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Abstract: Formal methods are crucial in program specification and verification. Instead of building
cases to test functionalities, formal methods specify functionalities as properties and mathematically
prove them. Nevertheless, the applicability of formal methods is limited in most development pro-
cesses due to the requirement of mathematical knowledge for developers. To promote the application
of formal methods, we formulate formalism-driven development (FDD), which is an iterative and
incremental development process that guides developers to adopt proper formal methods throughout
the whole development lifespan. In FDD, system graphs, a variant of transition systems optimized
for usability, are designed to model system structures and behaviors with representative properties.
System graphs are built iteratively and incrementally via refinement. Properties of system graphs
are specified in propositional and temporal logics and verified by model-checking techniques with
interpretation over transition system. In addition, skeleton programs are generated based on system
graphs and expose implementable interfaces for executing external algorithms and emitting observ-
able effects. Furthermore, we present Seniz, a framework that practicalizes and automates FDD. In
this paper, we explicate the concepts and taxonomy of FDD and discuss its practice.

Keywords: formal methods; software engineering; development process; program verification;
transition system; temporal logic

1. Introduction

Development processes are essential in software engineering, determining project
workflows and approaches. Although most development processes can be generally called
agile development nowadays, an architect still needs to customize processes for different
projects. For user-centric system development, interface design could drive processes
to enhance user experience in all aspects. For security-first system development, threat
models could drive processes to satisfy security requirements. Tools vary in development
processes. Apparently, prototyping tools are more useful for UI engineers than security
engineers to weave interactions during user-centric system development. On the contrary,
penetration testing tools are powerful for security engineers to find system vulnerabilities in
security-first system development and may not be necessary to UI engineers. However, no
matter what types of systems there are, one of the most important goals of the customized
development processes is to implement requirements correctly. Conventionally, software
testing techniques play a pivotal role in validating implementation correctness. Never-
theless, they are likely incapable of proving correctness with trade-offs for cost reduction,
especially in nondeterministic cases.

Formal methods have proven effective in ensuring correctness by specifying and
verifying system properties in a mathematically rigorous manner. Formal specification
techniques are used to rigorously describe system behaviors and guide implementations
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with mathematical notations from various theories such as automata theory, mathematical
logic, and type theory. Based on these theories, formal verification techniques are used
to prove specified properties with respect to specifications. Compared to software testing
techniques, formal methods are usually expensive and require more professional expertise
and computing power. Nevertheless, many tools have been developed to advocate the use
of formal methods in practice, such as model-checking tools [1,2] and theorem-proving
tools [3,4]. These tools can be used to verify systems at the implementation (code) level or
verify models extracted from implementations. In the first case, implementation verification
focuses on the details of the execution, such as runtime bugs (e.g., null pointer, division by
0, buffer overflow), functional correctness bugs (e.g., undefined behaviors, unexpected algo-
rithm output), and concurrency bugs (e.g., deadlock, race condition). It is crucial to verify
implementations and even worthwhile analyzing bytecodes. However, the implementation
verification is a unilateral strategy and hard to unravel design flaws. In the second case, it
is possible to locate design flaws in a system by verifying the specified properties of models.
However, extracting a proper model from the complicated implementation is nontrivial.
Extracted models might be too simple to have useful properties or too complicated to be
verified [5]. It is hard to judge whether a model extracted from an implementation coincides
with its design. If there is a departure from the design, properties associated with that
model can be untrustworthy and meaningless, which we call a conformity issue. There-
fore, a methodology that elaborates the adoption of formal methods tools is imperative
in development. Considering the importance of development processes that control the
whole development lifespan, an intuitive method of using formal methods throughout
development processes could be the key.

Formalism-driven development (FDD) is an iterative and incremental development
process, which was originally proposed for developing provably correct decentralized
systems [6]. To date, decentralization has evolved into a new stage with the advent of
the blockchain technology [7]. The blockchain was first introduced as the underlying
technology of a decentralized payment system named Bitcoin [8]. Later, it was extended
by the smart contract [9] and generalized to a concept named distributed ledger tech-
nology (DLT) [10]. Based on DLT, numerous decentralized systems have been devel-
oped to address security and privacy issues in a wide range of fields such as Internet of
Things (IoT) [11,12], data persistence [13,14], and security infrastructure [15,16]. How-
ever, developing a trustworthy decentralized system is extremely challenging due to
threats and vulnerabilities. At the application level, the DAO attack [17] in 2016, one
of the most infamous attacks, brought great damage to the cryptocurrency market and
successfully transferred about USD 50M worth of Ether into the control of the attacker
by exploiting the re-entrancy vulnerability. In 2017, the Parity wallet firstly suffered
a breach causing about USD 40M stolen [18] in June, which was followed by a “sui-
cide” attack in November that caused about USD 150M loss [19]. Furthermore, more
kinds of smart contract vulnerabilities were reported in [18] such as re-entrancy and
overflow. At the infrastructure level, Geth, the most widely used implementation of
Ethereum virtual machine (EVM), was recently found to have a vulnerability (https:
//github.com/ethereum/go-ethereum/security/advisories/GHSA-9856-9gg9-qcmq (ac-
cessed on 15 March 2022)) that led to a minority chain split after the London hard fork.

In contexts such as the development of decentralized systems, especially blockchains,
complete empirical testing is not practical due to the uncontrollable environment factors
(e.g., gas exactimation in Ethereum) and expensive financial expenses (e.g., high trans-
action fee in current main public blockchains). The cost of sufficient simulation testing
for correctness verification may be no different from a solution based on formal methods.
FDD aims to tackle the issues hindering the development of trustworthy decentralized
systems with reasonable cost from the perspective of a development process that we regard
as the root cause. FDD introduces a life cycle dominated by different types of formal
methods to produce rigorous designs, mathematically verifiable models, and provably
correct implementations. Formal specification techniques are used for producing readable,

https://github.com/ethereum/go-ethereum/security/advisories/GHSA-9856-9gg9-qcmq
https://github.com/ethereum/go-ethereum/security/advisories/GHSA-9856-9gg9-qcmq
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visualizable, and rigorous designs of which the correctness can be verified syntactically
and semantically. Based on designs, formal specification techniques are also used to gen-
erate models that guide verification and implementation. In FDD, the design and model
basically have the same semantics except that designs are usually at a higher abstraction
level than models. Hence, we use design, model, and design model indistinguishably in
this paper. Properties are formulated and proved in propositional and temporal logics to
describe system functionalities. Furthermore, FDD puts strict constraints on iterations and
increments by refinement techniques. Incremented components are formally defined with
formulas and can be expanded into fundamental elements for design, verification, and
implementation. Instead of functionalities, a set of (weakly) verified properties defines an
effective iteration. In this manner, FDD ensures conformity during the system evolution.

In this paper, motivated by generalizing and promoting the adoption of FDD in
various types of development projects, we systematically present the foundations of FDD.
Starting from the basic concepts in Section 2, we give a taxonomy of FDD in Section 3 that
organizes and unifies theories, architectures, and methods to help researchers to improve
the underlying theories and engineers to build FDD tools. Furthermore, we formulate
criteria of FDD tools and introduce Seniz, the first FDD framework to illustrate FDD in
practice in Section 4. Some limitations and misconceptions are discussed in Section 6. We
conclude our work with future directions of FDD in Section 7.

2. Preliminaries

In this section, we introduce core concepts and theories related to FDD.

2.1. Basic Structures

Firstly, let us recall the Kripke structure, which is one of the commonly used models
for formal specification.

Definition 1 (Kripke structure). Let P be a set of atomic propositions. A Kripke structure K is
a quintuple

K , 〈S, R, I, P,L〉

where

• S is a set of states,
• R ⊆ S× S is a transition relation;
• I ⊆ S is a set of initial states;
• P is a set of atomic propositions; and
• L : S 7→ ℘(P) is a labeling function.

Relation R is left-total, i.e., ∀s ∈ S(∃s′ ∈ S : (s, s′) ∈ R). An atomic proposition is an
indecomposable proposition defined in propositional logic. The labeling function L relates a set
L(s) ∈ ℘(P) of atomic propositions to any state s.

Notably, a Kripke structure is an unlabeled transition system. Therefore, it is preferred
in state-based approaches for formal specification. For action-based approaches that assume
only the executed actions are observable from outside, a labeled transition system plays a
pivotal role.

In this paper, we define a variant of labeled transition system as below.

Definition 2 (Labeled Transition System). A labeled transition system T over set Var of typed
state variables is a tuple

T , 〈S, A,→, I, P,L〉

where

• S = JVarK is a set of states;
• A is a set of actions;
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• → ⊆ S× A× S is a transition relation;
• I ⊆ S is a set of initial states;
• P is a set of atomic propositions; and
• L : S 7→ ℘(P) is a labeling function.

The state space S is determined by JVarK, which is the set of evaluations of state variables
Var. State s ∈ S is called a terminal state if it does not have any outgoing transitions, i.e.,⋃
a∈A
{s′ ∈ S | s a−→ s′} = ∅. The notation s a−→ s′ is used as shorthand for (s, a, s′) ∈ →. In this

paper, we assume that S, A, and P are finite sets.

