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Abstract: Convolutional Neural Networks (CNNs) have recently been proposed as a solution in
texture and material classification in computer vision. However, inside CNNs, the internal layers of
pooling often cause a loss of information and, therefore, is detrimental to learning the architecture.
Moreover, when considering images with repetitive and essential patterns, the loss of this informa-
tion affects the performance of subsequent stages, such as feature extraction and analysis. In this
paper, to solve this problem, we propose a classification system with a new pooling method called
Discrete Wavelet Transform Pooling (DWTP). This method is based on the image decomposition
into sub-bands, in which the first level sub-band is considered as its output. The objective is to
obtain approximation and detail information. As a result, this information can be concatenated in
different combinations. In addition, wavelet pooling uses wavelets to reduce the size of the feature
map. Combining these methods provides acceptable classification performance for three databases
(CIFAR-10, DTD, and FMD). We argue that this helps eliminate overfitting and that the learning
graphs reflect that the datasets show learning generalization. Therefore, our results indicate that our
method based on wavelet analysis is feasible for texture and material classification. Moreover, in
some cases, it outperforms traditional methods.

Keywords: texture and materials classification; CNNs; wavelet pooling layer

1. Introduction

In deep learning, texture and material analyses play an essential role in object classifi-
cation, detection, and segmentation tasks. This type of analysis has some application areas,
such as computer-aided medical diagnosis, fruit recognition using artificial intelligence,
and object detection in aerial navigation with drones to mention a few.

Deep learning in the last decade has positioned itself as a new solution in the areas of
robotics, computer vision, and natural language [1–3]. In particular, Convolutional Neural
Networks (CNNs) are a category of deep learning, as they are adapted to object analysis
by learning and extracting complex features [4,5]. On the other hand, although CNNs is a
universal extractor, in practice, it is not clear whether CNNs can learn to perform spectral
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analysis—a methodology that can provide a better classification performance of textures
and materials [6]. In this sense, a fusion of methods in order to address this problem
is being used, combining spatial and spectral approaches in a unique architecture [7,8].
Despite the results obtained by the authors in texture classification, their architecture only
merges the features that are lost with the spatial approach. In addition, it is known that
regularization methods focus only on the convolutional layer. While the operations of the
pooling layers have been left without an update [9]. In this sense, we can integrate wavelet
analysis inside deep learning before merging spatial and spectral approaches; that is, we
permit it to become part of the learning process by using the pooling method.

Motivated by the above reasons, in this study, we propose a classification system with
a new pooling method called Discrete Wavelet Transform Pooling (DWTP). The pooling
approach is based on image decomposition into sub-bands. The method is implemented
and developed using Python and Keras API with Tensorflow as Backend. Moreover, the
method is validated on three datasets: CIFAR-10, Describable Textures Dataset (DTD),
and Flickr Material Database (FMD). Our approach is different from traditional methods
because it is not a subsampling methodology by using neighboring regions, but wavelet
pooling maintains its function as a reduction layer. Wavelets allow localization in scale
(i.e., frequency) and space. In other words, wavelets can be used to analyze local and
spatial transients in the data, such as edges or surfaces in an image [10]. Therefore, we can
preserve the most relevant information of textures and materials, which is sometimes lost
with traditional methods such as Max-Pooling (MaxP) and Ave-Pooling (AveP).

In a previous study, as support for this work in [11], we designed a CNN architecture for
object detection with a repetitive pattern approach within aerial navigation as a first attempt.
We argue that the characteristics at different frequencies, low and high, also affect the perfor-
mance of the CNN during training. This architecture is characterized by wavelet analysis,
applying multiresolution analysis to the original image. A new dataset is obtained when the
image is converted to the wavelet domain. Therefore, the information improves learning
performance, eliminates overfitting, and achieves higher efficiency in object detection. Based
on the results from our previous work, we now present a wavelet pooling approach to
improve the learning of the classification model with the following contributions:

1. We present a CNN architecture with a combination of regularization methods (DropOut,
Data Augmentation, and Batch Normalization) to evaluate the performance of each
pooling method: MaxP, AveP, and wavelet pooling (DWTP, DWTaP, and DWTdP). The
objective is to have a reference of the learning behavior.

2. We present a complete evaluation of the classification performance of textures and
materials in images, in addition to a state-of-the-art benchmark dataset. The idea is
to evaluate the adaptability of deep learning with wavelet pooling. Furthermore, we
argue that the methodology is ideal for this type of dataset, where it is recurrent to
have repetitive patterns.

3. We show that the method eliminates the overfitting created by pooling methods while
reducing features using an approach based on level-based decomposition, and it is
more compact than pooling by using neighboring regions. Hence, we offer three con-
figurations: DWTP = approximation and detail information; DWTaP = approximation
information; and DWTdP = detail information. The goal is to preserve the most infor-
mation for each texture and material.

4. We demonstrate that a correct inference of texture or material can be obtained if we
determine the type of pooling to be used during learning. We have conducted several
experiments, but now we can choose the best pooling method depending on the
dataset. Our experiments indicate that this is also useful for future object detection
applications, focusing on physical features such as texture.

