Critical Materials Determination as a Complement to the Product Recycling Desirability Model for Sustainability in Malaysia
Abstract
:1. Introduction
1.1. Material Security
1.2. Product Recycling Desirability Model
2. Methodology
3. Data of the Critical Materials for Malaysia
4. Discussions
4.1. Supply Risk and Material Risk and Grouping of the Materials
4.2. International Comparison on Material Security
4.3. The Application of Malaysia’s Critical Material on Product Recycling Desirability
4.4. International Comparison of the Product Recycling Desirability Index
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Material | Symbol | Supply Risk | Total | Material Risk | Total | Criticality Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SC | MS | PS | SCC | SR | CL | Sub | GWP | TMR | MR | |||
Palladium | Pd | 3 | 2 | 2 | 2 | 9 | 2 | 2 | 3 | 3 | 10 | 19 |
Rhodium | Rh | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 3 | 3 | 11 | 19 |
Gold | Au | 3 | 1 | 2 | 2 | 8 | 3 | 1 | 3 | 3 | 10 | 18 |
Platinum | Pt | 3 | 2 | 2 | 2 | 9 | 2 | 1 | 3 | 3 | 9 | 18 |
Tellurium | Te | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 3 | 10 | 18 |
Ammonia | NH3 | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Bromine | Br | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Indium | In | 3 | 2 | 2 | 2 | 9 | 2 | 1 | 3 | 2 | 8 | 17 |
Molybdenum | Mo | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Niobium | Nb | 2 | 3 | 3 | 1 | 9 | 1 | 3 | 2 | 2 | 8 | 17 |
Osmium | Os | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 3 | 9 | 17 |
Phosphate rock | - | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Ruthenium | Ru | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Strontium | Sr | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Thallium | Tl | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Yttrium | Y | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Andalusite | - | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Barium | Ba | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Baryte | BaSO4 | 2 | 2 | 2 | 2 | 8 | 1 | 3 | 2 | 2 | 8 | 16 |
Borate | BO3 | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Cerium | Ce | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Dysprosium | Dy | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Erbium | Er | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Europium | Eu | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Fluorspar | - | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 1 | 2 | 8 | 16 |
Gadolinium | Gd | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Gallium | Ga | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 3 | 2 | 8 | 16 |
Hafnium | Hf | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Helium | He | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Holmium | Ho | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Iodine | I | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Iridium | Ir | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Lanthanum | La | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Lutetium | Lu | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Mercury | - | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 3 | 2 | 8 | 16 |
Natural rubber | - | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Neodymium | Nd | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Nickel | Ni | 3 | 2 | 2 | 2 | 9 | 2 | 1 | 2 | 2 | 7 | 16 |
Praseodymium | Pr | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Promethium | Pm | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Samarium | Sm | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Silicon metal | - | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Tantalum | Ta | 2 | 1 | 2 | 1 | 6 | 3 | 3 | 2 | 2 | 10 | 16 |
Terbium | Tb | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Thulium | Tm | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Tin | Sn | 3 | 2 | 2 | 2 | 9 | 2 | 1 | 2 | 2 | 7 | 16 |
Uranium | U | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Ytterbium | Yb | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Aluminium | Al | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Antimony | Sb | 3 | 2 | 2 | 2 | 9 | 2 | 1 | 2 | 1 | 6 | 15 |
Asbestos | - | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Bentonite | - | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 1 | 2 | 7 | 15 |
Beryllium | Be | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Bismuth | Bi | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Cadmium | Cd | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Chromium | Cr | 1 | 2 | 2 | 2 | 7 | 2 | 3 | 2 | 1 | 8 | 15 |
