Low-Rank Approximation of Frequency Response Analysis of Perforated Cylinders under Uncertainty
Abstract
:1. Introduction
2. Preliminaries
2.1. Shell Eigenproblems
Reduction in Thickness
2.2. Frequency Response Analysis under Uncertainty
2.2.1. The Stochastic Eigenproblem
2.2.2. Frequency Response Analysis
2.2.3. Stochastic Collocation
3. Free Vibration of Perforated Shells
4. Low-Rank Approximation
4.1. Krylov Subspace Construction
4.2. Deflation Preconditioning
5. Numerical Experiments: Trommel Screen
5.1. Effect of Boundary Layers
5.2. Low-Rank Approximation Concerns
5.3. Asymptotics
5.4. Other Considerations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Parabolic Shell of Revolution
Appendix A.1. Shell Geometry
Appendix A.2. Reissner–Naghdi Shell Model
References
- Martikka, H.; Taitokari, E. Design of perforated shell dryings drums. Mech. Eng. Res. 2012, 2, 31. [Google Scholar] [CrossRef]
- Kalamkarov, A.L.; Andrianov, I.V.; Weichert, D. Asymptotic analysis of perforated shallow shells. Int. J. Eng. Sci. 2012, 53, 1–18. [Google Scholar] [CrossRef]
- Torabi, J.; Ansari, R. A higher-order isoparametric superelement for free vibration analysis of functionally graded shells of revolution. Thin-Walled Struct. 2018, 133, 169–179. [Google Scholar] [CrossRef]
- Ansari, R.; Hasrati, E.; Torabi, J. Vibration analysis of pressurized sandwich FG-CNTRC cylindrical shells based on the higher-order shear deformation theory. Mater. Res. Express 2019, 6, 045049. [Google Scholar] [CrossRef]
- Civalek, Ö. Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: Discrete singular convolution (DSC) approach. J. Comput. Appl. Math. 2007, 205, 251–271. [Google Scholar] [CrossRef] [Green Version]
- Giani, S.; Hakula, H. On effective material parameters of thin perforated shells under static loading. Comput. Methods Appl. Mech. Eng. 2020, 367, 113094. [Google Scholar] [CrossRef]
- Giani, S.; Hakula, H. On effects of perforated domains on parameter-dependent free vibration. J. Comput. Appl. Mech. 2021, 394, 113526. [Google Scholar] [CrossRef]
- Hakula, H.; Laaksonen, M. Frequency Response Analysis of Perforated Shells with Uncertain Materials and Damage. Appl. Sci. 2019, 9, 5299. [Google Scholar] [CrossRef] [Green Version]
- Freund, R.W. Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 2000, 123, 395–421. [Google Scholar] [CrossRef] [Green Version]
- Carden, E.P.; Fanning, P.; Carden, E.P.; Fanning, P. Vibration based condition monitoring: A review. J. Struct. Health Monit. 2004, 3, 355–377. [Google Scholar] [CrossRef]
- Fan, W.; Qiao, P. Vibration-based Damage Identification Methods: A Review and Comparative Study. Struct. Health-Monit.-Int. J. 2011, 10, 83–111. [Google Scholar] [CrossRef]
- Wang, P.; Wu, N.; Sun, Z.; Luo, H. Vibration and Reliability Analysis of Non-Uniform Composite Beam under Random Load. Appl. Sci. 2022, 12, 2700. [Google Scholar] [CrossRef]
- Vu, T.H.; Vu, H.N.; Dang, T.D.; Le, N.L.; Nguyen, T.T.X.; Trung, N.T.; Nguyen, T.P. A New Analytical Approach for Nonlinear Global Buckling of Spiral Corrugated FG-CNTRC Cylindrical Shells Subjected to Radial Loads. Appl. Sci. 2020, 10, 2600. [Google Scholar] [CrossRef]
- Fu, C.; Zhu, W.; Zheng, Z.; Sun, C.; Yang, Y.; Lu, K. Nonlinear responses of a dual-rotor system with rub-impact fault subject to interval uncertain parameters. Mech. Syst. Signal Process. 2022, 170, 108827. [Google Scholar] [CrossRef]
- Worden, K.; Manson, G.; Lord, T.; Friswell, M. Some observations on uncertainty propagation through a simple nonlinear system. J. Sound Vib. 2005, 288, 601–621. [Google Scholar] [CrossRef]
- Eid, R.; Salimbahrami, B.; Lohmann, B.; Rudnyi, E.B.; Korvink, J.G. Parametric Order Reduction of Proportionally Damped Second-Order Systems. Sens. Mater. 2007, 19, 149–164. [Google Scholar]
- Han, J.S. Efficient frequency response and its direct sensitivity analyses for large-size finite element models using Krylov subspace-based model order reduction. J. Mech. Sci. Technol. 2012, 26, 1115–1126. [Google Scholar] [CrossRef]
- Johnson, E.A.; Wojtkiewicz, S.F. Efficient Sensitivity Analysis of Structures with Local Modifications. II: Transfer Functions and Spectral Densities. J. Eng. Mech. 2014, 140, 04014068. [Google Scholar] [CrossRef]
