A Preliminary Design and Modeling Analysis of Two-Phase Volumetric Expanders for a Novel Reversible Organic Rankine-Based Cycle for Carnot Battery Technology
Abstract
:1. Introduction
2. Carnot Battery Technology
3. A Novel Model of the Reversible Rankine-Based Thermodynamic Cycle (RRTC)
3.1. A Proposed Design of the Reversible Rankine-Based Thermodynamic Cycle (RRTC)
3.2. The Mathematical Description of RRTC in ORC Mode
3.3. The Mathematical Description of RRTC in Heat Pump Mode
3.4. System Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
c | The specific heat capacity (J/kg∙K) |
h | The specific enthalpy (J/kg) |
I | The specific work of expander (kJ/kg) |
Mass flow rate (kg/s) | |
P | Power (Watt) |
P | Pressure (Pa) |
T | Temperature (K) |
Heat transfer rate (Watt) | |
Volumetric flow rate (m3/s) | |
x | Vapor quality () |
Greek letters: | |
Baumann coefficient | |
Ratio () | |
Efficiency () | |
Performance of Carnot battery () | |
Density (kg/m3) | |
Subscripts: | |
1,2,3,4 Process in the cycle (blue color for heat pump mode, red color for ORC mode) | |
B | Baumann rule |
CPR | Compressor |
EXR | Expander |
GM | Reversible motor-generator |
HE | Heat exchanger |
in | Input |
is | Isentropic process |
l | Liquid |
LP | Liquid pump |
out | Output |
p | Pressure |
sat | Saturation |
v | Vapor |
V | Volumetric |
WF | Working fluids |
Abbreviations: | |
CHEST | Compressed heat energy storage |
COP | Coefficient of performance |
CV | Control valve |
EES | Electrical energy storage |
LAES | Liquefied air energy storage |
GWP | Global warming potential |
ODP | Ozone depletion potential |
ORC | Organic Rankine cycle |
PHES | Pumped heat energy storage |
PTES | Pumped thermal electricity storage |
RRTC | Reversible Rankine-based thermodynamic cycle |
TES | Thermal energy storage |
References
- Omar, A.; Saghafifar, M.; Mohammadi, K.; Alashkar, A.; Gadalla, M. A review of unconventional bottoming cycles for waste heat recovery: Part II—Applications. Energy Convers. Manag. 2019, 180, 559–583. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, M.; Yang, X.; Guo, H.; Wang, J. Economic Analysis of Organic Rankine Cycle Using R123 and R245fa as Working Fluids and a Demonstration Project Report. Appl. Sci. 2019, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Moradi, R.; Habib, E.; Bocci, E.; Cioccolanti, L. Component-Oriented Modeling of a Micro-Scale Organic Rankine Cycle System for Waste Heat Recovery Applications. Appl. Sci. 2021, 11, 1984. [Google Scholar] [CrossRef]
- Li, X.; Xu, B.; Tian, H.; Shu, G. Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency. Renew. Sustain. Energy Rev. 2021, 147, 111207. [Google Scholar] [CrossRef]
- Dumont, O.; Frate, G.F.; Pillai, A.; Lecompte, S.; De Paepe, M.; Lemort, V. Carnot battery technology: A state-of-the-art review. J. Energy Storage 2020, 32, 101756. [Google Scholar] [CrossRef]
- Steinmann, W.D. The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage. Energy 2014, 69, 543–552. [Google Scholar] [CrossRef]
- Benato, A.; Stoppato, A. Pumped Thermal Electricity Storage: A technology overview. Therm. Sci. Eng. Prog. 2018, 6, 301–315. [Google Scholar] [CrossRef]
- Bao, J.; Zhao, L. A review of working fluid and expander selections for organic Rankine cycle. Renew. Sustain. Energy Rev. 2013, 24, 325–342. [Google Scholar] [CrossRef]
- Györke, G.; Deiters, U.K.; Groniewsky, A.; Lassu, I.; Imre, A.R. Novel classification of pure working fluids for Organic Rankine Cycle. Energy 2018, 145, 288–300. [Google Scholar] [CrossRef]
