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Abstract: Recent advances in deep learning have shown remarkable performance in road segmenta-
tion from remotely sensed images. However, these methods based on convolutional neural networks
(CNNs) cannot obtain long-range dependency and global contextual information because of the
intrinsic inductive biases. Motivated by the success of Transformer in computer vision (CV), excellent
models based on Transformer are emerging endlessly. However, patches with a fixed scale limit the
further improvement of the model performance. To address this problem, a dual-resolution road seg-
mentation network (DCS-TransUperNet) with a features fusion module (FFM) was proposed for road
segmentation. Firstly, the encoder of DCS-TransUperNet was designed based on CSwin Transformer,
which uses dual subnetwork encoders of different scales to obtain the coarse and fine-grained feature
representations. Secondly, a new FFM was constructed to build enhanced feature representation with
global dependencies, using different scale features from the subnetwork encoders. Thirdly, a mixed
loss function was designed to avoid the local optimum caused by the imbalance between road and
background pixels. Experiments using the Massachusetts dataset and DeepGlobe dataset showed
that the proposed DCS-TransUperNet could effectively solve the discontinuity problem and preserve
the integrity of the road segmentation results, achieving a higher IoU (65.36% on Massachusetts
dataset and 56.74% on DeepGlobe) of road segmentation compared to other state-of-the-art methods.
The considerable performance also proves the powerful generation ability of our method.

Keywords: remote sensing image; road segmentation; CSwin Transformer; dual scales; long-range
contextual dependencies

1. Introduction

High precision and real time are crucial for obtaining road network information in
specific application scenarios, for instance, automatic navigation, urban transportation
management and military combat planning [1–3]. It is costly and laborious for obtaining the
road information by relying on visual interpretation [4]. Therefore, automatic road segmen-
tation [5–7], from remote sensing images, has become a promising method. Nevertheless,
this has always been a difficulty because the roads in the different regions have irregular
physical properties, such as size, geometrical shape and geographic distribution. Moreover,
there is the complexity of the background beside the road in high-resolution remote sensing
imagery. For example, trees and vehicles will block the road. The above factors will increase
the difficulty of road segmentation. Accordingly, extracting high-quality road information
is still a challenge.

In recent years, a large number of novel segmentation methods for road extraction have
been proposed by research workers. These methods are normally classified as traditional
methods and semantic segmentation methods. In traditional methods, the researchers put
forward a reasonable hypothesis that the grayscale value belonging to the same category
is relatively consistent, but the grey values between classes will form a certain contrast.
This assumption ensures that road pixels are distinguishable and divisible. Researchers
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divide the road extraction methods into two categories: pixel-based and object-oriented.
In method-based pixels, the differences between spectral features are fully utilized to
identify roads. For example, Mu et al. [8] introduced a method-based Otsu threshold
to distinguish the road, the output is a binary image composed of road and non-road
road pixels. Coulibaly et al. [9] proposed a method based on the spectral angle for road
extraction, which distinguished the road pixels by the spectral angle threshold.

In object-oriented road segmentation, the remote sensing imagery was clustered
and split into different areas, regarded as the target of road segmentation. A method
based on region-growing was designed by Lu et al. [10] to extract roads from synthetic
aperture radar imageries. Furthermore, Yu and Yi [11] integrated Markov random field
based on object-oriented methods. The methods mentioned above have attained excellent
performance under certain circumstances. However, these manual methods designed
for specific scenarios have poor generalization ability, and many thresholds’ parameters
demand a tune up.

Unlike the traditional method, the method based on deep learning depends on the
superiority of feature representation learning and the ability for parameter sharing to
distinguish roads automatically and efficiently. For instance, Gao et al. [12] introduced
a CNN-based network with the multifeatured pyramid to obtain more road information
details because this structure validly expands the receptive field of the features. A network-
in-network structure combined with a full convolution neural network (FCN) successfully
was proposed by Mendes et al. [13], which utilized the superiority of large context windows
to achieve faster detection. In addition, Li et al. [14] introduced a hybrid CNN combining
multiple subnetworks to detect multi-scale roads. These methods based on CNNs demon-
strated superior performance in terms of automatic road segmentation. However, due to
the intrinsic inductive biases, the specific convolution layer fails to obtain a global receptive
field. So, their performance will face great resistance to further breakthroughs. It is a
sub-optimal choice for CNNs to expand the receptive field by stacking convolution layers
and down-sampling. The reason is that these operators make the model more complex
and easier to over-fit. However, many scholars have attempted to build long-distance
dependencies in CNNs, such as attention mechanisms. There is still great potential in
obtaining the global receptive field.

