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Abstract: The Tomba dei Demoni Alati is located in the Etruscan necropolis of Sovana (Grosseto,
Southern Tuscany, Italy). At the end of the 1990s, excavation revealed remains of this aedicule tomb,
carved into red tuff; in 2004, further excavation highlighted new important figurative elements. The
Etruscans used different methods to decorate the rock surfaces of the tomb, which were particularly
difficult to paint. For this reason, the porous and irregular surface of the tuff was modelled and
coated with specific materials. The aim of this work was to study the materials and manufacturing
techniques of the preparatory layers applied onto the rock surface in the Tomba dei Demoni Alati.
Minero-petrographic, chemical, and micro-chemical characterization of the layers was carried out.
The obtained results suggest that different methods were used to prepare the tomb surfaces to be
painted. In particular, in the niche of the tomb, two preparatory layers were found: a Ca-based plaster
covers the rock; above it, a thin white Ca lime layer was applied. In the sculptures inside the niche,
the colors were applied onto two finishing white Ca lime layers of similar composition, whereas, in
the decorations of the sculptured surfaces on the outside, paint layers were laid onto a thin white
silica stratum. The data allow us to determine the use of plaster, for the first time, in Tuscany, as well
as the discovery of a preparation layer never before found in any other local archaeological context.

Keywords: Etruscan paintings; Tomba dei Demoni Alati; plaster layers; minero-petrographic and
chemical characterization

1. Introduction

The Tomba dei Demoni Alati is located in the Etruscan necropolis of Sovana (Grosseto,
Southern Tuscany, Italy). In this area, at the end of the 1990s, archaeological researchers
revealed the remains of an aedicule tomb, carved into red tuff, which, for a long time,
remained covered by the soil. In the summer of 2004, during further excavation work,
a large part of the structure of the Tomba dei Demoni Alati was found, including new
important figurative elements.

Based on its architectonic and figurative style, this tomb is dated to the end of the
III century BC [1]. Due to its characteristics, the Tomba dei Demoni Alati is considered
the most important example of an aedicule tomb, having a recumbent male figure at a
banquet [1–3].

The discovery appeared exceptional because the sculpted surfaces maintained a large
amount of their original polychromy, underlining an essential aspect of the Etruscan artistic
production: the use of colors on sculpted and architectural structures. Due to the high
porosity of the red tuff, the Etruscans needed to use different methods to decorate the rock
surface, which was particularly difficult to paint. For this reason, the porous and irregular
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surface of the tuff was modelled and coated with specific materials, making the surface
suitable for painting.

Moreover, in the particular environmental context, the application of high-cohesion
and low-porosity preparatory layers provided further effective protection of the sculpted
surfaces of the tomb [4–8].

To complete the analytical investigation of the decorative and pictorial techniques
used on the Sovana tombs, after the characterization of the polychromy [1,9], we focused
our attention on the study of the preparatory layers. Minero-petrographic (XRD, PLM),
chemical (ATR–FTIR), and micro-chemical (SEM–EDS) characterization was carried out.
The main purpose of our work, due to the lack of studies on this topic, was to identify
the manufacturing techniques and materials used by Etruscans on the preparatory layers,
according to the architectonic typologies and/or sculptures. The data allow us to determine
the use, for the first time, of plaster in Tuscany, as a technological innovation by Etruscan
workers, in addition to the discovery of a particular preparation layer not observed in any
other archaeological context.

Geological Context of the Necropolis

The necropolis of Sovana is located in the so-called “Vie Cave” area [10]; it consists of
a suggestive road network, dating back to the Etruscan civilization period, which connects
various settlements and necropolises mainly located in the area encompassing Sovana,
Sorano, and Pitigliano (Figure 1).
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This area is characterized by the occurrence of extensive pyroclastic deposits and
some lava flow from eruptions of the Latera volcano 0.38–0.15 Ma ago [11]. These deposits
consist in one of the two complexes forming the Monti Vulsini volcanic district, which
was incised by a parallel network of deep gorges [12,13]. According to [14], the Latera
stratovolcano emplaced seven pyroclastic formations, i.e., Canino, Farnese, Sovana, Sorano,
Grotte di Castro, Onano, and Pitigliano. The eruptive activity of the Latera volcano
ended in the lower Pleistocene. In this period, the area of Sovana was characterized by a
morphology of large flat areas slightly inclined towards the southeast, characterized by
volcanic grounds. From the lower Pleistocene to more recent historical times, the large
plains were remodeled by the erosive action of the superficial stream waters, which heavily
modified the initial geomorphology.