- Wu, B.; Yang, S.; Li, Z.; Zheng, S. A combined method for computing frequency responses of proportionally damped systems. Mech. Syst. Signal Process. 2015, 60–61, 535–546. [Google Scholar] [CrossRef]
- Sepahvand, K.; Marburg, S. Stochastic Dynamic Analysis of Structures with Spatially Uncertain Material Parameters. Int. J. Struct. Stab. Dyn. 2014, 14, 1440029. [Google Scholar] [CrossRef]
- Wu, B.; Yang, S.; Li, Z.; Zhong, H.; Chen, X. Computation of frequency responses and their sensitivities for undamped systems. Eng. Struct. 2019, 182, 416–426. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, X.; Li, Z.; Chen, X.; Zhong, H. An efficient method for calculating the frequency response of a proportional damping system over a given frequency interval. Eng. Struct. 2020, 220, 110987. [Google Scholar] [CrossRef]
- Delissen, A.; van Keulen, F.; Langelaar, M. Efficient Limitation of Resonant Peaks by Topology Optimization Including Modal Truncation Augmentation. Struct. Multidiscip. Optim. 2020, 61, 2557–2575. [Google Scholar] [CrossRef] [Green Version]
- Chapelle, D.; Bathe, K.J. The Finite Element Analysis of Shells; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Ghanem, R.; Spanos, P. Stochastic Finite Elements: A Spectral Approach; Dover Publications, Inc.: Mineola, NY, USA, 2003. [Google Scholar]
- Schenk, C.A.; Schuëller, G.I. Uncertainty Assessment of Large Finite Element Systems; Lecture Notes in Applied and Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2005; Volume 24. [Google Scholar]
- Schwab, C.; Todor, R.A. Karhunen-Loève approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 2006, 217, 100–122. [Google Scholar] [CrossRef]
- Inman, D.J. Engineering Vibration; Pearson: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Babuška, I.; Nobile, F.; Tempone, R. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Num. Anal. 2007, 45, 1005–1034. [Google Scholar] [CrossRef]
- Nobile, F.; Tempone, R.; Webster, C.G. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data. SIAM J. Numer. Anal. 2008, 46, 2411–2442. [Google Scholar] [CrossRef]
- Bieri, M. A Sparse Composite Collocation Finite Element Method for Elliptic SPDEs. SIAM J. Numer. Anal. 2011, 49, 2277–2301. [Google Scholar] [CrossRef]
- Andreev, R.; Schwab, C. Sparse Tensor Approximation of Parametric Eigenvalue Problems. In Numerical Analysis of Multiscale Problems; Lecture Notes in Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2012; Volume 83, pp. 203–241. [Google Scholar]
- Xiu, D. Numerical Methods for Stochastic Computations: A Spectral Method Approach; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Saad, Y.; Yeung, M.; Erhel, J.; Guyomarch, F. A deflated version of the conjugate gradient algorithm. SIAM J. Sci. Comput. 2000, 21, 1909–1926. [Google Scholar] [CrossRef] [Green Version]
- Meerbergen, K. The solution of parametrized symmetric linear systems. SIAM J. Matrix Anal. Appl. 2003, 24, 1038–1059. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Mathematica, version 13.0.0; Wolfram Research, Inc.: Champaign, IL, USA, 2021. [Google Scholar]
- Malinen, M. On the classical shell model underlying bilinear degenerated shell finite elements: General shell geometry. Int. J. Numer. Methods Eng. 2002, 55, 629–652. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakula, H.; Laaksonen, M. Low-Rank Approximation of Frequency Response Analysis of Perforated Cylinders under Uncertainty. Appl. Sci. 2022, 12, 3559. https://doi.org/10.3390/app12073559
Hakula H, Laaksonen M. Low-Rank Approximation of Frequency Response Analysis of Perforated Cylinders under Uncertainty. Applied Sciences. 2022; 12(7):3559. https://doi.org/10.3390/app12073559
Chicago/Turabian StyleHakula, Harri, and Mikael Laaksonen. 2022. "Low-Rank Approximation of Frequency Response Analysis of Perforated Cylinders under Uncertainty" Applied Sciences 12, no. 7: 3559. https://doi.org/10.3390/app12073559
APA StyleHakula, H., & Laaksonen, M. (2022). Low-Rank Approximation of Frequency Response Analysis of Perforated Cylinders under Uncertainty. Applied Sciences, 12(7), 3559. https://doi.org/10.3390/app12073559