In fact, a labeled transition system can be transformed into a Kripke structure and vice
versa [20,21]. In this manner, we can formalize a system from either a state-based view or
an action-based view according to concrete contexts.

In the remainder of this paper, we abbreviate labeled transition system to transition system.
Conditional branching is commonly used in modeling systems. By using conditional

branching, it is possible to put constraints on actions. An action can only be triggered
while the current evaluation of variables satisfies some conditions. We denote a set of
Boolean conditions (propositional formulae) over Var as ‖Var‖. In the interest of modeling
conditional branching, we introduce conditional transitions.

Definition 3 (Conditional Transition). A transition system T with conditional transitions over
set Var of typed state variables is a tuple

T , 〈S, A, ↪→, I, g0, P,L〉

according to Definition 2 with differences that

• ↪→ ⊆ S× ‖Var‖ × A× S is the conditional transition relation; and
• g0 ∈ ‖Var‖ is the initial guard (condition).

For convenience, we use the notation s
g↓a
↪−→ s′ as shorthand for (s, g, a, s′) ∈ ↪→. If the guard

is a tautology, we can omit it, i.e., s
a
↪−→ s′.

The behavior in state s ∈ S depends on the current state variable evaluation V ∈ JVarK. The

value of state variable x ∈ Var is accessible through V(x). For transition s
g↓a
↪−→ s′, the execution of

action a is only triggered when evaluation V satisfies guard g, i.e., V |= g. The new evaluation can
be represented by changed state variables, e.g., V ′ = V [x : v], meaning that state variable x has
value v in V ′, and all other state variables are unaffected.

V [x : v](x′) =

{
V(x′) x 6= x′

v x = x′.

Given a transition system with conditional transitions, it is natural that it can be
transformed into an equivalent transition system without conditional transitions.

Definition 4 (Semantics of Conditional Transitions). Let T = 〈S, A, ↪→, I′, g0, P′,L〉 be a tran-
sition system with conditional transitions over set Var of typed state variables. The corresponding
transition system T′ without conditional transitions is the tuple 〈S, A,→, I, P,L〉 where

• → is defined by the following rule:

s
g↓a
↪−→ s′ ∧ V |= g

s a−→ s′ ;

• I = {〈s,V〉 | s ∈ I′,V |= g0};
• P = ‖Var‖ ∪ P′; and
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• S, A, and L remain the same.

Remark 1 (State Tautology). If S = JVarK, the current state s and current state variable evalua-
tion V are interchangeable. The tuple 〈s,V〉 can be reduced to either s or V .

In this manner, we can define concepts on top of the transition system with conditional
transitions on account of clearance.

2.2. Parallelism

Parallel systems can also be modeled by transition systems. In this paper, we introduce
two common types of parallelism [22]: asynchronous concurrency (pure interleaving) and
synchronous concurrency (variable sharing).

Asynchronous concurrency models a parallel system composed of a set of interleaving
subsystems, of which the next global state is nondeterministic.

Definition 5 (Asynchronous Concurrency of Transition System). Given two transition sys-
tems with conditional transitions T1 = 〈S1, A1, ↪→1, I1, g0,1, P1, L1〉 over Var1 and T2 = 〈S2, A2,
↪→2, I2, g0,2, P2, L2〉 over Var2, the asynchronous concurrency of them T1 9T2 is defined by:

T1 9T2 , 〈S, A1 ] A2, ↪→, I1 × I2, g0,1 ∧ g0,2, P,L〉

where

• S = JVar1 \ V̂arK× JVar2 \ V̂arK where V̂ar = Var1 ∩Var2;
• ↪→ is defined by the rules:

s1
g↓a
↪−→1 s′1

〈s1, s2〉
g↓〈a,∗〉
↪−−−→ 〈s′1, s2〉

s2
g↓a
↪−→2 s′2

〈s1, s2〉
g↓〈a,∗〉
↪−−−→ 〈s1, s′2〉

• P ⊇ P1 ] P2; and
• L : S 7→ ℘(P).

Synchronous concurrency models a parallel system whose subsystems share a global
clock, where all subsystems make either a transition or an idle step on each clock pulse.

Definition 6 (Synchronous Concurrency of Transition System). Given two transition systems
with conditional transitions T1 = 〈S1, A1, ↪→1, I1, g0,1, P1, L1〉 over Var1 and T2 = 〈S2, A2, ↪→2,
I2, g0,2, P2, L2〉 over Var2, the synchronous concurrency of them T1 ‖ T2 is defined by:

T1 ‖ T2 , 〈S1 × S2, A1 × A2, ↪→, I1 × I2, g0,1 ∧ g0,2, P,L〉

where

• ↪→ is defined by the rule:

s1
g1↓a1
↪−−−→ s′1 ∧ s2

g2↓a2
↪−−−→ s′2

〈s1, s2〉
g1∧g2↓〈a1,a2〉
↪−−−−−−−→ 〈s′1, s′2〉;

and
• P and L are defined as Definition 5.

Remark 2 (Variable Evaluation Merging and Demerging). Given two variable evaluations
V1,V2 with Dom(V1) ∩ Dom(V2) = ∅, merging operator ⊕ merges them into one variable
evaluation V such that

• Dom(V) = Dom(V1) ∪ Dom(V2); and
• ∀xi ∈ Dom(Vi) : V(xi) = Vi(xi), i ∈ [1, 2].
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Given two variable evaluations V1,V2 with Dom(V1) ⊇ Dom(V2), Demerging operator 	
demerges a variable evaluation from another. V1 	 V2 produces a variable evaluation V ′ such that

• Dom(V ′) = Dom(V1) \Dom(V2); and
• ∀x ∈ Dom(V ′) : V ′(x) = V1(x).

Remark 3 (State Rewriting). If s = 〈V1,V2, . . . ,Vn〉 where s ∈ S and
n⋂

i=1
Dom(Vi) = ∅, s can

be rewritten as a merged variable evaluation V =
n⊕

i=1
Vi. Here,

⊕
notation is used to indicate

repeated ⊕.

2.3. Communication

To model distributed systems, a communication model is indispensable. In this paper,
we model the communication by channels. A channel is a buffer based on a queue where
messages are stored and held to be processed later.

Given channel c, we define a set of functions to access the properties of c. c has a finite
capacity Cap(c) ∈ N and a domain Dom(c). The current number of messages in c is fetched
by Len(c). We can manipulate contents of c by a set of operations. Enq(c, m) puts message
m at the rear of the buffer, whereas Deq(c) pops an element from the front of the buffer.

We introduce two actions for sending and receiving messages based on the operations
of c.

• c!m: send the message m along channel c, i.e., Enq(c, m);
• c?x: receive a message via channel c and variable x has value of the message, i.e.,

x : Deq(c).

With two message-passing actions, we define the set of communication actions Com as:
Com =

{
c!m, c?x | c ∈ Chan, m ∈ Dom(c), x ∈ Var with Dom(x) ⊇ Dom(c)

}
, where Chan is

a set of channels with typical element c and Var is a set of variables as in Definition 2.

Definition 7 (Channel System). A transition system with conditional transitionsT over (Var, Chan)
is a tuple

T , 〈S, A, ↪→, I, g0, P,L〉

according to Definitions 2 and 3 with the only difference that ↪→ ⊆ S× ‖Var‖ × (A ∪ Com)× S.

A channel system C over (Var, Chan), Var =
n⋃

i=1
Vari with

n⋂
i=1

Vari = ∅, consisting of

transition systems Ti over (Vari, Chan), i ∈ [1, n] is defined as

C , [T1 | . . . | Tn].

Remark 4 (State Structure of a Channel System). Let C = [T1 | . . . | Tn] be a channel system
over (Var, Chan). The global states S of C are tuples of the form 〈s1, . . . , sn,V , C〉, where

• si ∈ Si is the current state (variable evaluation) of subsystem Ti, i.e., si = Vi ∈ JVariK;

• V =
n⊕

i=1
Vi ∈ JVarK is the current variable evaluation (state) of C, i.e., V = s ∈ S; and

• C ∈ JChanK is the current channel evaluation.

C is a mapping from channel c ∈ Chan onto a sequence C(c) ∈ Dom(c)∗ such that
Len(C(c)) 6 Cap(c), e.g., C(c) = [v1v2 . . . vk] with Cap(c) > k. If Cap(c) = 0, c is a syn-
chronous channel. Otherwise, c is an asynchronous channel.

Notably, a channel system can have a nested structure; i.e., a subsystem can also be a
channel system or parallel system. If a channel system only contains one transition system
with conditional transitions, it is merely a transition system with conditional transitions
and channel extension. Therefore, a channel system is capable of describing the complex
structures and behaviors of a distributed system.
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Furthermore, given a channel system, there exists an equivalent transition system

Definition 8 (Transition System Semantics of a Channel System). Let C = [Ti | . . . | Ti] be a
channel system over (Var, Chan) with

Ti , 〈S, A, ↪→, I, g0, P,L〉, i ∈ [1, n].