Differential erosion has deeply modified the surface, creating tight valleys with sub-
vertical walls, connected by large, lithified deposits, and generating walls showing minor
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inclination in correspondence to the cineritic layers, having low coherence. The morpho-
logic dynamic of the slopes was also influenced by the gravitative processes responsible for
the detachment of large blocks from the immense vertical walls, either because of weak-
ening at the foot, or the presence of fractures due to the action of plant roots. The lithoid
slopes moved back, forming plains, with terraced features, parallel to the valleys [15].
These processes were primarily responsible for the falls along the valley slopes, making it
possible to build the architectural structures of the tombs. At the Etruscan time period, the
large plains, slightly inclined towards the southeast, were already crossed by the several
valleys, visible today.

In this morphologic context, the Etruscan population had the opportunity to take
advantage of the natural shape of the territory. The upper plains were used for settlements
and agriculture, the lower valleys for the main roads, and the flat surfaces along the
valley walls to build the main necropolis of Sovana (Poggio Grezzano, Sopra Ripa, Folonia,
Il Cavone, and Poggio Prisca) [16]. The architectonic parts of the tombs were made out
of the almost vertical lithified walls of the red tuff, containing black slag of the Sovana
eruption in correspondence with the slight terracing existing at the passage of the tuff with
the cineritic layers, accessed from the valley bottom. Where the thickness of the tuff did not
allow for the making the whole tomb, the dromos and the funerary chambers were carved
inside the underlying cineritic layer, which had scarce cohesion. This layer was subject to
a rapid process of degradation, which often resulted in the collapse of the structure itself
and, later, in the partial or complete filling of the hypogeum.

The construction of the aedicule tombs by excavating the back tuff wall allowed the
structures to be protected from erosion due to surface runoff water along the slope and the
erosive action of wind.

With the abandonment of the necropolis by the Etruscans, the gravitational processes
of the slopes, and the plant growth, in particular, the mechanical action of tree roots, affected
the tombs, contributing to the destruction of the architectonic structures. Consequently,
fractures were produced and, successively, the detachment of the rock fragments of the
walls was unavoidable [17]. The tuff blocks covered by debris, and then by the ground, were
able to preserve the sculptural decorations and, in part, the remains of painting. Nowadays,
the presence of paint traces in numerous tombs (Tomba Ildebranda, Tomba Pola, and
Tomba dei Demoni Alati) testifies to the characteristics of the decorative apparatus of the
necropolis of Sovana.

2. Tomba dei Demoni Alati

The Tomba dei Demoni Alati (Figure 2), at the moment of the discovery, looked greatly
decayed because of the detachment of the tuff wall behind the tomb. A large cubic block
carved into the red tuff was still in place, and a large central partially buried niche opened
and allowed a glimpse of a reclining figure carved inside. The removal of the ground
from the vaulted niche (Figure 3a) revealed the sculpture of a recumbent male figure on
a kline (funeral bed) while he was at a banquet (Figure 3b). On the side of the niche,
under the pediment, there are the remains of two high podiums, in which two female
figures were originally sculpted: they represent two Vanth, demons with two large wings.
The detachment of the wall behind the tomb caused the sliding of large blocks of the
aedicule, responsible for the collapse of the pediment and the two female figures. The
pediment, with the sculpture of the great sea demon with wings, depicting the nymph
Scylla (Figure 3c), was found upside down in front of the niche, together with blocks and
debris belonging to part of the aedicule and the only partially preserved sculptured female
figures [2,9,18,19]. The tomb was located in the middle of a plateau, approximately seven
meters wide (Figure 2), consisting of a parallelepiped structure obtained by digging two
deep trenches in the tuff. On the left trench, some steps at the rear of the structure allowed
access to its top. Two lions, guardians of the tomb, stood symmetrically on a high podium
on the plateau in front of the facade. Of these, only the left one has survived (Figure 2).
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3. Materials and Methods