In order to present our approach, this paper has been organized as follows: Section 2
shows related work; Section 3 introduces the methodology to address the texture and
material classification problem. Section 4 shows the proposed methodology. After that,
Section 5 shows the results with the three data sets, which have been used to test our
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approach and the experimental part. Finally, Section 6 discusses the results, and Section 7
presents the conclusions and future work.

2. Related Work

This section highlights some applications that have used the wavelet pooling layer to
improve their performance. A new architecture called WaveCNN was proposed in [12].
They note that the pooling layer (Max-Pooling) in a conventional CNN does not consider
the feature structure of the previous layer. Then, Max-Pooling may lose some features.
Therefore, they replace the pooling layer with wavelet decomposition. They succeed in
more adequately representing the features for MNIST handwritten digit classification. A
novel method that combined classical CNN layers with squeeze-and-excitation modules
and the Haar wavelet as a pooling layer was proposed by [13]. The main objective is the
real-time classification of vehicle types. The development of the method improves the
classifier’s performance by highlighting essential feature maps and decreasing the network
entropy. Moreover, they propose a cross-entropy cost function and the use of DWT instead
of Max-Pooling to improve the recognition rate. According to this layer, their model is
named Wavelet Deep Neural Network (WDNN). Another alternative is the application
of a multilevel analysis [14]. The method merges multiple wavelets transforms, as they
function similarly to filters within convolutional neural networks. They show that some
neighborhood methods introduce edge halos, aliasing, and blurring effects in specific
datasets. Choosing the correct pooling method is key to obtaining good results. Thus, they
explore the use of wavelet bases such as Haar, Coiflet, and Daubechies to perform pooling.

In semantic segmentation tasks, encoder–decoder-type networks have been used [15].
This type of CNNs usually uses pooling to reduce computational costs and improve invari-
ances relative to certain distortions and expands the receptive field. However, pooling can
result in information loss, which disruptive to later operations, such as feature extraction
and analysis. Moreover, each image pixel is assigned a specific class in semantic segmen-
tation tasks by dividing it into regions of interest. Therefore, a pooling method based
on wavelet operations has been proposed to divide it into regions of interest. In [16], the
authors presented an approach called 3D WaveUNet, based on wavelets and deep learning
for 3D neuron segmentation. The encoder-decoder network is integrated with a 3D wavelet
to segment the nerve fibers into cubes; the wavelets help the deep networks remove noise
from the data and connect the broken fibers. At the end of the method, the segmented
nerve fibers into cubes are assembled to generate the entire neuron. In this case, the neuron
segmentation method can completely extract the target neuron in noisy neuron images.
A U-Net architecture based on wavelet transform pooling is proposed in [17]. This work
aims to segment multiple sclerosis (MS) lesions in magnetic resonance images (MR). One
characteristic is that the first stage of the network uses the wavelet transform, and in the
second stage, its inverse is used. In both stages, it highlights abrupt changes in the image
and better describes the features. An advantage is its multiresolution analysis; thus, its use
improves the detection of lesions of different sizes and in segmentation.

In the area of image restoration, a multilevel wavelet CNN (MWCNN) method was
proposed to balance the size of the receptive area and computational efficiency [18]. The
main idea is to integrate the wavelet transform within the CNN architecture to reduce
feature maps. The MWCNN method is also based on a U-Net architecture and the inverse
wavelet transform (IWT) for the reconstruction stage with a high resolution. In [9], they
proposed another alternative called wavelet pooling as a layer inside the CNN architecture.
This method decomposes the image into two sub-bands, discarding the first level to reduce
the size of the feature map. The approach allows a structured compression of the data,
reducing the creation of denoised edges and other defects in the image.

On the other hand, some works have employed deep learning and wavelet analysis
in image processing. For example, the method proposed in [19] converted images from
the CIFAR-10 and KDEF database to the wavelet domain, thus obtaining temporal and
frequency features. The different representations created are added to multiple CNN
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architectures. This combination of information in the wavelet domain achieves a higher
detection efficiency and a faster execution time than the procedure in the spatial domain.

In the automatic coding of an image, the design of the CNN architecture has a sig-
nificant weight. In this case, the designed network is a Siamese convolutional neural
network that receives fused information from infrared and visible images. The aim is to
generate a weight map representing the saliency of each pixel. Fusion is performed by
multiscale decomposition of the image using wavelet analysis, and the reconstruction result
is more perceptual to the human visual system [20]. Following the same approach, the
work proposed in [21] presented two methods to highlight the edges of the images in the
classification area. The first method decomposes the images and subsequently reconstructs
them in a limited manner. The second method that develops the enhanced images intro-
duces local maximum wavelet coefficients. Both methods are applied before entering the
CNN architecture.

3. Materials and Methods
3.1. Wavelet Analysis

Wavelets represent functions as simpler, fixed building blocks at different scales and
positions [19]. The one-dimensional wavelet transform can be easily extended to a two-
dimensional wavelet transform (2DWT), which is widely applied to two-dimensional
signals such as images [22,23]. It has greatly impacted image processing tasks such as edge
detection, image recognition, and image compression [6].