The transition system T(C) of channel system C is the tuple

T(C) , 〈S, A,→, I, P,L〉

where

• S = (S1 × · · · × Sn)× JVarK× JChanK;

• A =
n⊎

i=1
Ai ] {τ} where τ is a distinguished symbol to represent all communication actions;

• I =
{
〈s1, . . . , sn,V , C0〉 | ∀i ∈ [1, n] : si ∈ Ii ∧ V |= g0,i

}
;

• P ⊇
n⊎

i=1
Pis;

• L : S 7→ ℘(P); and
• → is defined according to different cases below.

Case 1 (Interleaving). Given action a ∈ Ai,

si
g↓a
↪−→ s′i ∧ V |= g

〈s1, . . . , si, . . . , sn,V , C〉 a−→ 〈s1, . . . , s′i, . . . , sn,V ′, C〉

where V ′ = (
⊕

j∈[1,n],j 6=i
Vj)⊕ V ′i

Case 2 (Asynchronous Message Passing). Let c ∈ Chan, Cap(c) > 0 be a channel.

• For c?x:

si
g↓c?x
↪−−−→ s′i ∧ V |= g ∧ Len(C(c)) > 0∧ C(c) = v1 . . . vk

〈s1, . . . , si, . . . , sn,V , C〉 τ−→ 〈s1, . . . , s′i, . . . , sn,V ′, C ′〉

where V ′ = V [x : v1] and C ′ = C[c : v2 . . . vk].
• For c!v, v ∈ Dom(c):

si
g↓c!v
↪−−→ s′i ∧ V |= g ∧ Len(C(c)) < Cap(c) ∧ C(c) = v1 . . . vk

〈s1, . . . , si, . . . , sn,V , C〉 τ−→ 〈s1, . . . , s′i, . . . , sn,V , C ′〉

where C ′ = C[c : v1v2 . . . vkv].

Case 3 (Synchronous Message Passing). Given channel c ∈ Chan, Cap(c) = 0,

si
g1↓c?x
↪−−−→ s′i ∧ V |= g1 ∧ sj

g2↓c!v
↪−−−→ s′j ∧ V |= g2 ∧ i 6= j

〈s1, . . . , si, . . . , sj, . . . , sn,V , C〉 τ−→ 〈s1, . . . , s′i, . . . , s′j, . . . , sn,V ′, C〉

where V ′ = V [x : v].

The interpretation from a channel system to a transition system can be automated
according to the transition system semantics of a channel system, which permits us to
model a system on top of a channel system without considering the details of its underlying
transition system. It is also flexible to use different models or their combinations according
to concrete contexts.
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2.4. Properties

One important reason to mathematically model a system is to facilitate specifying
and studying its properties in a rigorous way. In our current work, we use temporal
logic, a formalism par excellence for mathematically expressing properties about system
behaviors. More concretely, we use propositional temporal logic, including linear-time and
branching-time logic.

Let us recall syntaxes of linear temporal logic (LTL) and computation tree logic (CTL).

Definition 9 (Syntax of Linear Temporal Logic). The syntax of LTL formulae over a countable
set P of atomic propositions is defined as follows:

ϕ ::= > | p | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1 t ϕ2

where p ∈ P. © and t are two basic temporal modalities denoting next and until, respectively. ♦
and �, denoting eventually and always, are derived from t as follows:

♦ϕ , >t ϕ,�ϕ , ¬♦¬ϕ.

Definition 10 (Computation Tree Logic). The syntax of CTL state formulae over a countable set
P of atomic propositions is defined as follows:

φ ::= > | p | φ1 ∧ φ2 | ¬φ | ∃ϕ | ∀ϕ2

where p ∈ P and ϕ denotes a path formula. ϕ is formed according to the syntax below.

ϕ ::=©φ | φ1 t φ2

where φ, φ1, and φ2 are state formulae.

Notably, the expressiveness of LTL and CTL are mathematically incomparable. They
need to be used according to concrete contexts. When specifying properties of a complex
system, both are indispensable most of the time.

3. Formalism-Driven Development

Formalism-driven development (FDD) is an iterative and incremental development
process promoting formal methods throughout the lifespan. It is devised to take advantage
of formal methods to eliminate design ambiguity, prove model properties, verify and test
implementation correctness, and ensure conformity among design, model, and implemen-
tation. The core idea is to elaborate transition system theory to bond all concepts from
formal specification, verification, and testing.

In fact, the philosophy of iterative and incremental development process has been
widely practiced in agile development [23]. Nevertheless, both iteration and increment
are not formally defined in agile processes. Generally, iteration means enhancing systems
progressively, while increment means delivering the system by pieces. However, it is hard to
give a well-defined explanation about what an iteration or increment produces and relations
between two iterations and relations between an iteration and an increment. In FDD,
iteration and increment are defined based on a formalism with theory support, including
modeling, refinement, and verification [24]. With these well-defined theories, iterations
and increments can be rigorously managed and used to produce verifiable deliveries.

In FDD, an iteration formulates a design model, proves model properties, implements
the model, verifies the model implementation, and integrates or delivers the milestone. An
increment organizes subsystems together as a higher-level system. Concretely, an iteration
contains four stages: abstraction, verification, implementation, and integration, which is
shown in Figure 1. The Abstraction Stage produces system graphs as design models. In the
Verification Stage, system graphs are verified by formal verification. The Implementation Stage
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only accepts verified models to generate skeleton programs and implement concrete func-
tionalities. In the Integration Stage, system graphs are integrated into higher-level systems
or delivered. Naturally, an increment comes from the Integration Stage and can also launch
a set of new iterations.

Figure 1. Stage transition graph of an iteration.

3.1. Abstraction Stage

In the Abstraction Stage, the goal is to produce a rigorous design model (system graph)
for a system. If it is the first iteration of a new system, a model is built from the ground up,
which is called the Origin Stage. Otherwise, we call it the Refinement Stage where a model
from the last iteration is refined.

3.1.1. Origin Stage

The Origin Stage creates a system graph as a design model. A system graph is built
on top of a channel system defined in Definition 7. Although they have equivalent expres-
siveness, a system graph cuts down the details that describe individual states by using
a naming function to describe a group of states. Individual states are inferred from con-
crete contexts. This keeps a system graph succinct to model complex systems such as
decentralized systems.

Definition 11 (System Graph). A system graph S over (Var, Chan) is a tuple

S , 〈D,N , A, ↪→, i, g0, F, P,L〉
where

• D = N × JV̂arK, V̂ar ⊆ Var is a set of state declarators with names in N;
• N : D 7→ ℘(JVarK) is a naming function;
• A ⊇ Com is a set of actions;
• ↪→ ⊆ D× ‖Var‖ × A× D is the conditional transition relation;
• i ∈ D is the initial state declarator;
• g0 ∈ ‖Var‖ is the initial guard;
• F ⊆ D is a set of terminal state declarators;
• P ⊇ ‖Var‖ is a set of propositions; and
• L : JVarK 7→ ℘(P) is a labeling function.

Notably, a system graph uses state declarators to describe state sets and infer individual states
instead of identifying each state explicitly. A state declarator d ∈ D introduces a kind of state with a
given name into a system by identifying interesting state variables that are essential to show features
of this kind of state. The name of a state declarator is unique, i.e.,

∀〈n, V̂ 〉 ∈ D(@〈n′, V̂ ′〉 ∈ D : V̂ = V̂ ′ ∧ n 6= n′).



Appl. Sci. 2022, 12, 3415 10 of 34

The naming function N relates a set N (d) ∈ ℘(JVarK) of variable evaluations, i.e., states, to
any state declarator d = 〈n, V̂ 〉 such that

• ∀V ∈ JVarK(∃!V̂ ∈ JV̂arK : V ∈ N (d)); and
• ∀x ∈ Dom(V̂) : V̂(x) = V(x),V ∈ JVarK, Dom(V̂) ⊆ Dom(V).

The conditional transition relation is on top of state declarators. Only one initial state declarator
exists in a system graph. A system graph is nonterminal if F = ∅. Propositions are well-formed
propositional formulae in propositional logic and constructed from atomic propositions by logical
connectives. A set of propositions are related to any variable evaluation, i.e., state, by the labeling
function L.

By using the state declarator, it enables describing a system in a succinct form. We
are only concerned about the most critical features of states identified by interesting state
variables. The evaluation of other state variables is inferred from the preceding state.

Example 1 (Transaction Client). We use a simplified transaction client in our developed demon-
stration as an example to illustrate core concepts in this paper. The complete demonstration fully
developed by FDD is a prototype of Ethereum including the client-side and server-side systems.

A visualized system graph Stx of the simplified transaction client is shown in Figure 2.

Figure 2. Visualized system graph of the transaction client in Example 1.

Each box is a state declarator consisting of two parts. The big box is also an increment
(illustrated in Section 3.4). The above part is a name, while the below part is a set of state variable
evaluations. State variable status has type Integer and paid has type Boolean. A one-way arrow
pointing from a state declarator to another is a transition relation with a guard and an action. The
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initial state declarator is pointed by an arrow without the starting node. We omit the representation
of the guard if it is a tautology, e.g., the initial guard.

Definition 12 (State Inference). Let S be a system graph over (Var, Chan). The state space S of
S is determined by JV̂arK× JVar \ V̂arK.