The small samples (three for each different architectonic location) of the preparatory
layers were collected by the niche, the recumbent figure, and the pediment, respectively
(Table 1); in addition, a sample of the tuff rock, underlying the preparation layers was
analyzed. Each sample was first observed through a stereomicroscope (Leica DMS 300) in
order to collect the microscopic features and to prepare thin and/or polished sections.
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Table 1. Preparatory layers from the niche, recumbent figure, and pediment. Bars of macro images of
samples “R” and “N” = 1 cm; bar of samples “P” = 0.5 cm.

Samples Location Typology Macro Image of Each
Stratigraphy

N1 up niche wall lime outer layer
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The identification of the constitutive layers of the paint (presence of plaster, presence
and number of preparatory layers), the measuring of the single layer thickness, and the
assessment of the morphologic and minero-petrographic characteristics, were carried
out by means of polarized light microscopy (PLM) (ZEISS Axio Skope.A1 microscope,
equipped with a video camera of 5 megapixel resolution) and image analysis software
(AxioVision) [20,21].

Mineralogical analysis was carried out to obtain the compositional characteristics of the
preparatory layers, utilizing an X-ray Powder Diffractometer (XRPD) (Philips PW 1050/37)
with a Panalytical X’Pert PRO and HighScore software data acquisition and interpretation
system. The adopted operating conditions of the instrument were 40 kV–20 mA, Cu anode,
graphite monochromator, and 2/min goniometry speed in a scanning range between
5–70◦ θ; the slits were 1-01-1 and the detection limit was 4%.

The chemical analysis was performed by using Fourier Transform Infrared Spec-
troscopy (FT-IR) through ATR mode with a Spectrum 100 FT-IR spectrometer (PerkinElmer
Inc., Norwalk, CT, USA) equipped with a universal ATR accessory. The acquisition was
carried out at room temperature in the spectral range between 4000 and 350 cm−1, repeating
24 scans with resolution of 4 cm−1. The data were acquired and processed using Spectrum
100 software [20].

Morphological and semiquantitative micro-chemical analyses were performed by
means of a SEM–EDS electronic microscope (ZEISS EVO MA 15) (Carl Zeiss, Jena, Germany)
with W filament equipped with an analytical system in the dispersion of energy EDS/SDD,
Oxford Ultimax 40 (40 mm2 with resolution 127 eV at 5.9 keV) (Oxford Instruments,
Abingdon, UK) with Aztec 5.0 SP1 software. The measurements were performed on
carbon metallized thin sections of the samples on binder and lumps using the following
operating conditions: acceleration potential of 15 kV, 500 pA beam current, working
distance comprised between 9 and 8.5 mm; 20 s live time as acquisition rate used to achieve
at least 600,000 cts, on a Co standard, and process time 4 for point analyses; and 500 µs
pixel dwell time for maps acquisition with 1024 × 768 pixel resolution. The software
used for the microanalysis was an Aztec 5.0 SP1 software that employs the XPP matrix
correction scheme developed by [22]. This is a Phi-Rho-Z approach that uses exponentials
to describe the shape of the ϕ (ρz) curve. XPP matrix correction was chosen because of
its favorable performance in situations of severe absorption, such as the analysis of light
elements in a heavy matrix. The procedure is a “standard-less” quantitative analysis that
employs pre-acquired standard materials for calculations. The monitoring of constant
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analytical conditions (i.e., filament emission) was achieved with repeated analyses of a Co
metallic standard.

4. Results

The obtained minero-petrographic, chemical, and micro-chemical data are described
by listing them according to the different architectonic locations, i.e., niche, recumbent
figure, and pediment, respectively.