Lately, the new structure Transformer [15], proposed for sequence-to-sequence tasks
in natural language processing (NLP), has aroused heated discussion in the CV community.
Transformer performs well on many NLP tasks. The reason is that the multi-head self-
attention mechanism can obtain a global connection between the tokens. Surprisingly, the
researchers found that this ability to build long-distance dependencies also applies to pixel-
based cv tasks. For example, DETR [16] is the pioneering work of object detection based on
Transformer. ViT [17] is the first image classification model based on native Transformer. In
order to optimize computational complexity, Swin Transformer and CSwin Transformer
were proposed successively and achieved comparable performance. SETR [18] proved
that Transformer as an encoder was able to obtain state-of-the-art (SOTA) performance in
semantic segmentation. However, the potential of models based on Transformer has not
been fully tapped in the remote sensing field.

In addition, multiscale feature representations are also a crucial role in vision Trans-
former. The latest research results are CrossViT [19] applied in image classification,
MViT [20], designed for video recognition, and M2TR [21] designed for object detec-
tion. Generally, multi-scale feature representation can improve performance in vision
Transformer, but has rarely been applied in remote sensing.

In order to alleviate the intrinsic inductive bias of CNN, we introduced a new frame-
work based on the Transformer encoder, which mainly took into account the superiority
of CSwin Transformer and multi-scale vision Transformer to efficiently combine the ar-
chitecture of UperNet for automatic remote sensing image segmentation. The proposed
encoder of DCS-TransUperNet uses dual subnetworks to learn feature representation from
different scales inputs. In particular, we first obtained many overlapping patches by cutting
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the input imagery, the scales of which are large scales and small scales, respectively. In
order to fully utilize these features, we proposed a specific FFM to fuse the multi-scale
features from the two encoder subnetworks. Furthermore, we adopted the UperNet as the
decoder. Finally, we obtained the pixel-level predictions whose resolutions are the same
as the input images by progressive up-sampling. In addition, to alleviate the problems
caused by sample imbalance, we proposed a novel loss function LMIX , which maintained
the stability of the gradient and prevented falling into the local optimum. Profiting from
these refinements, the proposed DCS-TransUperNet can improve the performance of road
segmentation. We evaluated the effectiveness of DCS-TransUperNet on two remote sensing
road datasets. Sufficient experiments show that our proposed DCS-TransUperNet for road
extraction achieves superior performance in the Massachusetts and the DeepGlobe datasets.

2. Relate Work

This section first reviewed the most classic-methods-based CNN in road extraction
from network structure and loss function. Then, we summarized the related work on vision
Transformer, particularly in segmentation. Finally, we gave an overview of the typical
methods used for multi-scale feature extraction. Furthermore, we made a comparison
between these methods and the one we proposed.

2.1. Road Extraction Based on CNNs

Super performance [22–24] about CNN has been shown in remote sensing image
segmentation, especially U-Net with an encoder–decoder structure, e.g., in order to enhance
the effectiveness of road feature representation, a variant of U-Net with residual was
presented by Zhang et al. [25]. The model absorbed the strong points of U-Net and
residual networks so that the convergence property and information propagation were
better. Likewise, Xin et al. [26] designed a new model that mainly consists of skip contacts
and densely connected blocks. The model was able to utilize road features representation
from different layers fully. Moreover, a model based on LinkNet was introduced by
Zhou et al. [27] in which an elaborate dilation convolution structure was applied to capture
multi-scale context information. The methods mentioned above perform well, but they are
still CNN based.

In addition, many researchers also have obtained accurate segmentation performance
by designing an effective loss function besides modifying the structure of the model.
Wei et al. [28] introduced a novel loss based on the cross-entropy loss function. The loss
skillfully combined the geometrical features of road characteristics. In order to avoid
blurriness segmentation results, He et al. [29] defined a loss function based on structural
similarity. Mosinska et al. [30] believe that the topological structure also affects the final
result, so they proposed a loss function, synthesizing the topological awareness. These loss
functions fully consider the structural characteristics of roads. However, they neglect the
influence of the imbalance between background information and road samples.

