im Maximum current
Vm Maximum voltage
Pin Input power
η Efficiency
ANNs Artificial neural networks
AI Artificial intelligence
GA Genetic algorithm
RNN Recurrent neural network
GRNN Generalized regression neural network
Voc_T Open-circuit voltage under test conditions
Voc_STC Open-circuit voltage under standard test conditions
Ta Ambient temperature
Isc_T Short-circuit current under test conditions
Isc_STC Short-circuit current under standard test conditions
MAPE Mean absolute percentage error
r Number of the value
xi Predicted value
m(X) Dataset’s average
RMSE Root mean square error
MAD Mean absolute deviation
xe Experimental value
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