3.1.1. 2D Discrete Wavelet Transform

Given an image x, we can use 2D Discrete Wavelet Transform (2D-DWT) with four
convolution filters, i.e., low-pass filter fLL and high-pass filters fLH , fHL, and fHH , to
decompose x into four sub-images, i.e., xLL, xLH , xHL, and xHH [24]. Note that the four
filters have fixed parameters with convolutional stride 2 during the transformation [13,18].
Taking the Haar wavelet as an example, these filters are defined in Equation (1).

fLL =

[
+1 +1
+1 +1

]
, fLH =

[
−1 −1
+1 +1

]
, fHL =

[
−1 −1
−1 −1

]
, fHH =

[
+1 −1
−1 +1

]
(1)

Moreover, the operation of DWT is defined in Equation (2):

xLL = ( fLL ⊗ x) ↓2, xLH = ( fLH ⊗ x) ↓2
xHL = ( fHL ⊗ x) ↓2, xHH = ( fHH ⊗ x) ↓2

(2)

where ⊗ denotes convolution operator, and ↓2 means the standard downsampling operator
with factor 2. In other words, DWT mathematically involves four fixed convolution filters
with stride 2 to implement the downsampling operator. Moreover, according to the theory
of Haar transform [24], the (i, j)th value of xLL, xLH , xHL, and xHH can be written in
Equation (3).

xLL(i, j) = x(2i− 1, 2j− 1) + x(2i− 1, 2j) + x(2i, 2j− 1) + x(2i, 2j)
xLH(i, j) = −x(2i− 1, 2j− 1)− x(2i− 1, 2j) + x(2i, 2j− 1) + x(2i, 2j)
xHL(i, j) = −x(2i− 1, 2j− 1) + x(2i− 1, 2j)− x(2i, 2j− 1) + x(2i, 2j)
xHH(i, j) = x(2i− 1, 2j− 1)− x(2i− 1, 2j)− x(2i, 2j− 1) + x(2i, 2j)

(3)

Given that the derivability of the Haar transform is a good property for end-to-
end backpropagation [25], Haar wavelet decomposition is used as a pooling layer in the
proposed structure.

3.1.2. Pooling Method

The pooling method is described by some authors as a subsampling methodology [12,26–28].
The pooling method also transforms the activation map into a new feature map. The pooling
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operation works on small regions of size Pq × Pq, usually after each convolutional layer. The
pooling method has two main purposes. The first is to reduce the number of parameters and,
thus, reduce the computational cost. The second is to control overfitting [9,17]. The expectation is
that an ideal pooling method extracts only useful information and discards irrelevant details [13].
In general, pooling takes two forms that are most commonly used: Max-Pooling (MaxP) and
Ave-Pooling (AveP) [9,28–33].

These forms of pooling are deterministic, efficient, and simple but have shortcomings
that hinder the learning potential of CNN. Depending on the data, Max-Pooling can erase
details from an image [9]. Hence, this happens if important details have less intensity than
insignificant details. Moreover, it generates noise accumulation, and it is not possible to
restore lost information [16]. Moreover, Max-Pooling is sensitive to overfitting the dataset
used for training and hinders generalization [34]. Average pooling, depending on the data,
can dilute the relevant details of an image. Averaging data with values far below important
details cause this action [9]. Figure 1 illustrates these shortcomings with the example of a
toy image.

Ave-Pooling Max-Pooling DWT-PoolingImage

Approximation Horizontal detail

Vertical detail Diagonal detail

Approximation Horizontal detail

Vertical detail Diagonal detail

Figure 1. Example of the shortcoming of Max and Average Pooling against the contribution of
wavelet pooling, preserving the essential features.

If we consider DWT filters as convolutional filters with predefined weights, then
we can observe that DWT is a particular case of FCN (Fully Connected Layers) without
the layers of nonlinearity. The original image can be decomposed by DWT and then
reconstructed exactly by the DWT inverse without losing information [18]. On the other
hand, the wavelet theory opens the possibility to represent the image details inside learning
CNNs, thanks to the frequency and location features generated by the wavelet transform
(see Figure 1 [17]).

3.2. Network Training and Parameter Setting

The algorithms are implemented and developed using the Python language and Keras
API with Tensorflow as Backend. Keras is one of the deep learning frameworks with tools
to create classification models. Moreover, it is an open-source project, and its manner of
programming is sequential through blocks [35]. The hardware specifications of the training
device are an Intel® Core™ i7 processor with an NVIDIA GeForce RTX™ 2080 graphics
card, 12 GB of RAM, and Ubuntu 18.04 64-bit operating system.

The base architecture is the VGG network, and it is one of the first deep models
with good results in a large-scale visual recognition challenge (ILSVRC-2014) with 92.7%
top-5 accuracy [36]. This architecture is designed to facilitate the creation of a classification
model—three convolutional blocks with their pooling layer and one classification stage. The
process is as follows: using the base VGG architecture, combined with the preprocessed
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CIFAR-10, DTD, and FMD datasets, through supervised learning. Before training our CNN,
the loss function and the optimizer need to be specified. These parameters determine how
the network weights should be updated during the training process. In order to compile
the network with Keras, we use the compile() function. Training a CNN means finding the
best set of weights to map the inputs (images) to the outputs (labels) in the training dataset
and, at the same time, in the validation dataset. Training is processed over epochs. An
epoch is an iteration through all samples of the training dataset. Moreover, it is common
for an epoch to be split into minibatches. Each minibatch consists of one or more samples.
After each batch iteration, the weights of the network will be updated. In order to train the
network with Keras, we use the fit() function. The training parameters for the proposed
models are listed in Table 1.