2.2. Vision Transformer

Motivated by the excellent performance of Transformer in miscellaneous NLP tasks,
increasing the number of methods based on Transformer was proposed in various com-
puter vision tasks. In the recent research on vision Transformer, a novel model based
on pure Transformer was introduced by ViT [17]. The model achieved the SOTA per-
formance on the image classification task. However, such performance must depend on
pre-training on large datasets, such as JFT-300M and ImageNet-22K. In order to solve
the above problem, knowledge distillation was applied in DeiT [28]. The model with an
effective training strategy allows ViT to promote performance on smaller datasets, such as
ImageNet-1K. Swin Transformer [31], a hierarchical architecture model, has linear compu-
tational complexity relative to the image size. This model, through limited self-attention
to non-overlapping local windows, proposed a shifted window scheme to achieve higher
efficiency. Furthermore, CSwin Transformer [32] effectively strengthened the information
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interaction between patches. This model obtained SOTA performance in various CV tasks
and achieved lower computational complexity than Swin Transformer. Motivated by these
models, we introduced an UperNet-like structure that used CSwin Transformer blocks to
feature extraction.

2.3. Multi-Scale Transformer

In computer vision, multi-scale feature representation based on CNN has been widely
applied. In particular, the representative FPN (feature pyramid network) [33] promoted the
progress of the classic cv tasks [34–37], such as object detection and semantic segmentation.
Nevertheless, we have not fully explored the potential of this typical structure in vision
Transformer. Recent relevant work about multi-scale Transformer is as follows. A new
dual-branch visual Transformer was proposed by CrossViT [19] to extract multi-scale
feature representation. This model made an efficient token fusion strategy based on
cross attention. Accordingly, the performance is better than ViT, and DeiT on image
classification. M2TR [21] designed a multi-scale feature representation based on different
patch sizes. Moreover, by connecting the multi-scale feature with the Transformer model,
Haoqi Fan et al. proposed a multi-scale visual Transformer (MViT) [20] for video and image
recognition. Inspired by the enormous potentiality of multi-scale vision Transformer, we
designed the dual branch encoder, which profits from the powerful feature representation
capability of CSwin Transformer. In addition, we proposed a special module called FFM to
achieve the effective interaction between different scale features.

3. Method

This section presents a novel segmentation network, DCS-TransUperNet. Firstly,
we introduce the standard Transformer [38] and CSwin Transformer [32] used in DCS-
TransUperNet. Secondly, we propose the encoder and decoder based on CSwin Transformer.
Then, we describe the benefits of the dual design and explain how to realize the interaction
effects between different scale features by FFM. Finally, we propose the new loss function
to assist network training.

3.1. CSwin Transformer Block

The standard Transformer encoder consists of a stack of N identical blocks. As shown
in Figure 1a, the core compositions of the Transformer block are multi-head-attention (MSA)
and multilayer perceptron (MLP). In addition, in order to ensure the stability of the data
feature distribution, the layer norm is introduced. Meanwhile, the residual structure is
used to ensure the effectiveness of deeper network training. So, the output zl of the L layer
in the Transformer is defined as

z̃l = MSA(LN(zl−1)) + zl−1
zl = MLP(LN(z̃l)) + z̃l

(1)

Figure 1. (a) The structure of a standard Transformer block. (b) The cross-shaped window.
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One of the challenges of the standard Transformer is that the calculation of the global
attention mechanism is computationally expensive. In particular, for high-resolution pic-
tures and intensive tasks, the cost of such calculations is unacceptable. For more efficient
modeling, the cross-shaped window self-attention mechanism is proposed by CSwin Trans-
former. This module reduces the computational complexity and effectively strengthens the
information interaction between patches. Specifically, as shown in Figure 1b, we divide
the input features into equal width stripes, which will form a cross-shaped window. Cross-
shaped window MSA will calculate self-attention weight in both vertical and horizontal
directions. The formulation of cross-shaped window MSA is given as [29]

CSWin− Attention(X) = Concat(head1, . . . , headk)WO

where headk =

{
H − Attentionk(X) k = 1, . . . , K/2

V − Attentionk(X) k = K/2 + 1, . . . , K
(2)

3.2. Encoder

We adopt a similar UPerNet structure in our model on the whole. For the encoder
section, we apply CSwin Transformer as the backbone for feature representation. As shown
in Figure 2, many overlapping patches are obtained by cutting the input image. Here,
the length of patches is (W/s)× (H/s), where s means the patch size, and each encoded
patch is called a “token”. Through the linear embedding layer, the patch is projected onto
dimension C. Specifically, the convolution operation generates the overlapping patches. The
convolution kernel is 7, the stride is 4, and the number of output channels is C. After adding
position information, the tokens are fed to CSwin Transformer for feature extraction, which
goes through four stages. Among the stages, it is composed of some CSwin Transformer
blocks. In order to increase the receptive field of the attention mechanism, convolution
is introduced to reduce the resolution of the features with the Transformer blocks getting
deeper. Except for the last stage, the number of channels of the feature will also increase
exponentially. Specifically, the feature resolution is reduced to half, and the number of
channels is doubled after going through the convolution layer. So, the output resolutions of
the four stages are (W/s)× (H/s), (W/2s)× (H/2s), (W/4s)× (H/4s), (W/8s)× (H/8s)
and the numbers of channels are C, 2C, 4C, and 8C.