The niche rock substrate (Figure 3a) is covered by two finishing layers: the outer thin
white preparation is overlapping a layer of plaster in contact with the tuff. Occasionally,
the plaster does not show good adhesion, and is mostly detached from the surface of the
rock. The microscopic observations, under the polarized light microscope (PLM), highlight
the first preparation layer onto which the color was applied, constituted by a Ca lime layer
(the thickness is approximately between 100 µm and >1.0 mm). The lime contains sporadic
tuff inclusions (600–800 µm in size), a medium–low porosity, and some fractures. Below the
first layer, a mortar (thickness >2 mm), realized with an air-hardening calcic lime binder of
anisotropic aspect and micritic texture, is present; the aggregate, dispersed in the binder, is
well-sorted with subrounded shape. The binder/aggregate ratio is approximately 2/3. The
carbonate binder, which includes numerous lumps (400–900 µm in diameter), displays a
porosity consisting of irregular voids with dimensions rarely greater than 400 µm. The main
components of the aggregate are represented by rounded crystals of sanidine (0.3–1.1 mm),
pyroxenes (400–600 µm), and rounded fragments of siltstone (400–900 µm), in addition to
tuff, and metamorphic and sandstone fragments (Figure 4a).
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The finishing of the sculpted parts inside the niche (recumbent figure and kline)
(Figure 3b) is constituted by two preparatory layers. The outer one is of white color
(variable thickness between 30 and 150 µm) and had the function to make possible the
painting; the layer applied below (thickness between 350 µm and 2 mm) had a double
function, which was to smooth the rock surface and to enable to model different parts of
the sculpture. Both of them are constituted by a Ca lime layer similar to that used in the
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outer layer of the niche. The lime layers have a porosity of small dimensions (<0.4 mm),
(mostly due to drying-out fractures), numerous lumps, and tuff fragments (rare, apart from
where they are in contact with the substrate) (Figure 4b).

The preparatory layer to the color used for the decorations of the sculptured surfaces
outside the niche (pediment and winged figure) is significantly different from those previ-
ously described (Figure 3c). This layer is white but translucent, and has a reduced thickness
(30–300 µm) with respect to those of the niche. It appears compact and isotropic, without
any inclusion (Figure 4c).

The mineralogical data (Table 2) obtained by X-ray diffractometry, confirm the petro-
graphic observations on the three architectonic locations. The outer layers of the niche show
a calcite composition constituting the Ca lime layer, while in the plasters are mainly present
calcite, quartz, feldspar, pyroxene and, in trace quantities, phyllosilicate and zeolite. Inside
the niche, over the recumbent figure and kline, the outer lime layer shows a composition
with calcite and traces of pyroxene and zeolite. In the underlying lime layer, in contact with
the rock, only calcite is present. In the pediment, the XRD data show zeolite (chabazite)
and k-feldspar (sanidine), in addition to traces of calcite, quartz, and gypsum (Figure 5).

Table 2. XRD results of the analysis of the preparatory layers. Cal, calcite; Qz, quartz; Pl, plagioclase;
Kfs, K-feldspar; Px, pyroxene; Ms, mica; CM, clay minerals; Zeo, zeolite; Gp, gypsum. xxx, high
amount; xx, medium amount; x, low amount; tr, traces.

Sample Cal Qz Pl Kfs Px Ms CM Zeo Gp

N1 outer xxx - - - - - - - -
N1 inner xx xx x x x tr tr tr -
N2 outer xxx - - - - - - - -
N2 inner xx x x x x tr tr tr -
N3 outer xxx - - - - - - - -
N3 inner xx xx x x x tr tr tr -

R1 outer xxx - - - tr - - tr -
R1 inner xxx - - - - - - - -
R2 outer xxx - - - - - - tr -
R2 inner xxx - - - - - - - -
R3 outer xxx - - - - - - tr -
R3 inner xxx - - - - - - - -

P1 unique layer tr tr - x - - - x tr
P2 unique layer tr tr - x - - - x tr
P3 unique layer tr tr - x - - - x tr