We perform a complete analysis with each of the proposed pooling methods: MaxP,
AveP, DWTP, DWTaP, and DWTdP. In addition, we combine them with the regularization
methods DropOut [37,38], Data Augmentation [17,39], and Batch Normalization [40,41].
In this manner, a learning model is obtained, and we can predict the objects, textures, and
materials in the dataset (test) images with better accuracy.

Table 1. Training parameters of the proposed model.

Hyperparameters

Learning rate 0.001
Minibatch 30, CIFAR-10 = 64

Loss function ‘categorical_crossentropy’
Metrics ‘acc’, ‘loss’
Epochs 500

Callbacks API 4
ModelCheckpoint Monitor = ‘val_loss’, save_best_only = True, mode = ‘min’

EarlyStopping Monitor = ‘val_acc’, patience = 15, mode = ‘max’
CVLogger ‘model_history.csv’, append = True

ReduceLROnPlateau Monitor = ‘val_los’, factor = 0.2, patience = 10, min_lr = 0.001
Optimizer SGD—Adam

3.3. Benchmark Dataset

In classification tasks, the model must be evaluated on a dataset. We have performed
our experiments on three datasets. The first dataset is CIFAR-10 [42], the second one is
the Describable Textures Dataset (DTD) [43], and the last one is Flickr Material Database
(FMD) [44]. CIFAR-10 consists of 60,000 images of 32 × 32 pixels of ten different objects.
DTD contains 47 classes of 120 images in the wild. This dataset is developed in different
uncontrolled conditions. Initially, it includes 40 training images, 40 validation images,
and 40 test images for each class. Finally, FMD is built with standard materials. It has
ten classes of 100 images, and each image is hand-picked from Flickr.com (under Creative
Commons license) to ensure a variety of lighting conditions, compositions, colors, texture,
and material subtypes.

A good practice is to split our dataset using the Hold-Out Cross-Validation sampling
technique [35]. The technique is used to test the model’s predictive performance and
how well it performs on the test or unseen data. The dataset is initially separated into
two sets: training and test; then, the training set is split into two subsets: training and
validation. The idea is that each set contains representative images of each class. Therefore,
it is achieved to have balanced sets and random. In the case of CIFAR-10, the test set is
initially left with approximately 16.66%, and the training set is divided into two subsets
with the same distribution of images: training 80% and validation 20%. For DTD and FMD,
the distribution is different because the dataset is small. The test set contains 15% of the
data. Therefore, the rest is divided into the training subset with 82% and the validation
subset with 18% of the data.

The images have dimensions of 224 × 224 pixels, except for the CIFAR-10 dataset,
which has dimensions of 32 × 32 pixels. Following convention, it is helpful to normalize
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the pixel values to a range of 0 to 1 for our model to converge quickly because the inputs
with large integer values can slow down the learning process. The number of images per
class is shown in Table 2. As observed, the last two datasets have a few images, but one
advantage is that they have a balance between the number of images per class.

Table 2. The number of images per class.

Dataset Classes Images per Class Training Validation Test

CIFAR-10 10 10,000 40,000 10,000 10,000
DTD 47 120 3931 863 846
FMD 10 100 700 150 150

3.4. Evaluation Index

To quantitatively evaluate the classification model based on the combination of deep
neural networks with pooling methods, this paper adopts the metrics Accuracy, Recall,
Precision, F1, and the confusion matrix to evaluate the classification index [45]. Accuracy
measures the percentage of cases that the model predicted correctly. In this case, it func-
tions well because the classes are correctly balanced. The indicators are calculated from
Equations (4)–(7):

Acc =
TP

Total number of images
(4)

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

F1 = 2 ∗ P ∗ R
P + R

(7)

where TP is the number of positive samples correctly predicted, and FP is the number of
samples where negative samples are predicted as positive. FN is the number of positive
samples that are predicted as negative samples. The Scikit learn library provides us with a
classification report to evaluate the quality of the predictions of a classification algorithm.
The method shows us the main classification metrics (classification_report).

4. Proposed Method

The design of an effective model for texture and material classification considers
several issues: CNN architecture, dataset, regularization methods, model accuracy, and
information pooling. The proposed wavelet pooling method mainly focuses on improving
the model’s classification performance. Moreover, the wavelet pooling method reduces the
artifacts that result during a dimension reduction in feature maps. Our approach preserves
the significant features that traditional methods cannot retain. To evaluate our approach
(DWTP) and to have the effect of each pooling method concerning the dataset, we outline
the main steps below:

1. We decided to involve digital images containing mainly textures and materials for
the CNN training. Textures and materials are key features for evaluating the pooling
method against a loss of information with repetitive patterns.