Figure 2. Illustration of the designed DCS-TransUperNet. We obtain overlapping patches at different
scales by splitting the remote sensing image and then feed these patches into dual branches of the
CSwin Transformer decoder. Next, to fully utilize these features, we propose a specific FFM to fuse
the multi-scale features from the two encoder subnetworks. Finally, the fused feature representations
are restored to the same resolution as the input image by up-sampling based on the feature pyramid.
Therefore, we obtain the final mask predictions.
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3.3. Multi-Scale Feature Representations and Fusion

Although MSA effectively establishes long-range dependencies between patches, the
pixel-level features in the patch are disregarded. This detailed information is particularly im-
portant for the prediction of dense small roads. In addition, ViT achieves better performance
through the fine-grained patch size. In order to enhance the performance and robustness of
road extraction, a multi-scale CSwin Transformer is used for feature extraction.

It is complementary to the information from different patches in feature extraction.
Coarse-grained features are easier to be captured by large patches, while the small scale
has a faculty for obtaining fine-grained characteristics. Although multi-layer perceptron
introduces the local information between batches, the pixel-level information inside the
patch is still missing. In DCS-TransUperNet, these problems are alleviated to some extent.
Inspired by this, a multi-scale dual CSwin Transformer encoder is proposed. Specifically,
two branch structures are adopted to obtain the features at different spatial levels. One is
the main branch (patch size is 4), and the other is the auxiliary (patch size is 8). As a result,
the resolutions of the output features obtained from the large-scale branch are (H/4)×
(W/4), (H/8)× (W/8), (H/16)× (W/16) and (H/32)× (W/32) while those of the other
branch are (H/8)× (W/8), (H/16)× (W/16), (H/32)× (W/32) and (H/64)× (W/64).

Feature representations containing abstract information are obtained from dual branch
encoders. The following work is how to realize the information interaction between them
effectively. A simple way is to straightforwardly concatenate the features from different
branches followed by convolution layers. However, this direct way cannot obtain long-
distance dependence and global connections from different scale features. Hence, a new
FFM is introduced, which relies on the advantages of MSA to make the interaction more
effective between multi-scale features. In particular, the standard Transformer is chosen
rather than CSwin Transformer in FFM. The main reason is that the standard Transformer
works on the feature map based on a rectangle block. A token is generated to be size
specific based on one branch’s features map. The next step is to calculate the attention
weight of the tokens sequence reshaped by the other branch. In addition, the number of
the Transformer block in FFM is only two, which will not cause computational complexity.
A more intuitive explanation is shown in Figure 3.

Figure 3. Illustration of FFM plays an important role as a core component in features interaction from
different scales.

FFM can aggregate information from different scale features. Let us take the output
features from the first CSwin Transformer stage as an example and explain them in detail,
and the same measure is suitable for the large-scale branch.

In particular, the two branches’ output features from the same stage j (j: 1, 2, 3, 4) are
represented by

H j = [hj
1, hj

2, . . . , hj
h×w/16] ∈ RC×( h

4×
w
4 ) (3)

Fj = [ f j
1, f j

2, . . . , f j
h×w/64] ∈ RC×( h

8×
w
8 ) (4)
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Then the transformation output of H j is obtained by the global average pooling layer.

h̃j = Flatten(Gavgpool(H j)) (5)

where h̃j ∈ RC×1, Gavgpool indicates global average pooling, and then the flatten operation
is used. For further description, the global abstract information is expressed by token h̃j,
making the information fusion with Fj at the pixel level. In the meantime, h̃j is concatenated
with Fj to form a sequence of 1 + C× ((H/8)× (W/8)) tokens, followed by a standard
Transformer to calculate the global self-attention:

F̃j = MSA([h̃j, f j
1, f j

2, . . . , f j
h×w/64]),

= [
ˆ
f

j

0,
ˆ
f

j

1, . . . ,
ˆ
f h×w/64] ∈ RC×(1+h×w/64)

(6)

Fj
out = [ f̃ j

1, f̃ j
2, . . . , f̃ j

h×w/64] ∈ RC×(h×w/64) (7)

where MSA is the key component of the standard Transformer, and F̃j is fed into the

MLP layer for linear transformation. Finally, Fj
out is the ultimate feature of the smaller-

scale branch in FFM. This method skillfully integrates information between each token in
Fj = [ f j

1, f j
2, . . . , f j

h×w/64] ∈ RC×( h
8×

w
8 ) and the whole H j, so that coarse-grained features

from the larger-scale branch are obtained by the fine-grained ones. Consequently, FFM
can accomplish better segmentation performance due to this effective multi-scale feature
fusion mechanism.

