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Abstract: Volcanic activity may influence climate parameters and impact people safety, and hence
monitoring its characteristic indicators and their temporal evolution is crucial. Several databases,
communications and literature providing data, information and updates on active volcanoes world-
wide are available, and will likely increase in the future. Consequently, information extraction and
text mining techniques aiming to efficiently analyze such databases and gather data and parameters
of interest on a specific volcano can play an important role in this applied science field. This work
presents a natural language processing (NLP) system that we developed to extract geochemical
and geophysical data from free unstructured text included in monitoring reports and operational
bulletins issued by volcanological observatories in HTML, PDF and MS Word formats. The NLP
system enables the extraction of relevant gas parameters (e.g., SO2 and CO2 flux) from the text, and
was tested on a series of 2839 daily and weekly bulletins published online between 2015 and 2021 for
the Stromboli volcano (Italy). The experiment shows that the system proves capable in the extraction
of the time series of a set of user-defined parameters that can be later analyzed and interpreted
by specialists in relation with other monitoring and geospatial data. The text mining system can
potentially be tuned to extract other target parameters from this and other databases.

Keywords: text mining; information extraction; environmental monitoring; volcanic activity; natural
language processing

1. Introduction

Volcanic activity may influence climate parameters and impact people safety via direct
and cascading effects and processes (e.g., the recent Hunga-Tonga-Hunga-Ha’apai eruption
and the induced tsunami in Tonga; the eruption of the Cumbre Vieja volcano on the island
of La Palma that caused lava to reach the Atlantic Ocean and the consequent release of toxic
gases). For this reason, integrated systems for volcanic-related parameter monitoring based
on satellite Earth observation tools, airborne sensors and ground instrument networks
are of fundamental importance to achieve a comprehensive understanding of volcanic
processes (e.g., [1,2]).

Volcano monitoring datasets are not always publicly and openly accessible, though
some of such information is included in periodic communications, bulletins and websites
focusing on specific volcanoes worldwide. Geoscientists often have access to more reports
than they can reasonably read, so they are commonly challenged in screening and filtering
through reports to find relevant information. Often, these reports are collected in specialized
geoscience databases; however, these may lack semi-automated services to access and
retrieve specific information of interest. In this regard, the geoscience literature has become
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a big data “mineral resource” for text mining algorithms, and the development of automatic
extraction techniques is increasingly accelerating [3,4].

The scope of this work is to investigate how text mining can relieve geoscientists of
time-consuming manual reading and dataset creation tasks. In particular, we refer to a kind
of workflow where scholars and specialists are involved in reading and tagging a small
portion of the dataset of interest to train the algorithm, and then let the text mining method
perform the rest on the whole dataset.

Text mining [5] can be defined as “the discovery by computer of new, previously
unknown information, by automatically extracting information from different resources”.
Information extraction (IE) is a field of text mining and involves the extraction of specific,
structured information and predefined relations, as opposed to text mining, which involves
the discovery of general, unsuspected information and new relations [6]. In this sense, IE
can be considered a subfield of text mining, and IE activities may be successfully conducted
through text mining techniques. In terms of input, IE assumes the existence of a set
of documents, each following a template, i.e., describes one or more entities or events
in a manner that is similar to those in other documents but differing in the details [7].
Generally, IE activity concerns processing human language texts by means of natural
language processing (NLP) techniques, such as named entity recognition (NER), which
involves determining the parts of a text that can be identified and categorized into pre-
defined categories (i.e., entities) [8]. An output of this process is a structured database
resulting from the analysis of the corpus of reports, and collecting the recognizing entities
and their values (Figure 1).
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Figure 1. Information extraction: filling slots in a database from an unstructured text. On the left, the
original text of the input volcanological bulletin is in Italian language. Italian terms on the right refer
to: t—tons; giorno—day, eventi—events; ora—hour; febbraio—February.