2. Each dataset being evaluated is divided into three parts: training, validation, and test.
A higher distribution percentage for the training set and the remaining percentages
for the validation and test sets are similar. This is a good practice in state-of-the-art
CNNs [35].

3. An approximate version of the VGG16 architecture is used in the CNN design but
with only three convolutional blocks. In addition, a classification block is proposed
for our research case. The training hyperparameters are described in Table 1.
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4. The configuration for pooling inside each convolutional block of the CNN (Block.CX)
permits a reduction in the feature map. This initial configuration depends on the
selection of the pooling method. Therefore, we have at our disposal Ave and Max
Pooling, the proposed DWTP method, and the complementary versions DWTaP
and DWTdP.

5. The evaluation stage includes the analysis of the classifier with the accuracy metric be-
cause it allows us to evaluate the performance of the model and its learning behavior.

6. Finally, we use regularization methods to improve the performance of the model.

The main contribution is to perform pooling (as a layer) inside the CNN using a
level-based decomposition approach. Hence, the proposed approach (DWTP) concatenates
the sub-images xLL, xLH , xHL and xHH , given Equation (3). From this approach, we obtain
two configurations. The first configuration (DWTaP) uses only the first level approximation
sub-band xLL, and the second approach (DWTdP) uses all the first level detail sub-bands.
The traditional methods (AveP–MaxP) are implemented with the Keras and TensorFlow
methods. The diagram of the proposed methodology is presented in Figure 2.

Dataset
CIFAR10 - DTD47 – FMD10

• Trainig set
• Validation Set
• Test set

Regularization methods
Base VGG3

Block.C1 Block.C2

Block.C3

C
N

N
 F

e
at

u
re

s

Fl
at

te
n

FL
C

So
ft

m
ax

Block.Prediction

Block.Classification
Block.Feature
Extraction

+DropOut
+DataAugmentation
+BatchNormalization

1. Max-Pooling
2. Ave-Pooling
3. DWT-Pooling
4. DWTa-Pooling
5. DWTd-Pooling

Classifier
evaluation
(Accuracy)

Pooling

Figure 2. Block diagram for the proposed methodology.

5. Experimental Results

The different classification models created allow us to analyze the contribution of
wavelet pooling; in this case, we can analyze images with objects, textures, and materials.
We can also observe the learning curve of the proposed pooling methods. Furthermore,
we incorporate regularization methods for image classification to improve the model’s
learning capability. The experiments obtained using the three proposed regularization
techniques are shown in Figures A1 and A2 in Appendix A, based on the VGG architecture
and the pooling method. In this manner, a complete analysis of the performance of the
classifier is provided.

5.1. Model Training Results and Analysis

In order to perform efficiency testing of each pooling method on each dataset, we
use an initial configuration where each pooling layer inside the architecture has only
one pooling method at a time. All pooling methods use a 2 × 2 window to perform the
comparison with the proposed method.

5.1.1. Image Classification CIFAR-10

The first dataset we used is CIFAR-10, with a set of 60,000 images. Table 3 shows that
our proposed method outperforms all methods. In this sense, the DWTaP combination uses
only the approximation information. In addition, we retain the number of parameters to be
trained. Figure 3 shows the learning curves of the pooling methods for CIFAR-10. In this
case, it is observed that MaxP and DWTaP resist overfitting; moreover, it shows a slower
tendency to learn in both sets. AveP maintains a consistent learning progression in both sets,
but accuracy does not improve after epoch 50. In DWTP, it shows the smoothest drop-in
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learning. It also achieves the best accuracy performance for the training set. DWTdP shows
a rapid decrease during learning, which does not resist overfitting after epoch 70.
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Figure 3. Learning behavior on CIFAR-10 training and validation sets.
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Table 3. Performance of pooling methods on CIFAR-10.

Method Trainable
Params Loss Acc Val_Loss Val_Acc Test_Loss Test_Acc

MaxP 545,206 0.2741 0.9069 0.3058 0.8990 0.3365 0.8913
AveP 545,206 0.3220 0.8906 0.3296 0.8932 0.3493 0.8850
DWTP 1,558,966 0.1958 0.9330 0.3181 0.9020 0.3461 0.8946
DWTaP 545,206 0.2568 0.9126 0.2970 0.9067 0.3208 0.8970
DWTdP 1,221,046 0.3678 0.8735 0.4040 0.8701 0.4207 0.8672

The correlation of each class with their actual and predicted label for each model is
shown in Figure A3 in Appendix B, which shows the multiple confusion matrix. Moreover,
the classification report with the evaluation metrics for CIFAR-10 is shown in Table A1
of Appendix C.

5.1.2. Image Classification with Textures DTD

The second dataset we use is DTD, with 47 classes of different textures. Note that it
has only 120 images for each category, which may cause overfitting in the model. Thus,
the proposed method is also a solution when you have a small dataset. In this case, we
performed two experiments by varying the training optimizer. First, we use SGD as the
optimizer. Table 4 shows that our proposed DWTP method using its DWTaP configuration
outperforms all the methods. In addition, we retain similitude in all three sets: training
(37.40%), validation (31.17%), and test (34.16%). The DWTaP model obtained with this
configuration is shown in Figure A4 of Appendix B, which shows the correlation of each
class with its actual and predicted label. Based on this result, we decided to use the
following optimizer to improve classification performances.