3.4. Decoder

The UperNet-like architecture is adopted, mainly consisting of two partials: pyramid
pooling module and multi-scale feature pyramids. In detail, the output feature of stage 4 in
FFM is adopted as the first input of the decoder. The bilinear interpolation is introduced
as being up-sampled by 2 in each step of the decoder. Meanwhile, these features are
concatenated with the corresponding skip connection from FFM in the same step. The
reasons for this are as follows: (1) The pyramid pooling module extracts features from
different scales and then aggregates them. This approach improves the robustness of the
algorithm. (2) Multi-scale feature pyramids enhance the interaction between features with
different granularity for better segmentation performance.

After the two partials above, the quarter size features of the original image are obtained.
In order to prevent the loss of shallow features, the input image is down-sampled to obtain
a low-level feature with half the resolution of the original image, followed by up-sampling
and fusion of the above features step by step instead of using a four up-sampling operator
directly. Finally, the output mask predictions are obtained by all these operators.

3.5. Mixed Loss Function

Road extraction is often considered a pixel-level classification problem. Each pixel in
the image is classified as road or non-road. Generally, we solve this problem by a binary
cross-entropy loss function, whose formula is expressed as follows:

LBEC = − 1
N

N

∑
n=1

(yn log(y′n) + (1− yn) log(1− y′n)) (8)

However, most of the pixels are non-road in high-resolution remote sensing images,
and the pixels of roads only account for a small proportion. This means that the two types
of pixel distributions are very uneven. In this case, if the loss function treats road pixels and
non-road pixels equally, the model constrained by the loss function is optimized toward
non-road categories to fall into the local optima. Furthermore, the road’s pixel accuracy is
declined under the constraint of the loss function. Therefore, in order to solve the problem
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of classes imbalance, we propose a new loss function LMIX based on binary cross-entropy
loss and the Dice loss. The LDICE LMIX formulaic expressions are as follows:

LDICE = 1− 1
N
(

2∑N
n=1 yny′n + o

∑N
n=1 yn + ∑N

n=1 y′n + o
+

2∑N
n=1 (1− yn)(1− y′n) + o

∑N
n=1 (1− yn) + ∑N

n=1 (1− y′n) + o
) (9)

where LDICE represents Dice loss and yn is the ground truth label, whose value is either 0
or 1. y′n is the probability of the road.

LMIX = LBEC + λLDICE (10)

where LDICE is the Dice loss, LBCE is the binary cross-entropy, and λ is a coefficient to
balance between LBCE and LDICE.

From Formula (10), it can be concluded that the similarity between the predicted value
and the real label value only determines Dice, which is independent of the number of
training samples. Therefore, it can alleviate the problems caused by sample imbalance.
However, Dice loss has some flaws, and strong gradient changes, which will lead to unstable
training. Considering the above, we propose the new Loss function LMIX , which not only
maintains the stability of the gradient but also prevents falling into the local optimum.

4. Experiment

This section first introduces two widely used data sets: the Massachusetts roads dataset
and the DeepGlobe dataset. Then, we briefly describe some evaluation metrics, such as
precision, recall, F-1 score and IoU. Next, the implementation details of the experiment are
introduced in detail. Finally, we demonstrate the optimal experimental results and perform
ablation experiments.

4.1. Datasets

In order to estimate the performance of the designed DCS-TransUperNet, we perform
enough comparative experiments on the Massachusetts road dataset and the DeepGlobe dataset.

The Massachusetts roads dataset [36] widely is applied for model verification of
various road extraction. The dataset consists of 1171 images with a resolution of 1 m.
Each one has a corresponding binary label whose resolution is 1500 × 1500 pixels, like
the image. We randomly split the dataset into three parts, including 1108 training images,
14 validation images and 49 test images. Before training, we perform data enhancements,
such as random clipping and random rotation with different angles. Finally, we obtain
110,800 training samples at 256 × 256 pixels in size, 1400 validation samples and 49 original
testing samples after data pre-processing.

The DeepGlobe dataset [37] comes from the CVPR DeepGlobe 2018 road extraction
challenge. It contains 8570 images with the size of 1024 × 1024 pixels and a resolution
of 0.5 m, which are split into 6626 images for training, 1243 images for validation and
1101 images for testing. Since the only binary labels of the training set are available after the
challenge, we select 6626 training set images and corresponding labels as our experimental
data. We randomly divide the dataset according to the ratio of 8:1:1 and then perform the
same data enhancements as the Massachusetts road dataset.