Application of IE to scientific literature is a very active field of computer science.
Several software and algorithms have been developed for the automated extraction of
named entities from text [9]. Less attention has been paid to geological literature, though
machine analysis approaches for geological documents exist and are attracting a growing
interest across the community. For example, PaleoDeepDive [10] is a statistical machine
reading and learning system to automatically find and extract the occurrence of fossil data
from the scientific literature. It locates and extracts text, tables and figures in publications
and performs compilations of structured paleontological data. In [11], the authors present
a novel method for the machine reading of a stratigraphic database and published liter-
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ature to find the occurrence of stromatolites in North America over geological timeline.
Geological knowledge graph construction from Chinese geoscience literature has been
investigated in [12]. A workflow to extract prospecting information by text mining based on
convolutional neural networks in text on mineral deposits is reported in [13]. GeoDocA [14]
is a geological document analysis system that applies automated text analysis techniques to
assist geologists in browsing large repositories of documents and searching for documents
based on relevant geological contents. It extracts and interactively visualizes contents
within a report, identifies similar reports, assists the search using the auto-completion
of search terms based on learnt key word associations, and extracts and visualizes fig-
ures and tables. As a last example, GNER is a framework for geologically named entity
recognition using deep learning [15]. To the best of the authors’ knowledge, as of today,
there is no evidence of IE applications or software for volcanological applications in the
specialist literature.

In our work, we build upon existing IE approaches, with the aim to dig into the
textual databases of daily and weekly bulletins that are regularly published on Stromboli
volcanic activity by the National Institute of Geophysics and Volcanology (INGV) [16] and
the Laboratory of Experimental Geophysics (LGS) at the Department of Earth Sciences of
the University of Florence (UNIFI) [17]. Both INGV and LGS maintain volcano activity
databases for Stromboli that are accessible online and contain monitoring information of
different nature, such as seismic, clinometric, geochemical and geodetic. After the definition
of a set of parameters of interest, the proposed NLP system aims to automatically extract
measured values and their temporal characterization from text. As the output, the time
series of parameters can be generated and subsequently analyzed by specialists.

In this paper, we describe the NLP system that we developed to extract geochemical
and geophysical data from monitoring bulletins. The system is able to extract relevant
gas parameters from free unstructured text, and can potentially be tuned for other target
parameters and other databases on the web. The system generates a structured database
of user-defined relevant parameters, which are thus made accessible for further use (e.g.,
for volcanological studies aiming to investigate the volcano behavior through a long time
series of observations and data).

2. Materials and Methods
2.1. Data

Input of the proposed system is the set of textual reports produced by the two above
mentioned research institutes starting from 2015 and until April 2021. The corpus consists
of 2839 daily and weekly bulletins, i.e., 2562 by LGS (Table 1) and 277 by INGV (Table 2).
Reports are available by URLs (uniform resource locator), and so, by means of web browsers
or client applications, it is possible to access data through suitable queries.

Table 1. Number of bulletins in the LGS dataset.

Year Daily Weekly

2015 365 51
2016 335 42
2017 358 48
2018 363 51
2019 332 45
2020 364 52
2021 137 19
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Table 2. Number of bulletins in the INGV dataset.

Year Daily Weekly

2015 0 24
2016 0 25
2017 0 24
2018 0 25
2019 69 39
2020 0 52
2021 0 19

INGV reports [16] contain values on the number of very long period (VLP) events,
VLP amplitude, explosion-quake amplitude, volcanic tremor, thermal activity (using data
acquired by Terra/Aqua’s MODerate resolution Imaging Spectroradiometer—MODIS,
Sentinel-2’s MultiSpectral Instrument—MSI, and Sentinel-3’s Sea and Land Surface Tem-
perature Radiometer—SLSTR), SO2 flux, CO2 flux and C/S ratio. LGS reports [17] contain
information on the number of VLP events and VLP amplitude, amplitude of seismic
tremor, amplitude of puffing, acoustic pressure, tiltmeters, thermal activity on the basis of
transients, MODIS thermal anomalies, rockfall activity, SO2 flux, CO2 flux and C/S ratio.

To each of these values corresponds a tag (i.e., volcanic parameter) defining a textual
named entity (i.e., the text encoding of a parameter). Hence, the goal of the present work
was to define a solution to fill a template for each named entity as formalized in the
following (in Backus Normal Form—BNF notation):

<parameter>:=
parameter_name: “name-string”
parameter_value: “number”*
institute: “institute-string”
date: “date-expr”

detection-site: “site-expr”

2.2. Method and System

The input reports are written in different languages (Italian, English) and sometimes,
from year to year, the structure of their content changes remarkably. This inherent prop-
erty of the input reports represented a challenging but also interesting feature to test the
proposed NPL system on, and to assess how it performs in situations when the input
documents change as a reflection of a dynamic volcanological observatory monitoring
activity through time.