- Quoilin, S.; Van Den Broek, M.; Declaye, S.; Dewallef, P.; Lemort, V. Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186. [Google Scholar] [CrossRef] [Green Version]
- Daniarta, S.; Kolasiński, P.; Imre, A.R. Thermodynamic efficiency of trilateral flash cycle, organic Rankine cycle and partially evaporated organic Rankine cycle. Energy Convers. Manag. 2021, 249, 114731. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Kondor, L.; Imre, A.R. Thermodynamic Efficiency Maximum of Simple Organic Rankine Cycles. Energies 2021, 14, 307. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Imre, A.R. The effect of recuperator on the efficiency of ORC and TFC with very dry working fluid. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 345. [Google Scholar] [CrossRef]
- Dumont, O.; Parthoens, A.; Dickes, R.; Lemort, V. Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system. Energy 2018, 165, 1119–1127. [Google Scholar] [CrossRef] [Green Version]
- Smith, I.K.; Stosic, N.; Kovacevic, A. Power Recovery from Low Cost Two-Phase Expanders; Transactions of Geothermal Resource Council: Davis, CA, USA, 2001; pp. 601–605. [Google Scholar]
- Daniarta, S.; Kolasiński, P. A preliminary study of two-phase volumetric expanders and their application in ORC systems. In Proceedings of the 6th International Seminar on ORC Power Systems, Munich, Germany, 11–13 October 2021. [Google Scholar] [CrossRef]
- Frate, G.F.; Ferrari, L.; Desideri, U. Multi-Criteria Economic Analysis of a Pumped Thermal Electricity Storage (PTES) With Thermal Integration. Front. Energy Res. 2020, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Bellos, E.; Lykas, P.; Tzivanidis, C. Pumped Thermal Energy Storage System for Trigeneration: The Concept of Power to XYZ. Appl. Sci. 2022, 12, 970. [Google Scholar] [CrossRef]
- Steinmann, W.-D. Thermo-mechanical concepts for bulk energy storage. Renew. Sustain. Energy Rev. 2017, 75, 205–219. [Google Scholar] [CrossRef]
- Steinmann, W.-D.; Bauer, D.; Jockenhöfer, H.; Johnson, M. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy 2019, 183, 185–190. [Google Scholar] [CrossRef]
- Jahnke, A.; Strenge, L.; Fleßner, C.; Wolf, N.; Jungnickel, T.; Ziegler, F. First cycle simulations of the Honigmann process with LiBr/H2O and NaOH/H2O as working fluid pairs as a thermochemical energy storage. Int. J. Low-Carbon Technol. 2013, 8, i55–i61. [Google Scholar] [CrossRef] [Green Version]
- Mu¨ller, N.; Fre’chette, L.G. Performance Analysis of Brayton and Rankine Cycle Microsystems for Portable Power Generation. In Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition, Microelectromechanical Systems, New Orleans, LA, USA, 17–22 November 2002. [Google Scholar] [CrossRef] [Green Version]
- Staub, S.; Bazan, P.; Braimakis, K.; Müller, D.; Regensburger, C.; Scharrer, D.; Schmitt, B.; Steger, D.; German, R.; Karellas, S.; et al. Reversible Heat Pump–Organic Rankine Cycle Systems for the Storage of Renewable Electricity. Energies 2018, 11, 1352. [Google Scholar] [CrossRef] [Green Version]
- Dumont, O.; Carmo, C.; Fontaine, V.; Randaxhe, F.; Quoilin, S.; Lemort, V.; Elmegaard, B.; Nielsen, M.P. Performance of a reversible heat pump/organic Rankine cycle unit coupled with a passive house to get a positive energy building. J. Build. Perform. Simul. 2018, 11, 19–35. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K.; Yang, W.M. Advances in heat pump systems: A review. Appl. Energy 2010, 87, 3611–3624. [Google Scholar] [CrossRef]