Let V ∈ JVarK be the current variable evaluation. According to Remark 3 and Definition 3, the
succeeding state s′ ∈ S named by a state declarator d′ = 〈n′, V̂ ′〉 ∈ D is represented as a variable
evaluation V ′ = 〈V̂ ′,V 	 V̂ ′〉 = V [V̂ ′] such that

∀x ∈ Var : V [V̂ ′](x) =

{
V̂ ′(x) x ∈ Dom(V̂ ′)
V(x) x /∈ Dom(V̂ ′).

The initial state s0 named by the initial state declarator i is represented as a variable evaluation
V0 = V [i] such that

∀x ∈ Var : V [i](x) =

{
i(x) x ∈ Dom(i)
ε x /∈ Dom(i)

where ε denotes the default value.

Example 2 (State Inference in Transaction Client). In Example 1, the state declarator named
waiting does not identify any interesting state variables. According to Definition 12, the evaluation
of state variables status and paid for the state declarator waiting remains the same with init; i.e.,
status has a value of 0 and paid has a value of False. However, waiting is distinguished from init
by a hidden state variable tx. The state declarator waiting implies that the state variable tx has the
value of the first element in channel c.

Remark 5 (Transition Interpretation). In Definition 12, states of S are inferred from contexts.
Correspondingly, the declarator-based conditional transition relation ↪→ of S is interpreted to a
state-based conditional transition relation by the following rule:

d
g↓a
↪−→ d′ ∧ V |= g

〈V̂ ,V 	 V̂ ′〉
g↓a
↪−→ 〈V̂ ′,V ′ 	 V̂ ′〉.

Remark 6 (Transition System Semantics of a System Graph). Let S over (Var, Chan) be a
system graph 〈D,N , A, ↪→, i, g0, F, P,L〉. According to Definitions 11 and 12, and Remark 5, S
can be transformed into a channel system C with the requirement that

• ∀p ∈ P : Atom(p) are contained in the atomic proposition set of C;
• ∀s ∈ JVarK : ∀p ∈ L(s) : Atom(p) are related to s through the labeling function of C;

where Atom(p) denotes all atomic propositions contained in the conjunctive normal form of p.
By the transition system semantics of a channel system defined in Definition 8, C can be

interpreted over a transition system.
Notably, the termination of a system graph does not imply the termination of its underlying

transition system and vice versa. F is omitted during the interpretation.

By interpreting a system graph over a transition system, we can use the high-level
design model, system graph, to model systems while safely using transition system theory
to support prominent features of FDD in later stages and iterations.

3.1.2. Refinement Stage

The Refinement Stage accepts a system graph from the last iteration and produces a
more detailed system graph while preserving and extending properties. According to
Remark 6, a system graph can be interpreted onto a transition system. In FDD, we use both
bisimulation and simulation theory [25,26] to support the refining process. The original
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purposes of these techniques are generally to optimize the verification process and improve
verification efficiency by compacting a model while preserving its properties. However,
the Refinement Stage inverses the original purpose to extend a small model into a big one
while preserving its properties.

A refined system graph (refinement) S′ of S is a more detailed design model that has
either a strong relation ∼ or a weak relation � to S. Relation ∼ is an equivalence relation
that identifies S and its refinement with the same branching structure by bisimulation.
Relation � is a preorder. S′ � S holds if the refinement S′ can be simulated by S.

Definition 13 (Bisimulation). Let S1 and S2 be two system graphs. With regard to their trans-
formed transition systemsT1 = 〈S1, A1,→1, I1, P1,L1〉 over Var1 andT2 = 〈S2, A2,→2, I2, P2,L2〉
over Var2, a bisimulation for (T1,T2) is a binary relation R ⊆ S1 × S2 such that

• ∀si ∈ Ii(∃sj ∈ Ij : (si, sj) ∈ R), i, j ∈ [1, 2], i 6= j,
• ∀(s1, s2) ∈ R :

– L1(s1) = L2(s2);
– s′i ∈ Succ(si) =⇒ ∃s′j ∈ Succ(sj), i, j ∈ [1, 2], i 6= j, (s′i, s′j) ∈ R;

where Succ(s) = {s′ ∈ S | s a−→ s′, a ∈ A}.
If there exists a bisimulation R for (T1,T2), then S1 ∼ S2 ⇐⇒ T1 ∼ T2.

Definition 14 (Simulation). Let S1 and S2 be two system graphs. With regard to their transformed
transition systems T1 = 〈S1, A1,→1, I1, P1,L1〉 over Var1 and T2 = 〈S2, A2,→2, I2, P2,L2〉 over
Var2, a simulation for (T1,T2) is a binary relation R ⊆ S1 × S2 such that

• ∀si ∈ Ii(∃sj ∈ Ij : (si, sj) ∈ R), i, j ∈ [1, 2], i 6= j;
• ∀(s1, s2) ∈ R :

– L1(s1) = L2(s2),
– s′1 ∈ Succ(s1) =⇒ ∃s′2 ∈ Succ(s2), (s′1, s′2) ∈ R.

If there exists a simulation R for (T1,T2), then S1 � S2 ⇐⇒ T1 � T2.

Example 3 (Refinement in Transaction Client). First, we assume that the system graph in
Example 1 from the last iteration is the input of the current iteration. According to the gas
mechanism of Ethereum, it may consume significant time for a network to reach consensus. Hence,
it is helpful to provide accelerating service for the transaction client. Notably, the transaction client
needs to cancel the original transaction firstly and resend a new transaction with more gas due
to the immutability of the blockchain. Consequently, the current transaction is still dropped by
the network.

We can get a refined system graph S′tx visualized in Figure 3.
In fact, Stx and S′tx are bisimulation-equivalent, which can be proved automatically by

bisimulation.
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Figure 3. Visualized system graph of a refined transaction client in Example 3.

Theorem 1 (Property Preservation). Let S1 and S2 be two system graphs. If S1 ∼ S2, then

• ∀φ ∈ LTL formulae : S1 |= φ ⇐⇒ S2 |= φ; and
• ∀φ ∈ CTL formulae : S1 |= φ ⇐⇒ S2 |= φ.

If S1 � S2, then

• ∀φ ∈ LTL formulae : S2 |= φ =⇒ S1 |= φ; and
• ∀φ ∈ CTL formulae : S2 |= φ =⇒ S1 |= φ.

Example 4 (Property Preservation of Refined Transaction Client). According to Theorem 1,
the refined system graph S′tx in Example 3 preserves all properties of Stx in Example 1 specified in
LTL and CTL.

For instance, the linear-time property of Stx in Example 5 also holds for S′tx.

By using bisimulation and simulation techniques, the properties of an original system
graph can be well preserved in the next iteration if the refined system graph passes either
bisimilarity or similarity verification. While encountering a violation, it allows flexible
handling methods. If the properties of the original system graph are finalized, then the
refinement needs to be modified until passing the verification. It is also a solution to
delegate the violation to the verification stage and resolve it by optimizing old properties.
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3.2. Verification Stage

The Verification Stage produces a verifiable model based on the input system graph
by specifying the admissible behaviors of the system graph as properties. In addition, it
verifies properties associated with the verified model by formal verification.

3.2.1. Specification

According to Definition 11, a system graph has a set of propositions. Based on these
propositions, we can specify essential system behaviors as a set of properties with temporal
logic such as linear temporal logic and computation tree logic.

Example 5 (Linear-Time Property in Transaction Client). To verify whether the transaction
client in Example 1 eventually gets notified whenever the gas fee is paid, we firstly define propositions
Notified , status = 4 and PaidGas , status = 1 with respect to system graph Stx.

Then, we can formally specify the property as �(PaidGas → ♦Notified). By the labeling
function Ltx of Stx, the states are automatically labeled with corresponding propositions. In this
manner, the satisfiability of the property can be verified on the transition system under Stx.

3.2.2. Enforcement

The enforcement of verification processes depends on the verification mode of FDD.
Either a model checker or a theorem prover can be used to prove properties formulated in
a formal logic.

Checker Mode

By structuring a system graph and interpreting it over a transition system, it is trivial
to enforce model checking to verify the properties.

Prover Mode

The properties of a system graph are verified by a theorem prover that mechanizes the
logic used to specify these properties.

3.3. Implementation Stage

In the Implementation Stage, a skeleton program is generated from the verifiable model.
Based on the skeleton program, a real-world program is implemented with full functionality.
In addition, a formal verification and testing process is enforced to ensure implementa-
tion correctness.

A skeleton program generated from the verifiable model has strict constraints to
ensure conformity between the model and implementation at best efforts. The smallest
skeleton program includes

1. Predefined and immutable state variables;
2. Predefined and immutable deterministic control flow; and
3. Predefined and overridable action effects.

The term predefined means that the modificand is generated before the manual imple-
mentation. Something that can only be accessed but cannot be changed by implementors
is immutable. An action effect of action a is the actual functionality produced every time
executing a in the control flow. By overriding an action effect with an effect function, imple-
mentors can implement specific functionalities such as executing an algorithm, interacting
with an I/O stream, etc.

Example 6 (Action Effect). In Example 1, all actions produce corresponding action effects such as
c?tx, payGas, proceed, and notify. Each of them is overridable. For instance, a logging function can
be called in each of them to write the current timestamp and action name into a local file system.
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Depending on the programming paradigm, generated skeleton programs are different
on the code level. In this paper, we illustrate possible generation methods with respect to
two mainstream programming paradigms and key points.