Nevertheless, items to be tagged had approximately the same structure. In fact,
the corpus was composed by similar documents, where documents contained free-text
sequences but in a preformatted way. Moreover, most of the parameters useful to monitor
a volcano are numeric data, and the extraction of numeric data from text is not complex
enough to require building a proper NER algorithm. This encourages the use of ‘regular
expressions’ (regex). A regex is basically a special character sequence that helps to match
or find other strings or sets of strings using that sequence as a search pattern. Indeed,
once identified, patterns may be used in a predictable manner. Regex is one of the rule-
based pattern search methods in text mining, which is based on the assumption that key
information to find occurs in a recurrent form [5,7]. Indeed, this method is especially
suitable for contents with significant syntactic properties (such as number, date, acronym)
and for information extraction tasks where contexts around the underlying fine information
are not important in locating target information.

We are interested in entity recognition on two levels. The first is for recognizing men-
tions of parameters within text. Once the list is built, the exact matches may be sufficient, but
in other cases, stemming is necessary to match the word’s base form (i.e., lemmatization).
A second level of entity recognition regards numeric values jointly to measurement units.
Further step is to correctly associate the occurrence of a parameter with its value and,
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finally, to associate the temporal dimension. The IE task we defined is expressed through
the following formal relation:

Measures(parameter, value, date)

On the basis of previous assumptions and motivations, we designed and developed a
NLP system implementing the following steps:

• Corpus download and processing;
• Manual consultation and tagging;
• Automatic tagging and rule base refinement;
• Parameter validation;
• Visual exploration of time series.

The system was developed under PyCharm 2020.3 environment on Python 3.8 inter-
preter (up to 3.7.2 version). The system was implemented by fully exploiting Python library
capabilities. A general architecture of the system is reported in Figure 2, while Figure 3
shows the workflow implemented for the text processing phase.
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Reports were automatically downloaded from remote repositories and locally stored
in the file system. The task was implemented thanks to the HTTP Python library requests. A
query is run against the web server. The response is a web page that is parsed by the system
through the lxml Python library in order to fetch the resulting list of reports. A single
download request is then performed for each item in the result set, and an entry for each
new download is added in the MySQL database. In particular, we stored information about
file name, file typology (weekly/daily) and temporal information (i.e., publication date,
volcano observation date). Reports were in different formats (PDF, MS Word, HTML) and
should be converted into plain text in order to be processed. PDF reports were converted
by means of the PyMuPdf and PyPdf2 libraries, HTML reports were converted through
the HTML parser implemented in the BeautifulSoup library and, for MS Word reports,
the system interfaced a LibreOffice module directly. Converted text was stored in the file
system in the form of TXT files.
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After the download phase, expert-users performed some sessions of manual consul-
tation of text in order to: (1) define the set of categories of relevant parameters (i.e., tags);
(2) gain knowledge about recurring patterns of interest and keywords identifying param-
eters; and (3) catch language and content structure peculiarities to incrementally draft
regular expressions useful in extracting values for parameters. This was performed by
using the embedded graphical user interface (GUI) developed in our system on the PyQt5
library. After the selection of the institute issuing the bulletin and the date of interest, the
user may read a report content, apply regexes and refine these when the match fails.

The GUI that allows the user to easily read and test the tagging during this manual
phase is reported in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 17 
 

 
Figure 4. Tagging: orange highlight is used for parameters and green for values/scores, when 
matched. The original text of the input volcanological bulletin is in Italian language. 

Given the specific focus of our experiment, the set of relevant tags defined during the 
manual consultation of the dataset encompassed: SO2 (value number and text about the 
measurement unit), CO2 (value number and text about the measurement unit), C/S (mixed 
text and number string), VLP events of the seismic signals (mixed text and number string) 
and satellite thermal anomalies (value number and text about the measurement unit). 