- Dai, N.; Xu, X.; Li, S.; Zhang, Z. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System. Appl. Sci. 2017, 7, 197. [Google Scholar] [CrossRef] [Green Version]
- Sovacool, B.K.; Griffiths, S.; Kim, J.; Bazilian, M. Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew. Sustain. Energy Rev. 2021, 141, 110759. [Google Scholar] [CrossRef]
- Lemmon, E.; Huber, M.; McLinden, M. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013. [Google Scholar]
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, M.T.; Oyewunmi, O.A.; Haslam, A.J.; Markides, C.N. Industrial waste-heat recovery through integrated computer-aided working-fluid and ORC system optimisation using SAFT-γ Mie. Energy Convers. Manag. 2017, 150, 851–869. [Google Scholar] [CrossRef]
- Choi, I.-H.; Lee, S.; Seo, Y.; Chang, D. Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery. Energy 2013, 61, 179–195. [Google Scholar] [CrossRef]
- Gao, W.; Wu, Z.; Tian, Z.; Zhang, Y. Experimental investigation on an R290-based organic Rankine cycle utilizing cold energy of liquid nitrogen. Appl. Therm. Eng. 2022, 202, 117757. [Google Scholar] [CrossRef]
- Dubberke, F.H.; Linnemann, M.; Abbas, W.K.; Baumhögger, E.; Priebe, K.-P.; Roedder, M.; Neef, M.; Vrabec, J. Experimental setup of a cascaded two-stage organic Rankine cycle. Appl. Therm. Eng. 2018, 131, 958–964. [Google Scholar] [CrossRef]
- Yu, J.; Xu, Z.; Tian, G. A thermodynamic analysis of a transcritical cycle with refrigerant mixture R32/R290 for a small heat pump water heater. Energy Build. 2010, 42, 2431–2436. [Google Scholar] [CrossRef]
- Bai, T.; Li, D.; Xie, H.; Yan, G.; Yu, J. Experimental research on a Joule-Thomson refrigeration cycle with mixture R170/R290 for −60 °C low-temperature freezer. Appl. Therm. Eng. 2021, 186, 116476. [Google Scholar] [CrossRef]
- Yadav, S.; Liu, J.; Kim, S.C. A comprehensive study on 21st-century refrigerants—R290 and R1234yf: A review. Int. J. Heat Mass Transf. 2022, 182, 121947. [Google Scholar] [CrossRef]
- Ghanbarpour, M.; Mota-Babiloni, A.; Badran, B.E.; Khodabandeh, R. Energy, Exergy, and Environmental (3E) Analysis of Hydrocarbons as Low GWP Alternatives to R134a in Vapor Compression Refrigeration Configurations. Appl. Sci. 2021, 11, 6226. [Google Scholar] [CrossRef]
- Bianchi, G.; Marchionni, M.; Miller, J.; Tassou, S.A. Modelling and off-design performance optimisation of a trilateral flash cycle system using two-phase twin-screw expanders with variable built-in volume ratio. Appl. Therm. Eng. 2020, 179, 115671. [Google Scholar] [CrossRef]
- Steger, D.; Regensburger, C.; Pham, J.; Schlücker, E. Heat Exchangers in Carnot Batteries: Condensation and Evaporation in a Reversible Device. Energies 2021, 14, 5620. [Google Scholar] [CrossRef]
- Pawlik, M.; Strzelczyk, F. Elektrownie; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2016; ISBN 978-83-01-18954-9. [Google Scholar]
- Dumont, O.; Lemort, V. Modelling of a thermally integrated Carnot battery using a reversible heat pump/organic Rankine cycle. In Proceedings of the ECOS 2020—33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Osaka, Japan, 3–29 July 2020. [Google Scholar]
- Dumont, O.; Lemort, V. Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery. Energy 2020, 211, 118963. [Google Scholar] [CrossRef]
- Kolasiński, P. Application of volumetric expanders in small vapour power plants used in distributed energy generation—Selected design and thermodynamic issues. Energy Convers. Manag. 2021, 231, 113859. [Google Scholar] [CrossRef]