3.3.1. General Skeleton
Object-Oriented Programming

The typical features of a system graph are extracted and formed as an abstract class
Asys that defines protected methods associated with the control flow and exposes an entry
point to execute the system.

For a system graph S = 〈D,N , A, ↪→, i, g0, P,L〉 over (Var, Chan), it contains all the
information to create an abstract class Asg that is capable of fully describing S. Asg inherits
Asys and implements at least interface Iact that contains a set of method signatures extracted
from all manually labeled actions in A. Asg also overrides the control flow according to
D, ↪→, i, g0. Asg together with all its associated classes forms the smallest class set (skeleton
program) to describe S. The skeleton program is encapsulated into a package as a software
development kit (SDK).

With such an SDK, implementors can create a concrete class C that inherits Asg. The
implementors can override the effect methods (methods declared in Asg) to implement the
functionality. Notably, implementors can neither modify state variables nor change the
deterministic control flow. In this manner, the verified properties in Verification Stage are
preserved in the executable system.

Functional Programming

In fact, it is straightforward to construct a system graph in functional programming.
Related definitions can be easily formulated with customized data types. The impure action
effects are isolated by the monad. All components are packaged into a module as a library
that exposes a set of functions taking effect functions as their parameters and the entry
point. The implementors can implement functionalities by passing the implementation of
effect functions into the exposed functions.

3.3.2. Termination

A system graph is terminated if F 6= ∅. The execution naturally terminates while
reaching a terminal state declarator or a terminal state of its underlying transition system
defined in Definition 2. Without considering exception handling, the execution generated
from a nonterminal system graph interpreted over a nonterminal transition system will
never naturally terminate such as the transaction client in Example 1.

3.3.3. Parallelism

In Section 2.2, we present two types of parallelism: pure interleaving and variable
sharing. Both present nondeterminism during the actual execution. The skeleton program
handles them by multithreading techniques. Each system graph is encapsulated into a
thread. In this manner, the implementation of nondeterminism in a parallel system is
delegated to nondeterminism in thread scheduling.

3.3.4. Divergence and Confluence

A system graph may contain nondeterministic transitions after being interpreted
over a transition system with conditional transitions. For a state s with a set ↪→s

out of

outgoing transitions, if there exist at least two transitions s
g↓a
↪−→ s1, s

g′↓a′
↪−−→ s2 ∈ ↪→s

out
where g =⇒ g′ ∧ a 6= a′ ∧ s1 6= s2, then it is a nondeterministic choice, which is called
a divergence.

Example 7 (Divergence in Transaction Client). In our refined transaction client (Example 3),
two transition relations from pending to dropped form a divergence because the truth values of their
guards are the same.
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To resolve a divergence, an interactive event is emitted to wait for a signal that deter-
mines a choice to resume the execution in that branch. An interactive event can be user
input via I/O stream, in-memory or on-disk interaction with another program, communi-
cation through a network protocol, etc. The skeleton program exposes all divergences in
the form of interfaces that need to be implemented as interactive events by implementors.
While encountering a divergence, the execution pauses until getting a signal from the
interactive event to proceed.

Example 8 (Divergence Resolution for Transaction Client). To resolve the divergence in Exam-
ple 7, we can use a keyboard event as the interactive event by implementing a keyboard listener in a
local environment for testing. For instance, the effect of action cancel is triggered while getting an
input sequence c\r\n.

In our demonstration, the transaction client is developed as a mobile application. Action effects
are triggered by touching corresponding buttons in the UI.

Confluence is usually not an interesting problem because the state inference in
Definition 12 eliminates the nondeterminism of implicit state variables during the exe-
cution. One exception is for a set of systems to be confluent in a parallel system that
contains nondeterminism in implementation. If a parallel system has terminal states, then
we say this parallel system is naturally confluent. Each terminal state is a confluence where
nondeterminism is eliminated. For a parallel system without terminal states, it allows
implementors to customize the confluence where all threads join by manually identifying
the evaluation of state variables in that confluence.

3.3.5. Channel

According to Remark 4, a channel can be either synchronous or asynchronous. A
synchronous channel usually serves synchronization purposes instead of data transfer
within a system modeled by a system graph. Its data structure at least contains the
metadata. For an asynchronous channel, it contains at least the metadata, a buffer, and a
set of operations associated with the buffer.

Regarding the implementation, a channel has two types: internal channel and ex-
ternal channel. An internal channel only receives messages within the system while an
external channel can also receive messages from the outside of the system. An internal
channel is naturally embedded into the control flow, while an external channel requires
interaction with processes outside of the system. An outside process can be a program
that sends messages to channels (by in-memory or on-disk interactions), a user who can
input messages to channels (by I/O stream), a network protocol that passes messages to
channels (by port), etc. A skeleton program integrates built-in modules to support the
implementation of external channels according to concrete requirements.

Notably, execution needs to take care of waiting for a channel. An internal channel c
gets into waiting if c is synchronous and the sending system is not in the state right before
sending a message or c is asynchronous and Cap(c) < 1. If c is an external channel, it gets
into waiting if no outside process sends a message to c.

Example 9 (Channel in Transaction Client). The transaction client in Example 1 has an anony-
mous action c?tx attached to the transition relation between init and waiting. This communication
action will not proceed, i.e., channel c gets into waiting until it consumes a message via channel c.
From the perspective of implementation, the execution only resumes when state variable tx has the
value received from channel c.

In our implementation, information about a new transaction is pushed into channel c when
that transaction is submitted.
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3.3.6. Correctness Verification

After the functionality implementation, a correctness verification process is optionally
enforced on fully implemented codes through formal verification and testing techniques.
This optional process focuses on general verification items such as type safety and memory
safety. Therefore, language-specific verification tools are needed to ensure implementation
correctness by leveraging verification cost, which is out of the scope of FDD.

3.4. Integration Stage

The Integration Stage serves the overall bottom–up approach that embeds or integrates
the input system graph into a higher-level system graph, which is an incremental process.
This stage also determines the next move to continue the iteration or produce a delivery.

3.4.1. Increment

An increment has two types: horizontal increment and vertical increment. A hori-
zontal increment is to embed a system graph into another one. Formally, embedding is
defined as follows.

Definition 15 (Embedding). Let Si = 〈Di,Ni, Ai, ↪→i, ii, g0,i, Fi, Pi,Li〉, i ∈ [1, 2] be two
system graphs over (Var, Chan). System graph S of embedding S1 into S2 in the place of state
declarator d2 ∈ D2 is the tuple

〈D,N , A, ↪→, i, g0, F, P,L〉

where

• D = D1 ] D2, A = A1 ] A2, P = P1 ] P2;
• ∀d ∈ Di : N (d) = Ni(d);
• ↪→ = ↪→1 ] ↪→2 \ ↪→d2 ] ↪→′d2

;

• i =

{
i1 d2 = i2
i2 d2 6= i2

, g0 =

{
g0,1 d2 = i2
g0,2 d2 6= i2

;

• F =

{
F2 \ d2 ] F1 d2 ∈ F2

F2 d2 /∈ F2
;

• ∀s ∈ Si : L(s) = Li(s).

↪→d2 ∈ ↪→2 is a set of transition relations such that

1. ∀(d2, g, a, d′2) ∈ ↪→2 : d2
g↓a
↪−→ d′2 ∈ ↪→d2 ; and

2. ∀(d′2, g, a, d2) ∈ ↪→2 : d′2
g↓a
↪−→ d2 ∈ ↪→d2 .

↪→′d2
is a set of transition relations such that

1. ∀(d, g, a, d2) ∈ ↪→2 : d
g0,1↓a
↪−−−→ i1 ∈ ↪→′d2

; and

2. ∀ f ∈ F1(∀(d2, g, a, d) ∈ ↪→2 : f
g↓a
↪−→ d).

Remark 7 (Module). In Definition 15, if S1 shares state declarators, actions, propositions, naming,
and labeling functions with S2, i.e., D1 ⊆ D2, A1 ⊆ A2, P1 ⊆ P2, ∀d ∈ D1 : N1(d) =
N2(d), ∀s ∈ S1 : L1(s) = L2(s), then S1 is a module of S2.

While embedding S1 into S2, if S1 is a module of S2, ] relation is changed to ∪.

A vertical increment is an integration of a system graph into another one through
parallelisms or communications, i.e., the current system graph is regarded as a subsystem
that is parallel with or communicates with other subsystems in a higher-level system.

Example 10 (Increment in Transaction Client). In fact, system graph Stx of the transaction
client in Example 1 is a considerably high-level model. Each component encapsulates either a
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horizontal increment or a vertical increment. So does an increment. For a simple but clear instance,
pending integrates a system graph depicted in Figure 4 where the rounded dashed box denotes the
terminal state declarator.

Figure 4. A visualized increment integrated in the system graph of the transaction client in Example 10.

Clearly, this increment is a module of Stx. According to Remark 7, we can visualize modular-
ized Stx in Figure 5.

3.4.2. Next Move

As the final stage of an iteration, the Integration Stage determines the next move
according to the current system graph S. If S does not include all details in the design,
then it is called refinable. Otherwise, it is unrefinable. If S is not integrated into any other
system graph, then it is called independent. Otherwise, it is dependent.