Occurrences of a given parameter name are identified by exploiting regex skill to 
formalize the word’s base form and catch the word’s variations on the base form (lemma-
tization). Once the set of rules to tag named entities is defined, rules for tagging values 
should be applied in co-occurrence. In this work, regular expressions were manually 
drafted. In particular, a subset of reports is used for manual consultation and rule base 
typing. For each issuing institute (INGV and LGS), this subset comprises three months per 
year (25% of the total dataset). The manual process of rule composition and refinement 
proceeds until all of the tagging cases of this subset are covered. Further support for rule 
accuracy is the definition of gazetteers, such as the set of measurement units. 

Once the set of rules is obtained, automatic extraction can be performed on the re-
maining dataset through a batch procedure. The implementation exploits Python built-in 
regex library. The regex algorithm tracks only one transition at one step, which means that 
the engine checks one character at a time. It supports backtracking, that is the ability to 
remember the last successful position, so that it can go back and retry if needed. In this 
way, the regex engine does not have to go back up to the start of the string in order to 
retry a second alternative. This optimizes the regex match. For this reason, in order to 
cover language and content structure diversity, more than one pattern is defined for the 
same tag. In total, in this work, 24 rules were exploited to extract relevant data. 

Preliminary text processing phase consists of converting reports (PDF, MS Word, 
HTML) to plain text and discarding figures and tables. Text is then split into sentences 
and sentences into tokens. In particular, the algorithm performs a line by line scanning of 
the text. Each line corresponds to a single sentence in order to perform the tagging task in 
the context of an auto-consistent sentence. The first match per parameter is retrieved and 
stored as the resulting value in the database, along with temporal information and the 
issuing institute. 

Rules are ordered on the basis of a coverage accuracy criteria computed as the num-
ber of instances for which the rule predicts correctly (i.e., support of the rule). Some simple 
examples of rules are: 

Figure 4. Tagging: orange highlight is used for parameters and green for values/scores, when
matched. The original text of the input volcanological bulletin is in Italian language.

Given the specific focus of our experiment, the set of relevant tags defined during the
manual consultation of the dataset encompassed: SO2 (value number and text about the
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measurement unit), CO2 (value number and text about the measurement unit), C/S (mixed
text and number string), VLP events of the seismic signals (mixed text and number string)
and satellite thermal anomalies (value number and text about the measurement unit).

Occurrences of a given parameter name are identified by exploiting regex skill to
formalize the word’s base form and catch the word’s variations on the base form (lemma-
tization). Once the set of rules to tag named entities is defined, rules for tagging values
should be applied in co-occurrence. In this work, regular expressions were manually
drafted. In particular, a subset of reports is used for manual consultation and rule base
typing. For each issuing institute (INGV and LGS), this subset comprises three months per
year (25% of the total dataset). The manual process of rule composition and refinement
proceeds until all of the tagging cases of this subset are covered. Further support for rule
accuracy is the definition of gazetteers, such as the set of measurement units.

Once the set of rules is obtained, automatic extraction can be performed on the
remaining dataset through a batch procedure. The implementation exploits Python built-in
regex library. The regex algorithm tracks only one transition at one step, which means that
the engine checks one character at a time. It supports backtracking, that is the ability to
remember the last successful position, so that it can go back and retry if needed. In this
way, the regex engine does not have to go back up to the start of the string in order to retry
a second alternative. This optimizes the regex match. For this reason, in order to cover
language and content structure diversity, more than one pattern is defined for the same tag.
In total, in this work, 24 rules were exploited to extract relevant data.

Preliminary text processing phase consists of converting reports (PDF, MS Word,
HTML) to plain text and discarding figures and tables. Text is then split into sentences
and sentences into tokens. In particular, the algorithm performs a line by line scanning of
the text. Each line corresponds to a single sentence in order to perform the tagging task
in the context of an auto-consistent sentence. The first match per parameter is retrieved
and stored as the resulting value in the database, along with temporal information and the
issuing institute.