Cobalt | Co | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Diamonds (unit in carat) | - | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Diatomite | - | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Germanium | Ge | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Graphite | C | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 1 | 2 | 7 | 15 |
Kyanite | - | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Lead | Pb | 3 | 2 | 2 | 2 | 9 | 2 | 1 | 1 | 2 | 6 | 15 |
Lime | - | 2 | 2 | 2 | 2 | 8 | 1 | 2 | 2 | 2 | 7 | 15 |
Lithium | Li | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Mica | - | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Rhenium | Re | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Scandium | Sc | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Silver | Ag | 3 | 1 | 3 | 1 | 8 | 1 | 1 | 3 | 2 | 7 | 15 |
Soda ash | - | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Talc | - | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Thorium | Th | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Tungsten | W | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Vanadium | V | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 2 | 7 | 15 |
Arsenic | As | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 1 | 6 | 14 |
Boron | B | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 1 | 6 | 14 |
Copper | Cu | 3 | 1 | 2 | 1 | 7 | 2 | 1 | 2 | 2 | 7 | 14 |
Feldspar | - | 2 | 1 | 3 | 1 | 7 | 2 | 1 | 2 | 2 | 7 | 14 |
Kaolin | - | 2 | 1 | 2 | 1 | 6 | 2 | 2 | 2 | 2 | 8 | 14 |
Magnesium | Mg | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 1 | 6 | 14 |
Manganese | Mn | 2 | 1 | 2 | 1 | 6 | 1 | 3 | 2 | 2 | 8 | 14 |
Perlite | - | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 1 | 2 | 6 | 14 |
Selenium | Se | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 2 | 1 | 6 | 14 |
Titanium | Ti | 2 | 2 | 1 | 2 | 7 | 2 | 1 | 2 | 2 | 7 | 14 |
Vermiculite | - | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 1 | 2 | 6 | 14 |
Zinc | Zn | 3 | 2 | 2 | 2 | 9 | 2 | 1 | 1 | 1 | 5 | 14 |
Silicon | Si | 2 | 2 | 2 | 2 | 8 | 1 | 1 | 2 | 1 | 5 | 13 |
Zirconium | Zr | 2 | 2 | 1 | 2 | 7 | 1 | 1 | 2 | 2 | 6 | 13 |
Iron & Steel | Fe | 1 | 2 | 2 | 2 | 7 | 1 | 1 | 1 | 1 | 4 | 11 |
References
- Chen, J.M.; Chi, C.Y. Reverse channel choice in a closed-loop supply chain with new and differentiated remanufactured goods. J. Ind. Prod. Eng. 2019, 36, 81–96. [Google Scholar] [CrossRef]
- Sadeghi Ahangar, S.; Sadati, A.; Rabbani, M. Sustainable design of a municipal solid waste management system in an integrated closed-loop supply chain network using a fuzzy approach: A case study. J. Ind. Prod. Eng. 2021, 38, 323–340. [Google Scholar] [CrossRef]
- Tseng, M.L.; Tran, T.P.T.; Ha, H.M.; Bui, T.D.; Lim, M.K. Sustainable industrial and operation engineering trends and challenges Toward Industry 4.0: A data driven analysis. J. Ind. Prod. Eng. 2021, 38, 581–598. [Google Scholar] [CrossRef]
- Bott, R. Environmental benefits of recycling. Wrap 2014, 1, 1–5. [Google Scholar] [CrossRef]
- Joseph, C.V.; Yunus, M.Y.M.; Ismail, N.A.; Kanthasamy, R. Economic potential assessment of neodymium recovery from Malaysia e-waste resource. Mater. Today Proc. 2019, 17, 707–716. [Google Scholar] [CrossRef]
- Mossali, E.; Picone, N.; Gentilini, L.; Rodrìguez, O.; Pérez, J.M.; Colledani, M. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. J. Environ. Manag. 2020, 264, 110500. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.C.; Al-Obaidi, K.M.; Mahyuddin, N. Recycling of end-of-life vehicles (ELVs) for building products: Concept of processing framework from automotive to construction industries in Malaysia. J. Clean. Prod. 2018, 190, 285–302. [Google Scholar] [CrossRef]
- Sonoc, A.; Jeswiet, J.; Soo, V.K. Opportunities to improve recycling of automotive lithium ion batteries. Procedia CIRP 2015, 29, 752–757. [Google Scholar] [CrossRef]
- Barteková, E.; Kemp, R. Critical Raw Material Strategies in Different World Regions (Issue 31). 2016. Available online: https://www.merit.unu.edu/publications/wppdf/2016/wp2016-005.pdf (accessed on 23 August 2021).
- Graedel, T.E.; Barr, R.; Chandler, C.; Chase, T.; Choi, J.; Christoffersen, L.; Friedlander, E.; Henly, C.; Jun, C.; Nassar, N.T.; et al. Methodology of metal criticality determination. Environ. Sci. Technol. 2012, 46, 1063–1070. [Google Scholar] [CrossRef]
- Gupta, V.; Biswas, T.; Ganean, K. Critical Non-Fuel Mineral Resources for India’s Manufacturing Sector: A Vision for 2030; Department of Science and Technology, Government of India: New Delhi, India, 2016.