4.2. Evaluation Metrics

We use four standard metrics [38] to estimate the segmentation performance of the
model, including precision, recall, F1-score and IoU. The precision represents the pro-
portion of correctly classified road pixels in the total prediction result, while the recall
reflects the percentage of predicted road pixels in the ground truth. F1-score and IoU are
comprehensive metrics that weigh precision and recall. The formulas of these metrics are
shown as follows:

Precision =
TP

TP + FP
(11)
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Recall =
TP

TP + FN
(12)

F1− score =
2TP

2TP + FN + FP
(13)

IoU =
TP

TP + FP + FN
(14)

4.3. Implementation Details

We also applied multi-scale training strategies in our experiments apart from data
augmentations. Motivated by [39], we found that in-depth supervision is helpful for model
training. So, the final loss function Ltotal can be expressed as

Ltotal = λLMIX(y, yout) + µLMIX(y, ys1) + ηLMIX(y, ys2) (15)

where y is the ground truth label, yout is the final output, ys1 is the output of the final stage
in the encoder, and ys2 is the output of the first stage in the decoder, which was additionally
used to supervise deeper training. In addition, λ, µ, η are weight coefficients set to 0.7,
0.15, and 0.15, empirically. The SGD optimizer was applied to train our model, where the
learning rate is equal to 0.01, momentum is 0.9, and the weight decay is 0.0001.

Our models are built by Pytorch and trained using 4 NVIDIA RTX 2080Ti GPUs.
The trained epoch of our models was set at 100 and used early stopping and a cosine
annealing schedule. We provided two versions of the model: the DCS-TransUperNet-B
adopts CSwin-Base as the primary branch encoder, while DCS-TransUperNet-L applies
CSwin-Large. Both the above models use CSwin-Tiny as a complementary branch decoder.
The pre-trained weights of the CSwin Transformer were obtained from [29]. Further, Table 1
shows the detailed parameters of the model.

Table 1. Hyperparameters of CSwin Transformer model variants.

Methods Hidden Size Layer
Number

Head
Number

Window
Size Param

CSwin-T 64 [1,2,21,1] [2,4,8,16] [1,2,7,7] 23M
CSwin-B 96 [2,4,32,2] [2,4,8,16] [1,2,7,7] 78M
CSwin-L 144 [2,4,32,2] [6,12,24,48] [1,2,7,7] 173M

4.4. Result on Massachusetts Roads Dataset

In order to evaluate the performance of our proposed model, we conduct adequate
comparative experiments. We select many SOTA segmentation networks as a reference,
including D-LinkNet [24], ELU-SegNet [40], GL-Dense-U-Net [41], ResUnet [22] and D-
ResUnet [42].

The visual comparison results are shown in Figure 4. On the whole, DCS-TransUperNet
is significantly improved, such as the highlighted place in the green boxes. Specifically, our
model has a more powerful ability to extract small roads in the first image. The second
image we select is a scene with a large amount of vegetation occlusion. DCS-TransUperNet
and D-ResUnet overcome the problem of vegetation cover to a certain extent, but DCS-
TransUperNet has better continuity, as shown in the blue box. The last image represents a
dense scene, which shows that our recall has increased significantly.

Table 2 shows the quantitative comparison results of different methods. DCS-TransUperNet
with mixed loss achieved superior performance in precision (82.44), recall (78.43), F1-
score (80.39) and IoU (65.36). The experimental results show that the proposed DCS-
TransUperNet has superior performance in road extraction. However, the disadvantage is
that the inference speed is slower compared with the method based on CNN.



Appl. Sci. 2022, 12, 3511 10 of 15

Figure 4. Visual analysis of road segmentation results using different methods. (1) The test image.
(2) The ground truth. (3) Results with DCS-TransUperNet. (4) Results with D-ResUnet. (5) Results
with ResUnet. (6) Results with GL-Dense-U-Net, (7) ELU-SegNet. (8) Results with D-LinkNet.

Table 2. Quantitative analysis results using different methods on Massachusetts roads dataset.