Table 4. Performance of pooling methods on DTD - SGD optimizer.

Method Trainable
Params Loss Acc Val_Loss Val_Acc Test_Loss Test_Acc

MaxP 12,344,831 2.5715 0.3176 2.9217 0.2480 2.8203 0.2742
AveP 12,344,831 1.7849 0.5024 2.4606 0.3766 2.3937 0.3865
DWTP 48,748,031 1.8842 0.4817 2.4958 0.3685 2.4415 0.3924
DWTaP 12,344,831 2.3214 0.3740 2.7459 0.3117 2.6390 0.3416
DWTdP 36,613,631 3.5035 0.1069 3.4968 0.1136 3.4817 0.1288

In the second experiment, we use an Adam-an extension of stochastic gradient descent.
Table 5 shows that our proposed DWTaP method and MaxP exhibit the best classification
performance on all three data sets. In this case, we consider a change in the optimizer that
resulted in an essential factor for learning MaxP. Figure 4 shows the learning curves of
the pooling methods for DTD. Here, MaxP shows a smooth learning decay and similar
behavior between the two sets. It also resists overfitting, managing to have good accuracy
performance. AveP and DWTP maintain a consistent learning progression, and their
validation sets progress at a similar rate but does not resist overfitting. The learning rate of
DWTaP resists overfitting in both sets, achieving one of the best accuracy performances.
DWTdP shows a slow learning behavior; thus, the learning rate does not improve after
epoch 28.
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Table 5. Performance of pooling methods on DTD—Adam optimizer.

Method Trainable
Params Loss Acc Val_Loss Val_Acc Test_Loss Test_Acc

MaxP 12,344,831 1.7423 0.5225 2.1863 0.4426 2.1376 0.4350
AveP 12,344,831 1.6607 0.5324 2.1816 0.4345 2.1934 0.4184
DWTP 48,748,031 1.4055 0.5922 2.0647 0.4855 2.0195 0.4799
DWTaP 12,344,831 1.6408 0.5329 2.2657 0.4484 2.2878 0.4302
DWTdP 36,613,631 3.3241 0.1356 3.3666 0.1425 3.3205 0.1536

The DWTaP and MaxP learning models obtained with this configuration are shown in
Figure A5 of Appendix B, which summarizes the level of success of the classification model
predictions. Moreover, the classification reports obtained with both configurations (SGD
and Adam) for DTD are shown in Appendix C and Tables A2 and A3.
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Figure 4. Learning behavior on DTD training and validation sets—Adam optimizer.
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5.1.3. Image Classification with Materials FMD

The third dataset we used is FMD with ten classes of different materials. Moreover, it
is a small dataset since it only has 100 images per class. Likewise, we performed two exper-
iments: the first with the SGD optimizer and the second with the Adam optimizer. Table 6
shows that our proposed DWTP method using its DWTdP configuration outperforms all
methods. In addition, we retain a similitude in the three sets: training (16.87%), validation
(18.67%), and test (14.00%). The DWTdP model obtained with this configuration is shown
in Figure A6 of Appendix B, which shows the correlation of each class with its actual and
predicted label.

Table 6. Performance of pooling methods on FMD—SGD optimizer.

Method Trainable
Params Loss Acc Val_Loss Val_Acc Test_Loss Test_Acc

MaxP 12,341,686 2.6234 0.2239 2.4013 0.1667 2.4426 0.1333
AveP 12,341,686 1.7555 0.4369 2.2773 0.2067 2.3420 0.2467
DWTP 48,744,886 1.5113 0.4896 2.0208 0.3533 2.1488 0.2867
DWTaP 12,341,686 1.3802 0.5101 2.1916 0.3267 2.3301 0.3066
DWTdP 36,610,486 3.0464 0.1687 2.3172 0.1867 2.4176 0.1400

The change of the optimizer, in this case, was beneficial for AveP learning. Table 7
shows that our proposed DWTdP method and AveP exhibit the best classification perfor-
mance on all three datasets. Figure 5 shows the learning curves of the pooling methods
for FMD. In this case, MaxP shows a smooth learning descent and similar behavior be-
tween the two sets, but after epoch 22, it does not resist overfitting. AveP achieves the
best performance at epoch 17, avoiding overfitting in the following epochs. DWTP and
DWTaP maintain a consistent learning progression, and their validation sets progress at
a similar rate but does not resist overfitting. DWTdP shows a slow learning trend in the
early epochs, but after epoch 15, the learning rate improves, and the sets evolve at a similar
rate, achieving good accuracy performance.

Table 7. Performance of pooling methods on FMD—Adam optimizer.