- Andersson, P. Chinese assessments of “critical” and “strategic” raw materials: Concepts, categories, policies, and implications. Extr. Ind. Soc. 2020, 7, 127–137. [Google Scholar] [CrossRef]
- Hatayama, H.; Tahara, K. Criticality assessment of metals for japan’s resource strategy. Mater. Trans. 2015, 56, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Kara, S. Material criticality and circular economy: Necessity of manufacturing oriented strategies. Procedia CIRP 2019, 80, 667–672. [Google Scholar] [CrossRef]
- Kastanaki, E.; Giannis, A. Forecasting quantities of critical raw materials in obsolete feature and smart phones in Greece: A path to circular economy. J. Environ. Manag. 2022, 307, 114566. [Google Scholar] [CrossRef] [PubMed]
- Černý, I.; Vaněk, M.; Maruszewska, E.W.; Beneš, F. How economic indicators impact the EU internal demand for critical raw materials. Resour. Policy 2021, 74, 102417. [Google Scholar] [CrossRef]
- Helbig, C.; Schrijvers, D.; Hool, A. Selecting and prioritizing material resources by criticality assessments. One Earth 2021, 4, 339–345. [Google Scholar] [CrossRef]
- Schrijvers, D.; Hool, A.; Blengini, G.A.; Chen, W.Q.; Dewulf, J.; Eggert, R.; van Ellen, L.; Gauss, R.; Goddin, J.; Habib, K.; et al. A review of methods and data to determine raw material criticality. Resour. Conserv. Recycl. 2020, 155, 104617. [Google Scholar] [CrossRef]
- Speirs, J.; Houari, Y.; Gross, R. Materials Availability: Comparison of material criticality studies—Methodologies and results Working Paper III. UK Energy Res. Cent. 2013, 30, 5–22. [Google Scholar]
- Schrijvers, D.; Blengini, G.A.; Cimprich, A.; Chen, W.; Correia, V.; Eggert, R.; Gupta, V.; Hagelüken, C.; Hirohata, A.; Ku, A.; et al. Material Criticality: An Overview for Decision-Makers. May 2020. Available online: https://irtc.info/brochure/ (accessed on 25 August 2021).
- Morley, N.; Eatherley, D. Material Security: Ensuring Resource Availability for the UK Economy; C-Tech Innovation Ltd.: Capenhurst, UK, 2008; pp. 1–36. [Google Scholar]
- Erdmann, L.; Graedel, T.E. Criticality of non-fuel minerals: A review of major approaches and analyses. Environ. Sci. Technol. 2011, 45, 7620–7630. [Google Scholar] [CrossRef]
- Lloyd, S.; Lee, J.; Clifton, A.; Elghali, L.; France, C. Recommendations for assessing materials criticality. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2012, 165, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Sébastien, S.; Kong, M.A.; Planchon, M.; Saidi, N.; Devauze, C.; Petavratzi, E.; Gunn, G.; Brown, T.; Shaw, R.; Lefebvre, G.; et al. Study on the review of the list of Critical Raw Materials Criticality Assessments. In Office of the European Union (Issue 2); European Commission: Luxembourg, 2017. [Google Scholar] [CrossRef]
- Fortier, S.M.; Nassar, N.T.; Lederer, G.W.; Brainard, J.; Gambogi, J.; McCullough, E.A. Draft Critical Mineral List—Summary of Methodology and Background Information—U.S. Geological Survey; US Geological Survey: Reston, VA, USA, 2018; Volume 3359, pp. 1–26.