Rules are ordered on the basis of a coverage accuracy criteria computed as the number
of instances for which the rule predicts correctly (i.e., support of the rule). Some simple
examples of rules are:

SO2←([0–9]+)[\-\se]*[0–9]*\st/d, which states that, when an integer number or a
range of numbers is followed by a space and the string “t/d” (unit of measurement), then
it should be marked as a SO2 value;

CO2←([0–9]+)\sg\sm-2\sd-1, which states that, when an integer number is followed
by a space and the string “g m-2 d-1” (unit of measurement), then it should be marked as a
CO2 value;

VLP←([0–9]+\.*[0–9]*)\events/hour, which states that, when a decimal number is
followed by a space and the string “events/hour” (unit of measurement), then it should be
marked as a VLP value.

The system provides an export functionality of data from the database, which allows
the operator to produce time series to visually explore at different spatial and temporal
granularity. In particular, time series are produced by interfacing the Vega-lite visualization
tool [18], which is a high-level grammar of interactive graphics, and it is used in the back
end of several data visualization systems. In our work, the system implements a component
that exports data from the MySQL database into a JSON format suitable as Vega-lite input.

In Figure 4 the automatic tagging of the LGS weekly report published on 4 March 2021
is shown. In particular, Table 3 lists the number of occurrences of the selected parameter
values that the system found. The parameter labelled as “MODIS” indicates the thermal
anomaly intensity, measured in MW.
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Table 3. Tagging of the main parameters from the daily LGS bulletin for 4 March 2021.

Parameter Value

VLP 11 events/h
SO2 39 t/d
CO2 MEDIUM
CO2 727 t/d

MODIS 1 MW

Through the GUI, users may manually modify portions of text to be tagged for a
parameter, or undo a tagging operation. Results of tagging are stored in the MySQL
database. In particular, tag name, tag value, tag type (i.e., quantity/quality) and reference
to report id. Through the GUI, it is also possible to validate extracted information per day in
order to check variability of values per issuing institute and report type (weekly/daily). For
example, in Figure 5, values automatically extracted for reports available on 3 March 2021
are shown. The system found a value of 14.7 for the C/S parameter in the daily LGS
bulletin and a value of 21.05 in the weekly INGV report; 952 t/d was found for the CO2
flux in the daily LGS bulletin, versus 447 t/d recorded in the weekly bulletin; for the SO2
flux, the values are 57 (daily bulletin by LGS), 41 (weekly bulletin by LGS) and 250 (weekly
bulletin by INGV) t/d; for VLP, values of 8.7 (daily bulletin by LGS), 9.2 (weekly bulletin
by LGS) and 14 (weekly bulletin by INGV) events/h are found.
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3. Results

The dataset resulting from the automatic tagging step is composed of a total of
5017 parameter values for the LGS dataset and 669 for INGV dataset. Details are reported
in Tables 4 and 5. By exploring the dataset, we can observe that LGS texts give evidence of
SO2 parameter values just starting from July 2017, whereas CO2 and C/S values start from
November 2019. Most of the INGV missing values are due to text report unavailability
(during July–December 2015, 2016, 2017 and 2018). The INGV CO2 parameter starting from
2019 is poorly present because the station was destroyed after the paroxysm of July 3rd.
Satellite information from MODIS data actually occurs in reports starting from 2019.

Table 4. Number of parameter–value pairs for the LGS dataset (both weekly and daily).

Year SO2 (t/d) CO2 (t/d) C/S VLP (Events/h) MODIS (MW)

2015 0 0 0 358 22
2016 0 0 0 180 3
2017 176 0 0 390 43
2018 396 0 0 383 34
2019 366 45 34 365 160
2020 383 291 259 415 145
2021 149 123 103 156 38
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Table 5. Number of parameter–value pairs for the INGV dataset (both weekly and daily).

Year SO2 (t/d) CO2 (t/d) C/S VLP (Events/h) MODIS (MW)

2015 23 21 1 24 0
2016 25 25 1 25 0
2017 23 23 4 23 0
2018 25 25 0 25 0
2019 52 18 2 37 46
2020 51 0 9 51 52
2021 15 0 9 19 5

Time series for parameters concerning the whole period 2015–2021 have been gen-
erated. LGS values for daily reports (see Figure 6a,c) are considered, because these
are more numerous than weekly ones. The LGS dataset presents a gap in the range
July–December 2016 due to report unavailability. INGV values regard weekly reports
(see Figure 6b,d). With regard to INGV, missing values are due to text report unavailability
(as explained above).
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In order to verify the accuracy of the automatic extraction method from a qualitative
point of view, the extracted data were analyzed in the context of volcanic activity. Firstly,
we performed a correlation analysis among the three main parameters: SO2, CO2 and VLP.
We present results for the LGS dataset. The INGV correlation analysis dataset is omitted
because of the poor availability of data.