• If S is independent and unrefinable, then terminate its iterative and incremental
process and deliver its implementation.

• If S is dependent and unrefinable, then integrates S into a higher-level system graph
S′, and start an iterative process of S′.

• If S is refinable, always go to the next iteration of S.
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Figure 5. Visualized system graph of the transaction client with the unfold pending module in
Example 10.

4. Formalism-Driven Development in Practice

FDD is designed to be useful and usable to serve practical purposes. Particularly,
we intend to minimize the efforts for developers to master FDD and be able to put it in
production lines. To achieve this, new tools are required to practicalize FDD. In this section,
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we discuss the criteria of FDD tools, followed by an introduction of Seniz, a full-fledged
framework for FDD. Furthermore, we use case studies to show how a system is developed
under FDD with Seniz.

4.1. Criteria

We enumerate a number of functional and quality criteria for FDD tools. Functional
criteria define the core functionalities, while quality criteria show important requirements
for practicalizing FDD.

4.1.1. Functional Criteria
Structure Representation

In FDD, system graphs are fundamental elements. A language is necessary to represent
system graphs and structures derived from them. Although a language in natural form can
be used, a formal language is preferred in FDD for automation.

System graphs are designed to be easily represented and mechanized in various pro-
gramming paradigms. In object-oriented programming, a system graph can be regarded as
an object with properties (e.g., state declarators, transition relations, and propositions) and
private methods (e.g., naming function and labeling function) executed while being instan-
tiated. In declarative programming paradigms, a system graph is easier to be represented.
For instance, a system graph can be defined by data types in functional programming.
Notably, domain-specific languages designed and implemented to represent system graphs
are likely to be more effective than general programming paradigms.

Stage Mechanization

FDD has a collection of mechanisms in different stages. A tool needs to correctly
implement full or partial mechanisms for at least a type of structure representation. For a
tool that only implements partial mechanisms, compatibility issues must be addressed to
keep consistency among mechanisms.

In the Abstraction Stage, basic mechanisms such as State Inference and Transition System
Transformation are required to interpret semantics of system graphs. In addition, (bi)simulation
mechanisms are indispensable for the refinement. Depending on the goal of tools, verification
mechanisms in the Verification Stage have two types of effective implementations. A tool can
either directly verify the properties of a system graph or translate it together with its properties
to another dedicated tool for verification purposes. Code generation algorithms play a pivotal
role in the Implementation Stage to transform system graphs to executable programs with action
effects. Furthermore, implementations should contain specific mechanisms to handle technical
points such as termination, parallelism, divergence, confluence, and channel. The same with
Structure Representation criteria, increment mechanisms including both horizontal and vertical
increment mechanisms in the Integration Stage are independent of languages and paradigms
and easy to be implemented. Additionally, a version control mechanism is required to manage
the workflow decided in Next Move.

Design Visualization

Human-centered design should be a crucial aspect of an FDD tool. A design in
FDD tools must be readable, intuitive, and rigorous. As core components, structures and
some mechanisms should be visualized to improve readability and understandability.
We define two levels of visualization: syntax level and semantics level. At the syntax
level, a diagram correctly depicts structures described by system graphs such as figures in
running examples: Figures 2–5. Semantic-level diagrams are usually more expressive than
syntax-level diagrams. They carry out computations in mechanisms and render results.
For example, State Inference can be enforced synchronously with the syntax-level rendering
process or asynchronously triggered in an interactive manner. Furthermore, complex
functionalities can be implemented based on semantic-level diagrams such as optimizing
and refactoring system graphs.
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4.1.2. Quality Criteria
Simplicity

FDD tools should have concise rules and verbose syntax to use. Concise rules aim to
keep the usage as simple as possible to make developers master basic operations with a
minimum knowledge of formal methods. Consequently, tools should encapsulate underly-
ing mathematics and promote intuitive operations similar to widely used methods such as
UML state machine for design and object-oriented programming for implementation.

A certain verbosity level means that syntactic sugar should be introduced for fre-
quently used syntactic constructs. For instance, to construct a complex system graph,
redundant and repeated works should be conveniently omitted or simplified with verbose
statements that are automatically rephrased in fundamental syntax. Typical techniques
such as parameterization and higher-order function can be used for this purpose. Pa-
rameterization can generalize system graphs to manufacture argument-dependent system
graphs. Higher-order functions such as fold can help assemble complex system graphs and
propositional formulas.

Applicability

Compatibility and modularity are crucial for applicability. For a dedicated tool,
its applicability is not only determined by how powerful it is but also by how well it
collaborates with other tools to contribute to the success of an FDD process. System
architects may prefer compatible enhancements of current systems by introducing a new
tool. For a comprehensive tool that implements a set of functionalities, modularity is
essential, meaning that a tool should separate its functionalities and support enabling a
subset of them without impairment. In this manner, system architects can select appropriate
tools and build tech stacks to satisfy requirements in a development context.

Interoperability

A system developed with FDD tools should be able to communicate and integrate
with systems developed under other development processes. FDD is not a silver bullet for
developing all types of systems. Therefore, subsystems within a complex system may be
developed in different processes. For those systems developed with FDD tools, high-level
APIs play an important role in communicating with external systems without exposing
internal states.

Testability

Currently, verification cannot replace testing and vice versa. FDD does not refuse
testing techniques. On the contrary, testing is indispensable in FDD. Functionalities im-
plemented by FDD tools need to be testable, especially implementations produced in the
Implementation Stage. These functionalities require testing techniques to assist code-level
verification tools to detect runtime exceptions caused by programming errors such as poorly
implemented algorithms and compiler defects. In addition, for unverifiable properties in
the Verification Stage, testing techniques can be used to verify correctness under certain
constraints partially.

Performance

For any FDD tool, its performance consists of two aspects: efficiency and scalability.
Efficiency requirements vary in purposes. For design-intensive stages (i.e., Abstraction Stage
and Integration Stage), the visualization process needs to have a short response time to ensure
high working efficiency and good user experience. Although efficiency is also an important
factor in implementation-intensive stages (i.e., Verification Stage and Implementation Stage),
scalability could be imperative. As an iterative and incremental process, a tool needs to
adapt to system scaling with a minimum sacrifice of functionalities and efficiency.
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4.2. Seniz

Seniz is an FDD framework that provides a collection of tools to support FDD processes.
As shown in Figure 6, Seniz consists of a modeling language, a verification generator, a
skeleton generator, and a version controller.

Figure 6. Seniz architecture.

4.2.1. The Seniz Language

The Seniz language is a modeling language designed to abstract system graphs from
real-world systems. It allows developers to formulate static structures by state declarators,
dynamic changes by actions and transition relations, as well as expected system behaviors
by formal propositions and properties. We use two examples to show the main features of
the Seniz language and list the core syntax and common operators in Appendix A.

Example 11 (Transaction Client with Seniz). A Seniz program that codes the system graph in
Example 1 is shown in Listing 1.

Example 12 (Block Writing Problem). We provide another example that programs the block
writing problem widely used in EVM implementations to enable multithread block persistence. For
instance, a set of workers separately run in multiple threads to process received transactions, while
an EVM should expect that only one thread can write the block and associated states to the database.
Hence, a mutual exclusion mechanism is necessary only to allow a worker that has acquired a mutex
to proceed with the writing function.

We use a generalized mechanism based on a semaphore to model this problem. We define a
system graph Worker over a local variable set Vars in Listing 2 and a global variable set Lock in
Listing 3. We simply use the variable loc to represent the current execution fragment.

To model the interleaving of a set of workers, we program a control system BlockWriting
that instantiates two worker systems. We also formulate three LTL properties with respect to the
satisfaction of the mutual exclusion and two types of fairness.
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Listing 1. Transaction client coded in the Seniz language.

1 main system TransactionClient(id::int) over TXClientVar, TXClientChan {
2
3 init { status: 0, paid: false } −> receiveTx(c?tx) waiting −> PayGas() pending
4 pending [paid=true & consensus = true] −> Proceed() success −> Notify() notified
5 pending [paymentFailed] −> Cancel() dropped −> Notify() notified
6 notified −> NotifyTx(c?tx) waiting
7
8 waiting = {
9 status: 0,

10 paid: false,
11 consensus: false
12 }
13
14 pending = {
15 status: 1,
16 paid: true
17 }
18
19 success = {
20 status: 2,
21 paid: true,
22 consensus: true
23 }
24
25 dropped = {
26 status: 3,
27 paid: true,
28 consensus: false
29 }
30
31 notified = {
32 status: 4
33 }
34
35 prop paymentFailed {
36 paid = true and consensus = false
37 }
38
39 prop paidGas {
40 status = 1
41 }
42
43 prop notified {
44 status = 4
45 }
46
47 ltl infinitelyOftenNotified {
48 always (paidGas −> eventually notified)
49 }
50 }
51
52 varset TXClientVar {
53 status :: int,
54 paid :: bool,
55 consensus :: bool,
56 tx :: string
57 }
58
59 chanset TXClientChan {
60 c :: external
61 }
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Listing 2. Block writing worker.

