Antibacterial Activity of Green Synthesised Silver Nanoparticles on Saccharomyces cerevisiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Synthesis of Silver Nanoparticles
2.2. UV-Spectrophotometry
2.3. Determination of the Concentration of Silver Ions
2.4. Bacterial Strains
2.5. Bactericidal Activity
2.6. The Number of Adhered Cells
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spagnoletti, F.N.; Spedalieri, C.; Kronberg, F.; Giacometti, R. Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. J. Environ. Manag. 2019, 231, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Taha, Z.K.; Hawar, S.N.; Sulaiman, G.M. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol. Lett. 2019, 41, 899–914. [Google Scholar] [CrossRef] [PubMed]
- Olobayotan, I.; Akin-Osanaiye, B. Biosynthesis of silver nanoparticles using baker’s yeast, Saccharomyces cerevisiae and its antibacterial activities. Access Microbiol. 2019, 1, 526. [Google Scholar] [CrossRef]
- David, S.; Reuter, S.; Harris, S.R.; Glasner, C.; Feltwell, T.; Argimon, S.; Abudahab, K.; Goater, R.; Giani, T.; Errico, G.; et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat. Microbiol. 2019, 4, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae–clinical and molecular perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, T.A.; Olson, R.; Fang, C.T.; Stoesser, N.; Miller, M.; MacDonald, U.; Hutson, A.; Jason, H.; Barker, J.H.; La Hoz, R.M.; et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J. Clin. Microbiol. 2018, 56, e00776-18. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell Infect. Microbiol. 2020, 10, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic colorimetric proliferation assays: MTT, WST, and resazurin. Cell Viability Assays Methods Protoc. Methods Mol. Biol. 2017, 1601, 1–17. [Google Scholar]
- Corte, L.; Casagrande Pierantoni, D.; Tascini, C.; Roscini, L.; Cardinali, G. Biofilm specific activity: A measure to quantify microbial biofilm. Microorganisms 2019, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Elengoe, A.; Hamdan, S. Evaluation of MCF-7 cell viability by LDH, trypan blue and crystal violet staining assays. Malays. J. Med. Res. 2017, 1, 37–42. [Google Scholar]
- Shu, M.; He, F.; Li, Z.; Zhu, X.; Ma, Y.; Zhou, Z.; Yang, Z.; Gao, F.; Zeng, M. Biosynthesis and antibacterial activity of silver nanoparticles using yeast extract as reducing and capping agents. Nanoscale Res. Lett. 2020, 15, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-León, E.; Iñiguez-Palomares, R.; Navarro, R.E.; Herrera-Urbina, R.; Tánori, J.; Iñiguez-Palomares, C.; Maldonado, A. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett. 2013, 8, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganbarov, K.G.; Jafarov, M.M.; Ramazanov, M.A.; Agamaliyev, Z.A.; Eyvazova, G.M. Biosynthesis of silver nanoparticles using Saccharomyces sp. strain BDU–XR1. Environment 2017, 4, 11–13. [Google Scholar]
- AlSalhi, M.S.; Devanesan, S.; Alfuraydi, A.A.; Vishnubalaji, R.; Munusamy, M.A.; Murugan, K.; Nicoletti, M.; Benelli, G. Green synthesis of silver nanoparticles using Pimpinella anisum seeds: Antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells. Int. J. Nanomed. 2016, 11, 4439–4449. [Google Scholar] [CrossRef] [Green Version]
- Rolim, W.R.; Pelegrino, M.T.; de Araújo Lima, B.; Ferraz, L.S.; Costa, F.N.; Bernardes, J.S.; Rodigues, T.; Brocchi, M.; Seabra, A.B. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 2019, 463, 66–74. [Google Scholar] [CrossRef]