Figure 7 shows the SO2 and CO2 flux and VLP time series recorded for LGS daily in
the period of November 2019–April 2021. In this time slot, a correlation analysis can be
performed because the co-occurrence of values for the three parameters on the same date is
highly supported.
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The observable quantities, i.e., SO2 integrated mass flux and CO2 mass flux, repre-
sented in the graph show a coherent behavior over time (Figure 8).

To confirm this observation in a quantitative way, we calculated Pearson’s correlation
coefficient R according to the standard definition:

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

where xi and yi are the n acquired data and x and y are their mean value.
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A scatter plot for SO2 and CO2 data is reported in Figure 9, with the corresponding cal-
culated correlation coefficient being RCO2,SO2 = 0.3036, thus indicating a positive correlation
between the two variables.
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Figure 9. Correlation between SO2 and CO2.

In a real sample (with a finite number of datasets), R can be non-zero even if the
variables are not correlated. By increasing the population, if the variables are not correlated,
R will approach to zero. To understand if the value obtained for RCO2,SO2 is different from
zero because of either a reduced population number or the variables are correlated, we
performed a statistic simulation. We generated n = 358 (equal to the number of acquired
data) pairs (CO2, SO2) randomly extracted from two Gaussian distributions having the
same mean and standard deviation of the acquired data. Using the 358 extracted pairs, we
calculated the corresponding correlation coefficient RCO2,SO2 . The simulation (358 pairs
extraction and calculation of corresponding RCO2,SO2 ) has been repeated 100,000 times. The
histogram representing the obtained correlation is shown in Figure 10.

In the previous simulation of uncorrelated pairs (CO2, SO2), we calculated, by numeri-
cal integration, the probability p that the correlation coefficient RCO2,SO2 is 0.3036 (or larger),
obtaining p < 1‰. Consequently, we can assume that the obtained value of RCO2,SO2 = 0.3036
is different from zero because of the variables correlation and not due to the sample shortage.

A similar analysis carried out on (CO2, VLP) and on (SO2, VLP) variables produced
RCO2,VLP = 0.2592 and RSO2,VLP = 0.3095, respectively. Even in these cases, the proba-
bilities of obtaining a value of correlation coefficient larger than RCO2,VLP = 0.2592 and
RSO2,VLP = 0.3095 in a sample of 358 pairs of uncorrelated variables is lower than 1‰, thus
confirming a correlation also for (CO2, VLP) and (SO2, VLP) value pairs.
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Figure 10. Histogram of the correlation between SO2 and CO2.

4. Discussion

Figure 5 highlights some differences in the values provided in the two bulletins for the
same parameter on the same day or same week, e.g., SO2 flux of 250 t/day in weekly INGV
bulletins versus 41 t/d by LGS, and VLP of 14 events/h in weekly INGV bulletins versus
9.2 events/h reported by LGS. These differences suggest that the typology and location
of the two ground-based sensor stations, as well as the reference sampling period of the
bulletins, should be carefully accounted for when interpreting the extracted values. Indeed,
the INGV station measures the SO2 flux through the FLAME network [19], which consists
of four UV-scanning spectrometers installed near the coast of the island and intercepting
the plume from a distance of 2000 m for the summit crater of Stromboli. On the other hand,
LGS measures data by means of the ROC station, which is a site that allows the study of
degassing activity nearer the volcano main crater, from 500 m of distance from the active
vents, and also offers an optimal view of the NE sector of the crater terrace [20]. In terms of
the sampling period, LGS bulletins typically refer to a Friday to Thursday weekly interval,
whereas INGV data refer to Monday to Sunday intervals; hence, there is a temporal shift in
the identification of the reporting weeks by the two issuing institutes.