1 import Lock
2
3 system Worker() over Vars with Lock {
4
5 init processing −> readyToWrite
6 readyToWrite −> readyToWrite [s > 0] −> @decreaseS acquiredLock
7 acquiredLock −> writeBlock() @increaseS releasedLock
8 releasedLock −> processing
9

10 processing = {
11 loc: 1
12 }
13
14 readyToWrite = {
15 loc: 2
16 }
17
18 acquiredLock = {
19 loc: 3
20 }
21
22 releasedLock = {
23 loc: 4
24 }
25
26 @increaseS = {
27 s: s + 1
28 }
29
30 @decreaseS = {
31 s: s − 1
32 }
33
34 prop hasLock {
35 loc = 3
36 }
37
38 }
39
40 varset Vars {
41 loc :: int
42 }

Listing 3. Global (shared) variable set Lock.

1 varset Lock {
2 s :: int
3 }

In the program of Example 11, we define a system graph named TransactionClient
over a state variable set TXClientVar and a channel set TxClientChan. We declare a set of
named state declarators from line 8 to 33. The initial state declarator {status: 0, paid: false} is
anonymous, which contains two state declarations describing interesting state variables.
In fact, it is a form of abductive reasoning supported in the Seniz language. According to
Definition 11, each state declarator has a unique name. To distinguish anonymous state
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declarators, the Seniz compiler applies the hash function to the inferred state variable
evaluations and uses hash values as corresponding names.

A set of transition rules are declared from line 3 to 6. The simplest form of a transition
rule should contain a source state declarator, a symbol ->, and a destination declarator. In
this form, guard is regarded as tautology, action is interpreted as epsilon action (i.e., no
action effect is emitted), and there is no global variable change. Nevertheless, a transition
rule carries an action to emit effects such as line 6 where the transition from notified state
declarator to waiting state declarator emits effects caused by action NofityTx. The transition
can also be guarded by a propositional formula such as line 4 where the transition from
pending to success requires the condition paid=true∧ consensus=true to be satisfied. Guards
can be defined by propositions such as line 5 where proposition paymentFailed is put into
square brackets to become a part of the guard for transition from pending to dropped, which
implements the proposition definition in Definition 11. Additionally, we provide syntactic
sugar to simplify sequential transitions such as the codes in line 14 and 15 of Listing 1.

Propositions are declared with keyword prop and structured by Boolean expressions
and propositional expressions. We define three propositions from line 35 to 45. Proposition
paidGas and notified are used to declare the LTL property in Example 5 from line 47 to 49.

In the Seniz language, we have two modifiers for a system graph: main and control. A
modifier main notes the entry point of a program. Hence, any program must contain exactly
one main system. A control system is a high-level system that represents a composition
of subsystems. It has exactly one control statement to describe the parallelism of a set of
subsystems. Keyword async denotes the asynchronous concurrency defined in Definition 5,
while sync denotes the synchronous concurrency defined in Definition 6. In the BlockWriting
control system shown in Listing 4, two Worker systems are instantiated as two asynchronous
systems and share the global variable set Lock.

Listing 4. Block writing control system.

1 import Lock
2 import Worker
3
4 main control system BlockWriting() over Lock {
5
6 async Worker() as w1, Worker() as w2
7
8 ltl mutexHolds {
9 G (!w1.hasLock and !w2.hasLock)

10 }
11
12 ltl unconditionalFairnessHolds {
13 G F (w1.hasLock) and G F (w2.hasLock)
14 }
15
16 ltl strongFairnessHolds {
17 G F (w1.isReady −> G F (w1.hasLock)) and G F(w2.isReady −> G F(w2.hasLock))
18 }
19
20 }

Additionally, the Seniz language supports system arguments and multi-file compi-
lation for genericity and modularity. A system argument is a global constant carrying
information from a higher-level system. System arguments of the main system, also called
environment arguments, are supplied to a program at the beginning of execution. By
using keyword import, a Seniz program allows importing system graphs, state variable sets,
channel sets, and records defined in local or remote files.

Furthermore, the Seniz language translates a system graph into a DOT program for
visualization. The program given in Example 11 is visualized in Figure 7.
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Figure 7. Visualized system graph of the transaction client in Seniz.

We can find that Figure 7 has slight differences from Figure 2 in Example 1. The
Seniz compiler merges anonymous state declarators into named state declarators with their
supersets of state variable declarations. Therefore, the init state declarator is merged into
the waiting state declarator in Figure 7. In addition, the Seniz compiler processes the system
graph with state inference. In Example 11, two different notified states are inferred and
distinguished, which creates two separate branches in Figure 7.

4.2.2. Verification Generator

Seniz provides a verification generator that translates Seniz programs developed in
the abstraction stage into Promela programs for the verification stage.

A state declarator is translated into a macro and an inline. A macro is defined as the
conjunction of all state variables identified in the declarator and additional critical variables
inferred by the compiler.

Example 13 (State Declarator Translation for Promela). For the acquiredLock state declarator
in Example 12, it is translated to a macro and an inline shown in Listing 5.

Listing 5. Translated acquiredLock state declarator in Promela.

1 #define ACQUIREDLOCK loc[_pid] == 3
2
3 inline acquiredLock() {
4 atomic {
5 loc[_pid] = 3;
6 }
7 }

The transition relations, used to construct the control flow, are translated into a proctype.

Example 14 (Transition Relation Translation for Promela). A proctype is generated according
to the translation relations programmed in Example 12, which is shown in Listing 6.
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Listing 6. Translated transition relations in Promela.

1 proctype Worker() {
2 processing();
3 do
4 :: PROCESSING −> readyToWrite();
5 :: READYTOWRITE −>
6 atomic {
7 if
8 :: _s > 0 −> _decreaseS(); acquiredLock();
9 fi;

10 }
11 :: ACQUIREDLOCK −> atomic {_increaseS(); releasedLock();}
12 :: RELEASEDLOCK −> processing();
13 od;
14 }

The translation of propositions and temporal properties is trivial on account of the
similar syntax between the Seniz language and the Promela language.

The generated Promela program can be directly used for verification by model checkers
such as the SPIN model checker [1]. For the Promela program generated from Example 12,
the checking report implies property mutexHolds is satisfied while both fairness properties
are violated.

4.2.3. Skeleton Generator

The current version of Seniz supports generating Java and TypeScript programs from
Seniz programs. The core method is illustrated in Section 3.3 and follows the OOP paradigm.

The generator integrates a powerful toolchain to support the generated SDK and
allows customizing the tech stack. The FDD developers only need to focus on the imple-
mentation of action effects.

Example 15 (Implementation of Action Effects). For the block writing in Example 12, the
generated Java SDK contains an abstract class ActionExecutor that implements an interface Action
including a method writeBlock generated from the non-epsilon action set. To implement the effect
of action writeBlock, we only need to extend the abstract class ActionExecutor, which is shown in
Listing 7.

The effect is quite simple, which prints the current Worker system identifier and state variable
loc to the output stream at the beginning and end. In this example, we should not observe the
interleaving outputs of different workers thanks to the verified property mutexHolds.

Listing 7. Implementation of the effect of action writeBlock in Java.

1 public class ActionEffect extends ActionExecutor {
2
3 @Override
4 public void writeBlock() {
5 String entryInfo = "Worker %s is writing block at location %s"
6 .formatted(getArgument(ID, ID.getType()).orElseThrow(),
7 getVariable(LOC, LOC.getType()).orElseThrow());
8 System.out.println(entryInfo);
9

10 String exitInfo = "Worker %s finished writing.%n"
11 .formatted(getArgument(ID, ID.getType()).orElseThrow());
12 System.out.println(exitInfo);
13 }
14
15 }
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Two SystemExecutors are generated with respect to the Worker system and BlockWriting
control system. The Worker SystemExecutor extends an abstract and generic class Syste-
mExecutorThread implementing the Callable interface. Hence, WorkerSystemExecutor can
run in thread and managed by the Java ExecutorService integrated in the BlockWritingSys-
temExecutor. The BlockWriting SystemExecutor also handles setting global variables and
system arguments.

Example 16 (Execution). To execute the system, we merely need to instantiate BlockWriting
SystemExecutor and invokes method run. A demonstration is shown in Listing 8.
Listing 8. Executing the BlockWriting control system in Java.

1 @Test
2 public void testBlockWriting() {
3 SystemExecutor systemExecutor = new SystemExecutor();
4 systemExecutor.run();
5 }

4.2.4. Version Controller

Additionally, a rigorous version controller is mechanized in Seniz. Based on the
rigorous definition of iterations and increments illustrated in Section 3.4 and cryptographic
hash function, the version controller automatically archives iterations and increments and
labels them with verified properties. Furthermore, the version controller supports the
branching workflow.

1. Create or refine a system graph S with the Seniz language.
2. Generate a Promela program from S.
3. Specify and verify the properties of S by a model checker.
4. If all specified properties pass verification, then move to the next step. Otherwise, go

back to step 1.
5. Generate a Java or TypeScript skeleton program and encapsulate it into an SDK from

the verified S.
6. Implement exposed interfaces of the skeleton program such as action effects and

interactive events with the support of the SDK to satisfy functional requirements.
7. If S is independent and unrefinable, terminate the workflow. If S is dependent and

unrefinable, integrate S into a higher-level system graph S′ to obtain S∗, start a
new parallel iteration in S′ branch with S∗, and go into the next iteration with S.
Otherwise, go into the next iteration with S.