- Devanesan, S.; AlSalhi, M.S.; Balaji, R.V.; Ranjitsingh, A.J.A.; Ahamed, A.; Alfuraydi, A.A.; AlQahtani, F.Y.; Aleanizy, F.S.; Othman, A.H. Antimicrobial and cytotoxicity effects of synthesized silver nanoparticles from Punica granatum peel extract. Nanoscale Res. Lett. 2018, 13, 315. [Google Scholar] [CrossRef] [Green Version]
- Ammar, H.A.; Abd El Aty, A.A.; El Awdan, S.A. Extracellular myco-synthesis of nano-silver using the fermentable yeasts Pichia kudriavzevii HA-NY2 and Saccharomyces uvarum HA-NY3, and their effective biomedical applications. Bioprocess Biosyst. Eng. 2021, 44, 841–854. [Google Scholar] [CrossRef]
- Daphne, J.; Francis, A.; Mohanty, R.; Ojha, N.; Das, N. Green synthesis of antibacterial silver nanoparticles using yeast isolates and its characterization. Res. J. Pharm. Technol. 2018, 11, 83–92. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Sakthivel, N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci. 2011, 169, 59–79. [Google Scholar] [CrossRef]
- Poulose, S.; Panda, T.; Nair, P.P.; Theodore, T. Biosynthesis of silver nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 2038–2049. [Google Scholar] [CrossRef] [PubMed]
- Rónavári, A.; Kovács, D.; Igaz, N.; Vágvölgyi, C.; Boros, I.M.; Kónya, Z.; Pfeiffer, I.; Kiricsi, M. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: A comprehensive study. Int. J. Nanomed. 2017, 12, 871–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Concentration of Silver Ions, mM | |||||
---|---|---|---|---|---|
AgNO3, mM ** | Sterile dH2O | 0.5 | 1.0 | 1.5 | 2.0 |
Supernatant | −0.01 [−0.01; 0.00] | 0.03 [0.01; 0.03] | 0.05 [0.03; 0.06] | 0.04 [0.03; 0.08] * | 0.11 [0.11; 0.14] * |
Lysate | 0.01 [0.01; 0.01] | 0.02 [0.02;0.03] | 0.04 [0.04; 0.04] | 0.07 [0.06; 0.10] * | 0.16 [0.15; 0.17] * |
Reference Strains | Clinical Isolates | ||
---|---|---|---|
S. aureus ATCC 25923 | E. coli ATCC 25922 | S. aureus 1536 | K. pneumoniae 520 |
MIC of yeast extract samples, mM | |||
0.02 | 0.04 | 0.02 | 0.02 |
MIC of supernatant samples, mM | |||
0.03 | >0.02 | >0.02 | 0.03 |
Reference Strains | Clinical Isolates | ||
---|---|---|---|
S. aureus ATCC 25923 | E. coli ATCC 25922 | S. aureus 1536 | K. pneumoniae 520 |
MIC of yeast extract samples, mM | |||
0.04 | 0.07 | 0.04 | — |
MIC of supernatant samples, mM | |||
0.05 | 0.04 | 0.04 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharchenko, Y.; Lastovetska, L.; Maslak, V.; Sidorenko, M.; Vasylenko, V.; Shydlovska, O. Antibacterial Activity of Green Synthesised Silver Nanoparticles on Saccharomyces cerevisiae. Appl. Sci. 2022, 12, 3466. https://doi.org/10.3390/app12073466
Kharchenko Y, Lastovetska L, Maslak V, Sidorenko M, Vasylenko V, Shydlovska O. Antibacterial Activity of Green Synthesised Silver Nanoparticles on Saccharomyces cerevisiae. Applied Sciences. 2022; 12(7):3466. https://doi.org/10.3390/app12073466
Chicago/Turabian StyleKharchenko, Yugin, Liudmyla Lastovetska, Valeriia Maslak, Marina Sidorenko, Volodymyr Vasylenko, and Olga Shydlovska. 2022. "Antibacterial Activity of Green Synthesised Silver Nanoparticles on Saccharomyces cerevisiae" Applied Sciences 12, no. 7: 3466. https://doi.org/10.3390/app12073466
APA StyleKharchenko, Y., Lastovetska, L., Maslak, V., Sidorenko, M., Vasylenko, V., & Shydlovska, O. (2022). Antibacterial Activity of Green Synthesised Silver Nanoparticles on Saccharomyces cerevisiae. Applied Sciences, 12(7), 3466. https://doi.org/10.3390/app12073466