In Figure 11, the SO2 flux measured with the FLAME network (INGV) and at the
ROC site (LGS) and reported in the respective weekly bulletins published in 2019 are
plotted together. The general trends characterizing the two time series are comparable.
Several missing INGV values in the series are due to omissions in text reports of the
July–December period.
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Figure 11. Comparison of SO2 flux measurements reported in INGV and LGS weekly bulletins
during 2019.

We observe a similar trend for the SO2 flux independently of the measuring stations
and their location. Moreover, seismic time series reporting the VLP parameter for the
complete dataset (2015–2021) are plotted in Figure 12. Data are recorded at the STR seismo-
acoustic station that is deployed close to the crater zone. The VLP parameter gives a
direct measure of the explosion rate [20]. Seismic values are similar for both the sources,
when available. To confirm, we calculated the Pearson’s correlation coefficient (standard
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definition) and obtained a 0.87 value, which demonstrates a coherent behavior of the two
data series over time.
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In order to further verify the accuracy of the automatic extraction method from a
qualitative point of view, we consider satellite monitoring information. The system is
trained to tag some keywords identifying the presence of satellite information within the
monitoring bulletins. In particular, we expect to find an interesting intersection between
the presence of satellite monitoring information and SO2 flux trends. For this purpose,
time slots for which satellite observations are present are selected and time series of the gas
flux and VLP trend are generated. In particular, we consider the LGS dataset that reports
information on thermal activity based on MODIS sensor data. Considering the SO2 flux
plotted in Figure 13, it is possible to observe some peaks at the end of July and August 2019.
In fact, two main paroxysms were registered on 3 July and 28 August [21]. The VLP trend
confirms peaks of over 25 events/h on these dates (see Figure 14). Conversely, CO2 time
series are not reported because of the incompleteness due to the station destruction after
the paroxysm of 3 July 2019. C/S time series are also not complete because of instrument
malfunctioning (as reported in the daily LGS bulletin published on 4 July 2019).
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The thermal anomalies detected by MODIS have been tagged. In Figure 15, considering
the LGS dataset, we overlap the VLP rate, SO2 flux and MODIS anomalies. All the three
parameters show peaks that correspond to the explosive activity of Stromboli that occurred
in July 2019. Moreover, these values remain quite high in the subsequent period (late 2019).
This gives evidence of the effectiveness of the tagging procedure.
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5. Conclusions

In our work, we tested and applied a “text mining” method to extract geophysical
and geochemical monitoring parameters from free unstructured text in daily and weekly
bulletins officially issued by research institutes for the Stromboli volcano in southern Italy.
The proposed natural language processing (NLP) system generates a structured database
of user-defined relevant parameters and their temporal characterization, which are thus
time series data available to geoscientists and specialists for further use and analysis. The
system can potentially be tuned for other target parameters and other datasets published
on the web. In the context of time series studies of volcanic processes, this method relieves
specialists of time-consuming manual reading and dataset creation tasks. Thanks to this
tool, when specialists have no access to original raw data, they are involved in a very
limited way in the data extraction process. In particular, they are required to use their
expertise to read and tag a small portion of the whole dataset during the training phase,
while the analysis of the whole dataset is carried out by the text mining system.

This proof-of-concept exercise demonstrates the feasibility of performing a fast (and
low cost) analysis of datasets available online, providing crucial information that volcanol-
ogists may further analyze and interpret for volcanological investigations and applications.
In addition, in our test, we used data from bulletins that are freely accessible on the web,
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without the need to access internal database systems. Moreover, a simple correlation be-
tween different gas parameters has been shown. This tool could be easily integrated into the
next version of our script in order to realize different kinds of automatic or semi-automatic
statistical analyses to verify the performance of the extraction algorithm and workflow.

This work represents the base step for further innovative developments, such as the
integration of gas monitoring data from ground-based sensor networks with other types,
such as airborne and satellite (e.g., Sentinel-5P tropospheric monitoring data [22]). The
information-technology-assisted integration of diverse datasets is a promising multi-scale
and multi-sensor approach considering the intrinsic complexity of volcanic phenomena,
and the challenge for scientists to achieve the synthesis of a multitude of monitoring data
and observations.
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