4.2.5. Graphical User Interface

Seniz has a web-based user interface and scaffolds to provide a lightweight IDE (inte-
grated development environment). It facilitates project management, coding, debugging,
and version control. An example of the main interface is shown in Figure 8.

4.3. Evaluation of Seniz

Seniz is the first FDD framework, which implements core tools for FDD processes
and satisfies all functional criteria. The Seniz language satisfies syntactic completeness,
meaning that for each structure in FDD, there exists a corresponding representation in
the Seniz language that can be formulated. In addition, system graphs defined in the
Seniz language can be visualized and exported as design documents. Based on the Seniz
language, the verification generator and skeleton generator help implement mechanisms in
different stages.

For quality criteria, Seniz uses high-level APIs to encapsulate the underpinning mathe-
matics of FDD and implements the support for parameterization and higher-order functions
for simplicity. The generated skeleton programs can be directly used in Java or TypeScript en-
vironments to interact with other systems, which implements a certain level of interoperability.
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However, the tools in Seniz are centered around the Seniz language and not usable
out of the framework. In addition, the Seniz language is not testable and cannot recognize
functional and computational errors. Moreover, performance issues become significant in
visualization, compilation, and generation for complex system graphs [6].

Figure 8. A snapshot of the Seniz web-based interface.

5. Related Work
5.1. Model-Driven Development

Model-driven development (MDD) [27,28] focuses on formulating a model as an
abstraction of a system and derives source codes from the model. In addition, model
transformation [29–31] enhances the flexibility and extends the scope of MDD by enabling
working with multiple and interrelated models.

MDD has been widely adopted in many fields such as web development [32], mobile
app development [33], IoT application development [34] based on the UML, or proposed
domain-specific languages.

The benefits of MDD are evaluated in many studies [35–37] including both correctness
and efficiency improvement compared to code-centric development. Although some works
such as [38] point out that MDD is more suitable in academic settings, a recent study [39]
contradicts the claim by conducting real-world development experiments, which shows
the great significance of using models in software engineering.

Some research has started using model-driven development for developing blockchain
applications. Lorikeet [40] is developed to facilitate the development of blockchain appli-
cations by automatically generating well-tested smart contracts from specifications in the
business process and data registry models. It allows users to use an extended BPMN to
model business processes. Smart contracts are generated by a BPMN translator, registry
generator, and blockchain trigger. In [41], a smart contract generator based on the UML
state diagram is proposed to coordinate the usage of cyber-physical systems. In their
work, a mapping from the state and transition to transactions of the blockchain platform is
constructed for the code generation. A method based on Petri Nets is proposed in [42]. It
uses Petri Nets to specify workflow and enforcement to generate secure and understand-
able smart contracts through a translation engine. In addition, the logical errors can be
minimized by verifying Petri Nets properties.

5.2. Verification-Driven Engineering

Verification-driven engineering (VDE) [43] integrates the formal methods in MDD
and particularly promotes formal verification during the development process. In [43], the
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principles and requirements for the better use of formal methods in MDD are illustrated. It
concludes that it is necessary to switch from MDD to VDE even though it still needs more
sophisticated techniques to support it.

Some works also enhance the MDD by introducing verification-driven methods such
as [44]. It proposes a verification-driven slicing technique to partition the model into
submodels while preserving properties by formal verification. Sphinx [45] is proposed as a
VDE toolset for modeling and verifying hybrid systems. It defines semantics for the UML
activity diagrams. In [46], a verification-driven framework named FIDDle is presented and
evaluated by developing parts of the K9 Mars Rover model.

However, none of them tackle the problem from the perspective of the development
process. The relationships between models also lack formalization. FDD formally defines
different stages and introduces a formalism to manage the process rigorously.

5.3. Blockchain-Oriented Engineering

Recently, the research on the blockchain-oriented development process has made
some progress.

The work [47] studies three approaches to model and implement a taxi dispatcher
application on a blockchain, including an extended BPMN approach, using synchronized
state-machines, and high-level Petri nets. In [48], a code generation method for smart
contracts is proposed based on MDD for collaborative business processes.

In addition to MDD, other methods are also studied to optimize the development
process of blockchain applications, such as [49,50]. In [49], it proposes an agile software
engineering method to organize the development process with concrete plans and intro-
duces a set of new UML stereotypes to enhance the modeling capability. Some architectural
patterns extracted from existing decentralized applications are studied in [50].

Notably, they focus on providing application-level solutions for the development of
decentralized applications and barely introduce formal methods, as a critical component in
their methodologies.

6. Discussion

FDD is a type of development process. Architects and project managers need to con-
cretize FDD processes based on the development context, such as requirement specification,
developer skills, tech stack, project budget, and duration. As an iterative and incremen-
tal process, components should be built from small portions that are refined repeatedly
through FDD four stages and eventually formed by continuous integration as illustrated in
Section 3.4.

FDD is compatible with testing techniques. Testing is still the fastest way to check
correctness in each stage, though SMT solvers such as Z3 [51] can be used in daemons to
validate some propositional formulas in real time. Furthermore, formal testing techniques
such as model-based testing [52] can be naturally integrated into FDD processes.

FDD is not a verification process. Verification is a critical step in FDD to the success
of developing trustworthy systems. Nevertheless, design and implementation are also
significant in FDD. The former improves development efficiency and system maintainability,
while the latter ensures that deliveries satisfy the needs. In a concretized FDDD process,
architects need different types of formal methods tools, including specification, verification,
and optional testing according to the criteria in Section 4.1 and the development context.

FDD is not a silver bullet. We do not intend to replace the existing development
processes and methodologies completely but to provide an alternative and reference to
promote the application of formal methods. Its applicability is highly restricted by the
limitations of formal methods such as performance and automation while facing state
explosion problems and provability issues.

FDD is not suitable for studying algorithms. Although mechanizing functional models
of computation such as rewriting systems and Lambda calculus in FDD formalisms could
be theoretically interesting, it is not very attractive for developers in practice.
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7. Conclusions

This paper presents the concepts, taxonomy, and practice of formalism-driven de-
velopment, which is an iterative and incremental development process for developing
provably correct systems with formal methods. FDD can be regarded as an alternative to
the existing development processes and a template for the application of formal methods
throughout the development lifespan. We summarize its main advantages as follows.

• FDD produces readable, visualizable, and rigorous designs by formal specifica-
tion techniques.

• Models are directly derived from designs and mathematically verifiable via formal
verification techniques.

• Verification processes are simplified by the translation from models to verification-
oriented programs.

• Implementation processes are driven by designs and preserve control-flow properties.
• Continuous integration and delivery are naturally enabled in FDD processes.
• Iterations and increments are well defined to ensure consistency and manageability.

The current main disadvantages are listed as below.

• FDD is expensive due to the cost of verifying complicated properties and the require-
ment of learning, though not much, additional skills above the code level.

• FDD tools are not sophisticated.
• No community support.

Meanwhile, FDD must continually confront usability issues. Our future directions
will be centered around usability, including

1. Optimizing the underlying theories, especially the algebra of transition systems,
refinement theory, and concurrency theory;

2. Implementing FDD tools that well satisfy both functional and quality criteria;
3. Extending the scope of FDD for more types of development projects.
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API Application Programming Interface
BPMN Business Process Modeling Notation
CTL Computation Tree Logic
DLT Distributed Ledger Technology
FDD Formalism-Driven Development
LTL Linear Temporal Logic
MDD Model-Driven Development
SDK Software Development Kit
SMT Satisfiability Modulo Theories
UML Unified Modeling Language
VDE Verification-Driven Engineering

Appendix A. The Seniz Language

Appendix A.1. Core Syntax

The core syntax of the Seniz language is as follows.

Unit ::= Import∗ System? VarSet? ChanSet? Record∗

System ::= Modifier∗ system SystemId SystemArg over SystemParam SystemBody

VarSet ::= varset VarSetId { VarSetExpr∗ }

ChanSet ::= chanset ChanId { ChanSetExpr∗ }

SystemBody ::= ControlBody | PlainBody

ControlBody ::= ControlStmt globalStateDecl? LogicStmt∗

PlainBody ::= StateDecl∗ TransitionDecl∗ LogicDecl∗

StateDecl ::= StateId = { StateExpr∗ }

TransitionDecl ::= init? StateId (Guard? -> ActionDecl? GlobalStateId? StateId)∗

StateExpr ::= VarId : Expr

VarSetExpr ::= VarId :: Type

ChanSetExpr ::= ChanId :: ChanType

Appendix A.2. Common Operators

We summarize notable common operators in Table A1.

Table A1. Operators in the Seniz language.

Operator Meaning Scope

: has value state variable
:: has type state variable, channel
-> from (left) to (right) transition relation
@ global state variable, state declarator
! send channel
? receive channel
= structural equality state declarator
= physical equality proposition
! logical not proposition

and logical and proposition
or logical or proposition
-> implication proposition

always, G always temporal proposition
eventually, F eventually temporal proposition
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