- Hatayama, H.; Tahara, K. Evaluating the sufficiency of Japan’s mineral resource entitlements for supply risk mitigation. Resour. Policy 2015, 44, 72–80. [Google Scholar] [CrossRef]
- Bortnikov, N.S.; Volkov, A.V.; Galyamov, A.L.; Vikent’ev, I.V.; Aristov, V.V.; Lalomov, A.V.; Murashov, K.Y. Mineral resources of high-tech metals in Russia: State of the art and outlook. Geol. Ore Depos. 2016, 58, 83–103. [Google Scholar] [CrossRef]
- Mohamed Sultan, A.A.; Mativenga, P.T. Sustainable Location Identification Decision Protocol (SuLIDeP) for determining the location of recycling centres in a circular economy. J. Clean. Prod. 2019, 223, 508–521. [Google Scholar] [CrossRef]
- Sultan, A.A.; Lou, E.; Mativenga, P.T. What should be recycled: An integrated model for product recycling desirability. J. Clean. Prod. 2017, 154, 51–60. [Google Scholar] [CrossRef]
- Dahmus, J.; Gutowski, T. Material Recycling at Product End-of-Life. In Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment, Scottsdale, AZ, USA, 8–11 May 2006; Volume 2, pp. 206–211. [Google Scholar] [CrossRef]
- Eco-Innovation. Glossary of Terms Used in the Eco-Innovation Observatory. European Commission’s Directorate-General for the Environment. 2015. Available online: http://www.eco-innovation.eu/ (accessed on 23 August 2020).
- Straub, J. In search of technology readiness level (TRL) 10. Aerosp. Sci. Technol. 2015, 46, 312–320. [Google Scholar] [CrossRef]
- Minerals and Geoscience Department Malaysia. Malaysian Minerals Yearbook 2013; Minerals and Geoscience Department Malaysia: Sabah, Malaysia, 2014.
- Spencer, B. 2016 Minerals Yearbook Malaysia [Advance Release] (Issue May). 2021. Available online: https://www.usgs.gov/media/files/mineral-industry-malaysia-2016-pdf (accessed on 23 January 2022).
- NRC. Minerals, Critical Minerals, and the U.S. Economy—Report in Brief; NRC: Washington, DC, USA, 2008. [Google Scholar]
Region | Characteristics | Initiatives | Strategies |
---|---|---|---|
China |
|
|
|
USA |
|
|
|
Europe |
|
|
|
Japan |
|
|
|
Australia |
|
|
|
Dimensions | Descriptions |
---|---|
Consumption Levels | For some materials, data on total annual use is available. This data shows how reliant national or global economies are on the material’s future availability. |
Substitutability | The readier a substance is to be replaced by another; the more secure economies will be regarding future supply shortages. In some cases, copper can be replaced by aluminum, a more common metal. However, substitutes for magnesium, required to harden steel, are few. |
Global Warming Potential | The Eco Invent database provides the GWP over 100 years in kg CO2 equivalents generated per kilogram of material mined. The GWP of minerals varies greatly. For example, a kilogram of platinum requires almost 15 tonnes of CO2 equivalents to mine and beneficiate, while the same weight of aluminum from bauxite requires only 8 g. |
Total Material Requirement | The total weight of rocks and other substrate mined to obtain a given weight of metal or other mineral also provides a rough indication of environmental impact. |
Scarcity | Physical scarcity has a clear impact on a material’s overall security, but determining scarcity is notoriously difficult. Japan’s National Institute for Material Science recently presented predictions for which metals’ reserves, and, in some cases, reserve bases, will be depleted by 2050. Aluminum consumption, for example, is not expected to have an impact on reserves by 2050. In contrast, the institute predicts that silver will significantly outgrow its reserve base over the same time period. Such projections are likely to be overly pessimistic, and thus data on material scarcity is deemed secondary in importance. |