Method Trainable
Params Loss Acc Val_Loss Val_Acc Test_Loss Test_Acc

MaxP 12,341,686 1.4713 0.4821 2.0068 0.2867 2.1222 0.2867
AveP 12,341,686 1.9043 0.3594 2.2249 0.3267 2.0981 0.3000
DWTP 48,744,886 1.3116 0.5493 2.0832 0.3200 2.0667 0.3133
DWTaP 12,341,686 1.4319 0.5108 2.0566 0.3667 2.0717 0.2866
DWTdP 36,610,486 2.1660 0.2239 2.1728 0.2600 2.2071 0.2199

The DWTdP and AveP learning models obtained with this configuration are shown in
Figure A7 of Appendix B, which summarizes the level of success of the classification model
predictions. Moreover, the classification reports obtained with both configurations (SGD
and Adam) for FMD are shown in Tables A4 and A5 of Appendix C.
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Figure 5. Learning behavior on FMD training and validation sets—Adam optimizer.

6. Discussion

Even though CNNs have established their position in image analysis and the different
elements that are considered to improve classification performance and that these are
well known in the literature, only a few experiments have been conducted by taking into
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account the pooling layers. In Figures 3–5, we illustrate the learning behavior of each
model and for each pooling method. From the Figures, it is clear that the DWTP versions
of the model behavior in both training sets are uniformly distributed. That is, the learning
curve remains stable and shows a similar generalization in all three training sets. When
the optimizer change is proposed, the results are very similar for the DWTP versions.
Moreover, it achieves increased classification performance for both the proposed version
and the traditional methods.

Furthermore, Table 8 contains the results of comparison of our proposals with other
methods proposed by Fujieda et al. [7] and Andrearczyk et al. [8], where the accuracy
rate for the models trained from scratch on the DTD dataset is evaluated. The bold values
shown in Table 8 indicate that our results are quite comparable with those of the other
methods. Moreover, it shows the number of synaptic weights to be trained. The results
show that our proposals are computationally lightweight. In a general manner, we can
observe the algorithm’s efficiency for CIFAR-10 in Table 3. Currently, this dataset can be
compared in the literature because it is one of the most important in the Deep Learning
area. As for FMD, we can mention that there are algorithms with a performance above that
obtained; however, it differs from the central concept in combining both approaches and
considering the wavelet pooling method.

Table 8. Performance evaluation and comparison with other methods indicated as accuracy
(%)—DTD dataset.

Test1 Test2
Method T-CNN Wavelet CNN DWTaP MaxP DWTaP

Trainable params (millions) 23.4 14.1 12.3 12.3 12.3
DTD (%) 0.2780 0.3560 0.3416 0.4350 0.4302

On the other hand, Tables 4–7 show that the loss metric achieves a high index in the
training sets compared to Table 3; this learning behavior is because the sets being evaluated
are different. In this case, we have a CIFAR-10 with more than 1000 images per class, unlike
for the sets with small data such as DTD and FMD. Therefore, the size of the dataset is
one more parameter to consider for the contribution of our research, where overfitting is
prevented, and we can maintain a similitude in the accuracy of the model.

In this context, it is observed that we analyzed the impact of considering DWTP and
its different configurations inside CNN learning through the different experiments. Our
main observations are as follows: (a) To consider a DWTP configuration in the learning
stage that presents a learning uniformity; (b) the use of a DWTP configuration to reduce
the number of features is desirable to preserve relevant information; and (c) although some
tests upon optimizer change have a good response towards other methods, the DWTP
method also increases its classification performance. However, we note that this approach
depends on the dataset’s type.

7. Conclusions

We have presented wavelet pooling (DWTP, DWTaP, and DWTdP), a pooling method
capable of preserving useful information to improve the classification performance of
textures and materials in images. Wavelet pooling is introduced inside the proposed VGG
architecture as a layer. This layer performs the same function as the traditional methods;
however, the difference is that instead of using a subsampling technique on neighborhood
regions, this technique is based on the multilevel decomposition of the input image using
wavelet analysis. As a result, four new subsets of features contribute to model learning:
approximation, vertical details, diagonal details, and horizontal details.

We demonstrate that the wavelet pooling method achieves acceptable classification
performance. Moreover, wavelet pooling achieves matching and outperforms some tra-
ditional methods used in CNN learning. Our proposed method outperforms all others
on the CIFAR-10 dataset with 89.70% on the test set. The DTD dataset shares a similar
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performance when changing the optimizer with 43%. In the case of the FMD set, the perfor-
mance achieved was 22% in the detailed version and 30% with the Ave method, possessing
similarities in its three training sets. The integration of DropOut, Data Augmentation,
and Batch Normalization also positively reacts to the proposed methods, improving the
classification performance.

The proposed methodology in its decomposition stage can result in a better reduction
in image features. In addition, sub-bands at different levels can be considered in learning
and could result in better accuracy. The results show that some methods perform better
than others depending on the dataset, hyperparameter configurations, and the design of
the CNN architecture.

On the other hand, CNN is characterized by the random aspect in the election of filters
of the convolution layers. Therefore, as a further investigation, we can add stability in the
selected filters inside the pooling layer.