Tuff rock x - x x x - - xx -
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The results of the chemical analysis (ATR–FTIR) (Table 3) confirm the mineralogical
data. Present in the outer layers of the niche are mainly calcite and small amounts of
silicates; only in the sample N2 weak absorption bands of gypsum are observed. In the
underlying layers are present calcite and silicate phases belonging to the plaster. In the
recumbent figure and the kline, the outer and inner layers are mainly constituted by calcite
and a weak presence of silicate phases. In the pediment, the presence of gypsum and
calcite, as well as weak silicate phases, are highlighted. This can be observed in Figure 6,
representative of the FTIR spectrum interpretation (P1 sample) with corrected baseline and
ATR correction. The presence of gypsum (CaSO4·2H2O) is evidenced by the vibrational
bands at 1108, 669, and 596 cm−1, as well as the stretching and deformation vibrations of the
O–H bond of water at 3525, 3492, 3401 cm−1 and at 1692 and 1627 cm−1, respectively. The
stretching vibrations of calcium carbonate (CaCO3), which peaked at 1420 and 875 cm−1,
are also shown. The silicate phases are weakly shown around 1000 cm −1, hidden by the
intense band of gypsum.

Table 3. Results of the ATR–FTIR analysis of the preparatory samples. * represents weak peaks.

Sample ATR–FTIR Results

N1 outer Calcite, silicate phases *
N1 inner Calcite, silicate phases
N2 outer Calcite, silicate phases and gypsum *
N2 inner Calcite, silicate phases
N3 outer Calcite, silicate phases *
N3 inner Calcite, silicate phases

R1 outer Calcite, silicate phases *
R1 inner Calcite, silicate phases *
R2 outer Calcite, silicate phases *
R2 inner Calcite, silicate phases *
R3 outer Calcite, silicate phases *
R3 inner Calcite, silicate phases *

P1 unique layer Gypsum, calcite, silicate phases *
P2 unique layer Gypsum, calcite, silicate phases *
P3 unique layer Gypsum, calcite, silicate phases *

Tuff rock Silicate phases (clay, quartz, feldspar, and zeolite)
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The micro-chemical analysis (SEM–EDS) of the niche samples shows, in the outer
layer, a prevalent Ca-based composition, whereas in the layer below, in addition to Ca, the
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elements Fe, Si, and Al are also detected; in the surface of the outer layer, Si is also present
(Figure 7a).

In the surfaces belonging to the recumbent figure, a prevalent Ca composition is
evident in both the layers, while in the surface, Si is also observed (Figure 7b).

In the unique layer of the pediment sample, Si is prevalent, but on the surface, Ca and
S are also detected (Figure 7c).
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The micro-chemical analysis of a white surface fragment collected by the winged
figure in the pediment shows a predominantly SiO2 composition, whose content is around
96% (Figure 8a,b).
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5. Discussion and Concluding Remarks

Due to the characteristics of the tuff that constitutes the necropolis of Sovana, Etruscans
adopted special pictorial techniques to apply the color to the different architectonic and
sculptures typologies.

The workers, before painting, had to carve the tuff. This is not a difficult stone to carve;
however, it shows peculiar characteristics, such as high and irregular porosity, which make
it difficult to paint its surface without a suitable preparation process. Moreover, the tuff
color (red with black slags) is not neutral, and the color nuances applied onto it do not
appear as desired.

Due to these difficulties, the Etruscans understood the necessity of applying specific
materials to seal porous features and, even, to smooth them out. In particular, in the Tomba
dei Demoni Alati, which is the object of this study, the cladding and finishing of the surfaces
represent different approaches in relation to the choice of the decorative typologies.