Monopoly Supply | When the world’s production of a certain substance is concentrated in a single or in two countries, future supply becomes vulnerable. For instance, over 80% of the world’s platinum is being mined in South Africa. |
Political Instability | Material security, arguably, is impacted by a country’s governance, notably its political stability and the countries from which materials are sourced. War, starvation, and other forms of disturbance can disrupt supplies. By analysing the principal nation’s production data, it is possible to assign a (rough) political stability score to each substance. The World Bank’s Governance Indicator was used to collect information on political stability. The website provides percentile rankings for 212 countries and territories based on a variety of criteria, including “political stability and the lack of violence/terrorism.” |
Vulnerability to Climate Change | Certain regions are anticipated to be more vulnerable to climate change consequences than others. Additionally, this susceptibility can be utilized to forecast future material insecurity. The German Advisory Council on Climate Change issued a map indicating which regions of the world are most likely to suffer disproportionately from climate change. These hotspots were very poorly translated into climate change in the Material Security Spreadsheet. Score of vulnerability is based on proximity to hotspots. |
Rank | UK | EU | India | Australia | Japan |
---|---|---|---|---|---|
1 | Gold | Dysprosium | Strontium | Gallium | Neodymium |
2 | Rhodium | Magnesium | Phosphate | Indium | Dysprosium |
3 | Mercury | Samarium | Potash | Tungsten | Indium |
4 | Platinum | Gadolinium | Vanadium | Cobalt | Niobium |
5 | Strontium | Rhodium | Boron | Niobium | Tin |
6 | Silver | Tungsten | Barium | Manganese | Silver |
7 | Antimony | Neodymium | Lithium | Molybdenum | Zinc |
8 | Tin | Cerium | Chromium | Antimony | Tantalum |
9 | Magnesium | Holmium | Molybdenum | Lithium | Manganese |
10 | Tungsten | Lutetium | Silicon | Vanadium | Cobalt |
11 | Baryte | Terbium | Niobium | Nickel | Gold |
12 | Talc | Thulium | Cobalt | Tantalum | Platinum |
13 | Bismuth | Ytterbium | Limestone | Terbium | Iron |
14 | Palladium | Antimony | Selenium | Chromium | Rhodium |
15 | Nickel | Phosphorus | Antimony | Selenium | Palladium |
16 | Boron | Niobium | Gypsum | Titanium | Lead |
17 | Andalusite | Erbium | Nickel | Strontium | Copper |
18 | Molybdenum | Cobalt | Bentonite | Graphite | Chromium |
19 | Zinc | Palladium | Germanium | Tin | Molybdenum |
20 | Holmium | Bismuth | Graphite | Germanium | Tungsten |
Dimension | Supply Risk (SR) | Material Risk (MR) | |||||||
---|---|---|---|---|---|---|---|---|---|
Indicator/ Criteria | Scarcity | Monopoly Supply | Political Instability | Vulnerability to Climate Change | Malaysia Consumption Level | Substitutability | Global Warming Potential | Total Material Requirement | |
Score | 1 | Not predicted to reach reserves by 2050 | Any one country has a concentration of less than 33.3%. | Political Stability Percentile greater than 66.6% | More than 51 climate risk index | Less than 1000 tonnes per year | High | Less than 1 kg CO2 per kg material extracted | Less than 100 tonnes/tonne mineral |
2 | Predicted to overrun reserves by 2050 | Any one country has a concentration of between 33.3% and 66.6%. | Political Stability Percentile between 33.3–66.6% | 21–50 climate risk index | Between 1000 and 1,000,000 tonnes per year | If the data is not readily available | Between 1 and 100 kg CO2 per kg material extracted | Between 100 to 10,000 tonnes/tonne mineral | |