Method Precision Recall F1-Score IoU Inference

D-LinkNet 75.57 72.63 74.07 58.80 1.75
ELU-SegNet 77.98 69.50 73.50 58.04 1.02

GL-Dense-U-Net 75.37 77.32 76.33 61.59 2.52
ResUnet 83.64 71.05 76.83 62.69 1.35

D-ResUnet 85.28 71.34 77.69 63.44 1.46
DCS-TransUperNet 82.44 78.43 80.39 65.36 2.94

In order to prove the effectiveness of Dual-scales, we design a comparative experiment
between CSwin TransUperNet and DCS-TransUperNet. Note that the former does not add
Dual-scales, while the latter adds it. The experimental results are shown in Table 3. The
IoU of road extraction is increased from 64.53 to 65.36 by adding the Dual-scales module.
The visual comparison results are shown in Figure 5. The robustness and recall of the
road segmentation are superior in DCS-TransUperNet. Therefore, the effectiveness of the
Dual-scales and FFM is further verified. In addition, our model also makes comparative
experiments on the selection of encoder backbone and decoder.

From Table 3, we find that the performance in road segmentation of CSwin Trans-
former is better than Swin Transformer, and the UperNet decoder is better than U-Net.
In Tables 2 and 3, we find that the Transformer-based model is generally better than the
CNNs-based model in IoU, while the inference is slower. As shown in Table 4, we design
different variants of DCS-TransUperNet, and DCS-TransUperNet-L has better performance
in the F1-score and IoU but also has higher parameters and slower inference speed.

Figure 5. Visual analysis of road segmentation results using Dual-scales and not using them. (1)
The test image. (2) The ground truth. (3) Results with DCS-TransUperNet. (4) Results with CSwin
TransUperNet.
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Table 3. Quantitative analysis results with different encoder, decoder and Dual-scales.

Method Precision Recall F1-Score IoU Inference

CSwin TransU-Net 81.01 77.04 78.97 64.05 1.98
CSwin

TransUperNet 81.44 77.62 79.48 64.53 2.51

Swin TransUperNet 80.79 76.91 78.80 63.78 3.27
DCS-TransUperNet 82.44 78.43 80.39 65.36 2.94

Table 4. Quantitative analysis results with different DCS-TransUperNet variants.

Method Precision Recall F1-Score IoU Inference

DCS-TransUperNet-B 81.63 77.42 79.46 64.22 2.01
DCS-TransUperNet-L 82.44 78.43 80.39 65.36 2.94

In order to evaluate the effects of the hyperparameter λ in the mixed loss function We
set the λ to [0, 0.001, 0.01, 0.1, 1, 10], respectively, to perform the experiments as shown
in Figure 6; when λ = 0, the score of F1-score and IoU are the lowest, 78.01% and 64.07%,
respectively. In this case, the mixed loss function has degenerated to the binary cross-
entropy loss. With the increase in λ, the score is gradually improving. When λ = 1, the
score of the F1-score and IoU reaches its maximum (80.39% and 65.36%) and then decreases
rapidly. Therefore, the λ is set to 1 in our experiments.

Figure 6. Performance of DCS-TransUperNet with different λ values in the mixed loss function.

4.5. Result on DeepGlobe Dataset

In order to further evaluate the DCS-TransUperNet, we conducted a comparative
experiment between our models and other SOTA road extraction methods on the Deep-
Globe dataset, such as FCN-8s, U-Net, D-LinkNet, ELU-SegNet, and D-ResUnet. The
experimental environment remains the same as previous experiments.

Figure 7 illustrates a representative comparison result of road extraction on the Deep-
Globe dataset from a globe view. There is more intensive road segmentation in the Deep-
Globe dataset, which also increases the difficulty of road detection. Intuitively, our proposed
result of road segmentation has better continuity and fewer false positives than others,
such as the sub-regions marked by red boxes shown in Figure 8.
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Figure 7. Visual analysis of road segmentation results using different networks. (1) Testing remote
sensing image. (2) The ground truth of this image. (3) Segmentation results with DCS-TransUperNet.
(4) Segmentation results with D-ResUnet. (5) Segmentation results with ELU-SegNet. (6) Segmen-
tation results with D-LinkNet. (7) Segmentation results with U-net. (8) Segmentation results with
FCN-8s.

Figure 8. Road segmentation results of subareas. (A–C) represent road segmentation results of
subareas with different networks, respectively. (1) Input remote sensing image of the subareas. (2) The
ground truth of the subareas. (3) Segmentation results with DCS-TransUperNet. (4) Segmentation
results with D-ResUnet. (5) Segmentation results with ELU-SegNet. (6) Segmentation results with
D-LinkNet. (7) Segmentation results with U-net. (8) Segmentation results with FCN-8s.

Figure 8 shows more details. These three images are from the red box areas of Figure 7.
The second column is the corresponding ground truth of this sub-region. The other columns
are road segmentation results. From Figure 8A, there is obvious road false detection in (4),
(5) and (6). Compared with (7) and (8), the segmentation result of (3) has better continuity
and integrity. From Figure 8B, the road extraction results of (3), (4), and (6) are better than
those of (5), (7), and (8). From Figure 8C, the overall segmentation result of (3) has made
great progress, including continuity and accuracy compared with other methods. To sum
up, our proposed model has strong road extraction ability.