- Weiß, A.P. Volumetric expander versus turbine–which is the better choice for small ORC plants. In Proceedings of the 3rd ASME ORC conference, Brussels, Belgium, 12–14 October 2015; pp. 1–10. [Google Scholar]
- Capata, R.; Pantano, F. Expander design procedures and selection criterion for small rated organic rankine cycle systems. Energy Sci. Eng. 2020, 8, 3380–3414. [Google Scholar] [CrossRef]
- Pantano, F.; Capata, R. Expander selection for an on board ORC energy recovery system. Energy 2017, 141, 1084–1096. [Google Scholar] [CrossRef] [Green Version]
- Kolasiński, P. The Influence of the Heat Source Temperature on the Multivane Expander Output Power in an Organic Rankine Cycle (ORC) System. Energies 2015, 8, 3351–3369. [Google Scholar] [CrossRef] [Green Version]
- Petr, V.; Kolovratnik, M. Wet steam energy loss and related Baumann rule in low pressure steam turbines. Proc. Inst. Mech. Eng. Part A J. Power Energy 2013, 228, 206–215. [Google Scholar] [CrossRef]
- Kolasiński, P.; Błasiak, P.; Rak, J. Experimental and Numerical Analyses on the Rotary Vane Expander Operating Conditions in a Micro Organic Rankine Cycle System. Energies 2016, 9, 606. [Google Scholar] [CrossRef] [Green Version]
- Kolasiński, P. Application of the Multi-Vane Expanders in ORC Systems—A Review on the Experimental and Modeling Research Activities. Energies 2019, 12, 2975. [Google Scholar] [CrossRef] [Green Version]
Parameters | Value |
---|---|
Name | Propane |
CAS number | 74-98-6 |
Formula | C3H8 |
R name | R-290 |
Working fluid type [9] | ACZ (or wet working fluid) |
Molar mass (g/mol) | 44.09562 |
ODP | 0 |
GWP | 3.3 |
Safety based on ASHRAE designation | A3 |
Critical temperature (K) | 369.89 |
Critical pressure (MPa) | 4.2512 |
Critical density (mol/dm3) | 5 |
Triple point temperature (K) | 85.525 |
Normal boiling temperature (K) | 231.036 |
Parameters | ORC Mode | Heat Pump Mode |
---|---|---|
HE1 pinch point (K) | 5 | 5 |
HE2 pinch point (K) | 5 | 5 |
HE1 secondary fluid temperature (K) | 348.15—348.15 + 10 (from storage) | 348.15—348.15 + 10 (to storage) |
HE2 secondary fluid temperature (K) | 288.15 (from air) | 338.15 (from waste heat) |
Simulation temperature step (K) | 1 | 1 |
Isentropic efficiency of expander (-) | 0.8 and 0.7 | < 0.8 |
Isentropic efficiency of a pressure riser device (-) | 0.8 (a liquid pump) | 0.8 (a compressor) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniarta, S.; Kolasiński, P.; Imre, A.R. A Preliminary Design and Modeling Analysis of Two-Phase Volumetric Expanders for a Novel Reversible Organic Rankine-Based Cycle for Carnot Battery Technology. Appl. Sci. 2022, 12, 3557. https://doi.org/10.3390/app12073557
Daniarta S, Kolasiński P, Imre AR. A Preliminary Design and Modeling Analysis of Two-Phase Volumetric Expanders for a Novel Reversible Organic Rankine-Based Cycle for Carnot Battery Technology. Applied Sciences. 2022; 12(7):3557. https://doi.org/10.3390/app12073557
Chicago/Turabian StyleDaniarta, Sindu, Piotr Kolasiński, and Attila R. Imre. 2022. "A Preliminary Design and Modeling Analysis of Two-Phase Volumetric Expanders for a Novel Reversible Organic Rankine-Based Cycle for Carnot Battery Technology" Applied Sciences 12, no. 7: 3557. https://doi.org/10.3390/app12073557
APA StyleDaniarta, S., Kolasiński, P., & Imre, A. R. (2022). A Preliminary Design and Modeling Analysis of Two-Phase Volumetric Expanders for a Novel Reversible Organic Rankine-Based Cycle for Carnot Battery Technology. Applied Sciences, 12(7), 3557. https://doi.org/10.3390/app12073557