3 | Predicted to overrun reserve base by 2050 | Any one country has a concentration greater than 66.6%. | Political Stability Percentile less than 33.3% | 1–20 climate risk index | More than 1,000,000 tonnes per year | Low | More than 100 kg CO2 per kg material extracted | More than 1000 tonnes/tonne mineral |
Material | Symbol | Supply Risk (SR) | Total SR | Material Risk | Total MR | Criticality Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SC | MS | PS | VCC | CL | Sub | GWP | TMR | |||||
Palladium | Pd | 3 | 2 | 2 | 2 | 9 | 2 | 2 | 3 | 3 | 10 | 19 |
Rhodium | Rh | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 3 | 3 | 11 | 19 |
Gold | Au | 3 | 1 | 2 | 2 | 8 | 3 | 1 | 3 | 3 | 10 | 18 |
Platinum | Pt | 3 | 2 | 2 | 2 | 9 | 2 | 1 | 3 | 3 | 9 | 18 |
Tellurium | Te | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 3 | 10 | 18 |
Ammonia | NH3 | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Bromine | Br | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Indium | In | 3 | 2 | 2 | 2 | 9 | 2 | 1 | 3 | 2 | 8 | 17 |
Molybdenum | Mo | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Niobium | Nb | 2 | 3 | 3 | 1 | 9 | 1 | 3 | 2 | 2 | 8 | 17 |
Osmium | Os | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 3 | 9 | 17 |
Phosphate rock | - | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Ruthenium | Ru | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Strontium | Sr | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Thallium | Tl | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Yttrium | Y | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 9 | 17 |
Andalusite | - | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Barium | Ba | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Baryte | BaSO4 | 2 | 2 | 2 | 2 | 8 | 1 | 3 | 2 | 2 | 8 | 16 |
Borate | BO3 | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Cerium | Ce | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Dysprosium | Dy | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Erbium | Er | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Europium | Eu | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Fluorspar | - | 2 | 2 | 2 | 2 | 8 | 2 | 3 | 1 | 2 | 8 | 16 |
Gadolinium | Gd | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Gallium | Ga | 2 | 2 | 2 | 2 | 8 | 2 | 1 | 3 | 2 | 8 | 16 |
Hafnium | Hf | 2 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 16 |
Material | |||||||||
---|---|---|---|---|---|---|---|---|---|
Supply risk | 9 | Zn | Sb, Pb | Ni, Sn | In | Pt, | Pd, | ||
8 | Si | As, B, Mg, Perlite, Se, Vermiculite, | Al, Asbestos, Bentonite, Be, Bi, Cd, Co, diamond, diatomite, Ge, C, Kyanite, Lime, Li, Mica, Re, Sc, Ag, Soda Ash, Talc, Th, W, V | Andalusite, Ba, BaSO4, BO3, Ce, Dy, Erbium, Eu, Fluorspar, Gd, Ga, Hf, He, Ho, I, Ir, La, Lu, Mercury, Rubber, Nd, Pr, Pm, Sm, Si metal, Tb, Tm, U, Yb | NH3, Br, Mo, Os, phosphate, Ru, Sr, Tl, Y | Au, Te | Rh, | ||
7 | Fe | Zr | Cu, Feldspar, Ti | Cr, | Nb | ||||
6 | Kaolin, Mn | Ta | |||||||
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
Material risk |
Materials | Symbol | Material Security Score |
---|---|---|
Palladium, Rhodium | Pd, Rh | 19 |
Gold, Platinum, Tellurium | Au, Pt, Te | 18 |
Ammonia, Bromine, Indium, Molybdenum, Niobium, Osmium, Phosphate rock, Ruthenium, Strontium, Thallium, Yttrium | NH3, Br, In, Mo, Nb, Os, Ru, Sr, Tl, Y | 17 |
Andalusite, Barium, Baryte, Borate, Cerium, Dysprosium, Erbium, Europium, Fluorspar, Gadolinium, Gallium, Hafnium, Helium, Holmium, Iodine, Iridium, Lanthanum, Lutetium, Mercury, Natural rubber, Neodymium, Nickel, Praseodymium, Promethium, Samarium, Silicon metal, Tantalum, Terbium, Thulium, Tin, Uranium, Ytterbium | Ba, BaSO4, BO3, Ce, Dy, Er, Eu, Gd, Ga, Hf, He, Ho, Ir, La, Lu, I, Nd, Ni, Pr, Pm, Sm, Ta, Tb, Tm, Sn, U, Yb | 16 |