Table 4 shows the quantitative comparison results of different methods on the Deep-
Globe dataset. DCS-TransUperNet with mixed loss achieved superior performance in
precision (77.94), recall (69.52), F1-score (73.48) and IoU (56.74) in Table 5.

Table 5. Quantitative analysis results using different methods on DeepGlobe dataset.

Method Precision Recall F1-Score IoU Inference

FCN-8s 65.08 63.12 63.56 47.23 1.66
U-Net 72.33 65.84 68.93 52.86 1.83

D-LinkNet 70.79 68.95 69.85 53.62 1.75
ELU-SegNet 78.02 55.63 64.94 48.01 1.02
D-ResUnet 79.38 63.94 70.82 54.76 1.46

DCS-TransUperNet 77.94 69.52 73.48 56.74 2.94
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5. Discussion

Our model has two main advantages in innovation. Firstly, the proposed encoder of
DCS-TransUperNet uses dual subnetworks to learn features representation from different
scale inputs, which avoids the limitation of the fixed scale patch. Coarse-grained features
are more easily captured by large patches, while small scales have the faculty of obtain-
ing fine-grained features. Secondly, to obtain enhanced features, we propose a specific
FFM to fuse the coarse- and fine-grained feature representations from the two encoder
subnetworks. FFM differs from other fusion modules in that we integrate a two-layer
native Transformer to increase the interaction of information instead of just using concat
and convolution operations.

Through visual analysis, the road segmentation results of our proposed model have
better continuity and integrity. Furthermore, as shown in the green box in the second image
in Figure 4, our model can also detect the roads blocked by trees because of Transformer’s
powerful global context modeling ability.

We give four evaluation metrics, which are precision, recall, F1-score and IoU. Among
them, precision and recall are a pair of reverse indicators. In other words, too high recall
will inevitably lead to low precision. In order to better evaluate the performance of the
model, the F1-score and IOU are the comprehensive embodiment of precision and recall.
Through experimental analysis, the DCS-TransUperNet achieves state-of-the-art results
on the Massachusetts roads dataset (F1-score 80.39%, IoU 65.36%) and DeepGlobe dataset
(F1-score 73.48%, IoU 56.74%).

In the experiment, we found that D-resunet achieves higher precision than our model.
The reason is that D-resunet has a weak recall. From Table 2, compared with D-resunet, the
recall of our model is improved by 7.09%, and the precision is only reduced by 2.84%. On
the whole, our F1-score and IOU are still the best.

In terms of inference speed, the Transformer-based model has obvious disadvantages
compared with the CNNs model. The reason is that the calculation of the attention mecha-
nism consumes a lot of computational power. In the future, we will try to reduce the time
complexity of the attention mechanism and improve the inference speed of our model.

6. Conclusions

In this paper, we introduce a new framework based on the CSwin Transformer, which
mainly takes into account the superiority of multi-scale vision Transformer to efficiently
combine the architecture of UperNet for automatic remote sensing image segmentation.

The main contributions are as follows: firstly, the proposed encoder of DCS-TransUperNet
uses dual subnetworks to learn feature representation from different scale inputs, which
avoids the limitation of the fixed scale patch. Coarse-grained features are more easily
captured by large patches, while small scales have the faculty of obtaining fine-grained
features. Secondly, to obtain enhanced features, we propose a specific FFM to fuse the
coarse and fine-grained feature representations from the two encoder subnetworks. Thirdly,
to alleviate the problems caused by sample imbalance, we propose a new mixed loss
function, which maintains the stability of the gradient and prevents falling into the local
optimum. Profiting from these refinements, the proposed DCS-TransUperNet can improve
the performance of road segmentation.

Experiments using the Massachusetts dataset and DeepGlobe dataset showed that
the proposed DCS-TransUperNet could effectively solve the discontinuity problem and
preserve the integrity of the road segmentation results, achieving a higher IoU (65.36%
on Massachusetts dataset and 56.74% on DeepGlobe) of road segmentation, compared to
other state-of-the-art methods. The considerable performance also proves the powerful
generation ability of our method.

In the next work, we will pay attention to building lighter models based on Trans-
former to enhance the speed of road segmentation. As we all know, Transformer’s comput-
ing time is mainly spent on the attention mechanism. The memory occupied by attention
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increases with the square of the calculation. So, we plan to reduce the time complexity by
designing new attention computing methods.
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