The decoration of the niche was realized by the application of the colors onto a thin
white preparatory layer constituted by Ca lime: this layer was laid over an air-hardening
calcitic lime plaster realized with well-sorted aggregate, mainly constituted by sanidine
crystals (0.3–1.1 mm) and pyroxene, as well as metamorphic, siltstone, tuff, and sandstone
fragments. From the nature of the binder and the aggregate, it was possible to identify the
origin of the raw materials used in the manufacture of the limes and of the plaster. Volcanic
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minerals come from the necropolis area, sculpted in tuffaceous rocks [12,13,23–25], whereas
the sedimentary and metamorphic minerals probably come from the nearest valley of the
Fiora river, which crosses the silicatic and carbonatic rock outcrops [26–30]. From a quality
point of view, the presence in the plaster of lime lumps and carbonatic rock fragments, only
partially transformed by thermic action, indicates inefficient burning, which implies little
technological skill in lime preparation. In addition, the frequent drying out of fractures,
and the high porosity due to air bubbles, found in the thickness of the plasters, indicate
that the mixture was not always homogeneous.

The mineralogical results regarding the preparation layers of the niche confirm the
petrographic observations, while the chemical and micro-chemical data highlight the
presence of silicate phases in the surface, probably due to the pollution of the tuff ground
during burial (see in Tables 2 and 3 the composition of the tuff rocks).

In the sculpted parts, as in the recumbent figure and kline, the petrographic data show
a white layer in contact with the rock substrate of higher thickness, which is constituted
by Ca lime covered by a thinner layer, with the same composition, over which the color is
spread. Both the layers are of the same nature, such as the one used in the finishing layer of
the niche surfaces. The mineralogical and chemical results show the presence of different
components, as silicate phases belonging to pyroxene and zeolite of the tuff debris, where
the sculptures were discovered.

In addition, another technique was used in the pictorial decoration of the pediment
and the winged demon figure. In this case, the color was only applied onto a unique thin
white preparatory layer of a different nature with respect to that previously described.
This layer is mainly constituted by silica, as shown in the micro-chemical analysis, where
the content of SiO2 is approximately 96%. It can be assumed that the thin white layer is
constituted by amorphous silica, not detectable in both XRD because of the amorphous
phase, and also not visible using ATR–FTIR due to the high presence of other silicate phases.
The layer was applied to cover the porosity of the substrate, and to obtain a predominantly
smooth and opalescent white support upon which to spread the color.

The silica material was probably dispersed in a protein-based binder. The ATR–FTIR
analysis was unable to determine the presence of a protein binder. This can be deduced by
the data resulting from chemical analysis via GC/MS gas chromatography coupled with
mass spectrometry, carried out on a white silica layer belonging to the Tomba Ildebranda
pediment, previously studied by [31], and showing the presence of protein material. It is
possible that the amorphous silica derives from the use of diatomaceous earth, which is an
easily-pulverized white material. This hypothesis is based on the wide availability of this
type of material close to the Mt. Amiata volcanic apparatus, located close to Sovana [23].
The microscopic analysis does not provide evidence for the presence of microorganisms
usually found in diatomaceous earth, but this could be due to the accurate grinding of the
original material.

In the preparatory layers of the pediment and winged demon figure, consisting only of
a white silica layer, the XRD data show such minerals as zeolite (chabazite) and k-feldspar
(sanidine) belonging to the tuffaceous soil where the remains of the tomb had fallen. In
addition, traces of calcite, quartz, and gypsum are highlighted, probably of secondary
origin due to the long burial period. These data were confirmed by the chemical and
micro-chemical analyses, which show, in the white layer, the presence of silicate phases,
and also calcite and gypsum on the surface.

The characteristics of the different types of materials identified for the preparatory
layers seem to satisfy the need to carefully and correctly decorate the surfaces with various
details and sculptural depths. Indeed, the tomb, which remained completely underground
until the archaeological excavation in 2004, still shows large areas of plastered and colored
surfaces. The loss of the plaster was, however, almost complete in those areas that remained
outside the burial site [2].
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It is important to note that the data obtained by this research allowed us to highlight
both the use of a plaster by Etruscans for the first time in Tuscany and also the applying of
an original white silica layer, never found in any other archaeological context.

Finally, for the purpose of the restoration of Tomba dei Demoni Alati, a rendering of
the original architecture, based on laser scanning of the remains that emerged from the
excavation, allowed us to better evaluate the architectural and figurative significance of the
tomb at the time of its edification (Figure 9).
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