Aluminium, Antimony, Asbestos, Bentonite, Beryllium, Bismuth, Cadmium, Chromium, Cobalt, Diamonds (unit in carat), Diatomite, Germanium, Graphite, Kyanite, Lead, Lime, Lithium, Mica, Rhenium, Scandium, Silver, Soda ash, Talc, Thorium, Tungsten, Vanadium | Al, Sb, Be, Bi, Cd, Cr, Co, Ge, C, Pb, Li, Re, Sc, Ag, Th, W, V | 15 |
Arsenic, Boron, Copper, Feldspar, Kaolin, Magnesium, Manganese, Perlite, Selenium, Titanium, Vermiculite, Zinc | As, B, Cu, Mg, Mn, Se, Ti, Zn | 14 |
Silicon, Zirconium | Si, Zr | 13 |
Iron & Steel | Fe | 11 |
Rank | Malaysia | UK | EU | India | Australia | Japan |
---|---|---|---|---|---|---|
1 | Palladium | Gold | Dysprosium | Strontium | Gallium | Neodymium |
2 | Rhodium | Rhodium | Magnesium | Phosphate | Indium | Dysprosium |
3 | Gold | Mercury | Samarium | Potash | Tungsten | Indium |
4 | Platinum | Platinum | Gadolinium | Vanadium | Cobalt | Niobium |
5 | Tellurium | Strontium | Rhodium | Boron | Niobium | Tin |
6 | Ammonia | Silver | Tungsten | Barium | Manganese | Silver |
7 | Bromine | Antimony | Neodymium | Lithium | Molybdenum | Zinc |
8 | Indium | tin | Cerium | Chromium | Antimony | Tantalum |
9 | Molybdenum | Magnesium | Holmium | Molybdenum | Lithium | Manganese |
10 | Niobium | Tungsten | Lutetium | Silicon | Vanadium | Cobalt |
Product | Simplicity | Material Security Desirability | Technology Readiness Desirability | Recycling Desirability Index | Market Price (RM) |
---|---|---|---|---|---|
Car battery | 0.64 | 0.420 | 1.00 | 2.06 | 250.00 |
DVD-R | 0.51 | 0.300 | 1.00 | 1.81 | 60.00 |
Mobile phone | 0.38 | 0.466 | 1.00 | 1.85 | 550.00 |
Desktop computer | 0.25 | 0.520 | 1.00 | 1.77 | 1550.00 |
Wind turbine (100 kW) | 0.78 | 0.002 | 0.60 | 1.38 | 24,000.00 |
Refrigerator | 0.51 | 0.051 | 1.00 | 1.56 | 1900.00 |
Coffee maker | 0.52 | 0.020 | 1.00 | 1.54 | 100.00 |
Tire | 0.55 | 0.370 | 1.00 | 1.92 | 200.00 |
Ergo chair | 0.5 | 0.210 | 1.00 | 1.71 | 50.00 |
PET Bottle | 0.92 | 0.000 | 1.00 | 1.92 | 0.30 |
Product | Product Recycling Desirability Index | |||||
---|---|---|---|---|---|---|
Malaysia | UK | EU | USA | India | ||
1 | Car battery | 2.06 | 2.08 | 1.65 | 1.79 | 1.73 |
2 | PET bottle | 1.92 | 1.92 | 1.92 | 1.92 | 1.92 |
3 | Tire | 1.92 | 1.55 | 1.86 | 1.55 | 1.55 |
4 | Mobile Phone | 1.85 | 1.95 | 1.76 | 1.56 | 1.93 |
5 | DVD-R | 1.81 | 1.91 | 1.54 | 1.52 | 1.81 |
6 | Desktop Computer | 1.77 | 1.83 | 1.72 | 1.85 | 2.25 |
7 | Ergo Chair | 1.71 | 1.50 | 1.68 | 1.65 | 1.64 |
8 | Refrigerator | 1.56 | 1.56 | 1.69 | 1.58 | 1.68 |
9 | Coffee Maker | 1.54 | 1.54 | 1.53 | 1.53 | 1.62 |
10 | Wind turbine | 1.38 | 1.68 | 1.68 | 1.71 | 1.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Sultan, A.A.; Qi Hang, Y.; Wan Mahmood, W.H.; Md Saad, M.S.; Mativenga, P.T. Critical Materials Determination as a Complement to the Product Recycling Desirability Model for Sustainability in Malaysia. Appl. Sci. 2022, 12, 3456. https://doi.org/10.3390/app12073456
Mohamed Sultan AA, Qi Hang Y, Wan Mahmood WH, Md Saad MS, Mativenga PT. Critical Materials Determination as a Complement to the Product Recycling Desirability Model for Sustainability in Malaysia. Applied Sciences. 2022; 12(7):3456. https://doi.org/10.3390/app12073456
Chicago/Turabian StyleMohamed Sultan, Al Amin, Yoong Qi Hang, Wan Hasrulnizzam Wan Mahmood, Mohd Shamsuri Md Saad, and Paul Tarisai Mativenga. 2022. "Critical Materials Determination as a Complement to the Product Recycling Desirability Model for Sustainability in Malaysia" Applied Sciences 12, no. 7: 3456. https://doi.org/10.3390/app12073456
APA StyleMohamed Sultan, A. A., Qi Hang, Y., Wan Mahmood, W. H., Md Saad, M. S., & Mativenga, P. T. (2022). Critical Materials Determination as a Complement to the Product Recycling Desirability Model for Sustainability in Malaysia. Applied Sciences, 12(7), 3456. https://doi.org/10.3390/app12073456