This approach will allow us in the future to test other texture features and change
the wavelet base to analyze which base works best for pooling. Moreover, the proposed
architecture and pooling method can be applied in pattern recognition, classification tasks,
and object detection in aerial robotics. Therefore, this is ideal for designing an object
classification system for aerial navigation, where the main feature is the analysis of repet-
itive patterns such as textures. Furthermore, we will investigate possible methods to
improve the architecture in order to reduce computational costs while preserving classifica-
tion performances.
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Appendix A. Training Process Using Regularization Techniques and Pooling

Appendix A.1. DTD Dataset
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Figure A1. Learning behavior for baseline architecture + pooling, increasing DropOut, Data Aug-
mentation, and Batch Normalization—DTD dataset.
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Appendix A.2. FMD Dataset
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Figure A2. Learning behavior for baseline architecture + pooling, increasing DropOut, Data Aug-
mentation, and Batch Normalization—FMD dataset.

Appendix B. Multiple Confusion Matrix

The multiple confusion matrix is an N × N table that summarizes the level of success
in the predictions of a classification model: that is, the correlation between the label and
the classification of the model.
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Appendix B.1. CIFAR-10 Dataset
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Figure A3. In this case, each confusion matrix correlates with the five models obtained for the
CIFAR-10 dataset.
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Appendix B.2. DTD Dataset
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Figure A4. Experiment 1 with SGD Optimizer—the confusion matrix correlates with the best model
(DWTaP) obtained for the DTD dataset.
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Figure A5. Cont.
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Figure A5. Experiment 2 with Adam Optimizer—the confusion matrix correlates with the two best
models (MaxP and DWTaP) for the DTD dataset.

Appendix B.3. FMD Dataset
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Figure A6. Experiment 1 with SGD Optimizer—The confusion matrix correlates with the best model
(DWTdP) obtained for the FMD dataset.
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Figure A7. Experiment 2 with Adam Optimizer—the confusion matrix correlates with the two best
models (AveP and DWTdP) for the DTD dataset.

Appendix C. Classification Report with Evaluation Metrics

Appendix C.1. CIFAR-10 Dataset

Table A1. Classification report for CIFAR-10 dataset. In this case, each pooling method is evaluated
considering DropOut, Data Augmentation, and Batch Normalization.

Method MaxP AveP DWTP DWTaP DWTdP

Class P R F1 P R F1 P R F1 P R F1 P R F1 Test

airplane 0.89 0.92 0.90 0.86 0.93 0.89 0.92 0.90 0.90 0.90 0.90 0.90 0.86 0.90 0.88 1000
automobile 0.92 0.97 0.95 0.93 0.96 0.94 0.94 0.97 0.95 0.93 0.97 0.95 0.92 0.96 0.94 1000

bird 0.87 0.84 0.86 0.87 0.83 0.85 0.85 0.85 0.85 0.88 0.83 0.86 0.83 0.80 0.81 1000
cat 0.81 0.75 0.78 0.78 0.77 0.77 0.81 0.77 0.78 0.80 0.79 0.79 0.75 0.72 0.73 1000

deer 0.88 0.90 0.89 0.89 0.86 0.87 0.89 0.88 0.89 0.86 0.92 0.89 0.84 0.89 0.86 1000
dog 0.85 0.82 0.83 0.88 0.78 0.83 0.84 0.84 0.84 0.86 0.83 0.84 0.82 0.75 0.78 1000
frog 0.87 0.95 0.91 0.88 0.78 0.83 0.89 0.95 0.92 0.92 0.94 0.93 0.88 0.91 0.89 1000

horse 0.92 0.92 0.92 0.88 0.94 0.91 0.94 0.93 0.93 0.93 0.94 0.93 0.90 0.91 0.90 1000
ship 0.96 0.91 0.94 0.95 0.92 0.93 0.94 0.94 0.94 0.95 0.93 0.94 0.94 0.92 0.93 1000
truck 0.94 0.93 0.94 0.91 0.93 0.92 0.94 0.94 0.94 0.93 0.94 0.93 0.93 0.92 0.93 1000
Acc 0.89 0.89 0.89 0.90 0.87 10,000
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Appendix C.2. DTD Dataset

Table A2. Experiment 1 with SGD Optimizer—classification report for the DTD dataset.

Method MaxP AveP DWTP DWTaP DWTdP

Class P R F1 P R F1 P R F1 P R F1 P R F1 Test

band 0.67 0.44 0.53 0.75 0.50 0.60 0.71 0.56 0.63 0.83 0.56 0.67 0.12 0.06 0.08 18
blot 0.00 0.00 0.00 0.33 0.06 0.10 0.08 0.06 0.06 0.13 0.11 0.12 0.00 0.00 0.00 18
brai 0.17 0.06 0.08 0.13 0.11 0.12 0.29 0.11 0.16 0.10 0.06 0.07 0.11 0.06 0.07 18

bubb 0.17 0.06 0.08 0.64 0.39 0.48 0.30 0.33 0.32 0.20 0.17 0.18 0.10 0.11 0.11 18
bump 0.73 0.44 0.55 0.43 0.17 0.24 0.00 0.00 0.00 1.00 0.17 0.29 0.00 0.00 0.00 18
cheq 0.48 0.67 0.56 0.75 0.50 0.60 0.65 0.61 0.63 0.69 0.50 0.58 0.33 0.33 0.33 18
cobw 0.48 0.67 0.56 0.68 0.72 0.70 0.52 0.72 0.60 0.61 0.61 0.61 0.12 0.06 0.08 18
crac 0.45 0.28 0.34 0.33 0.44 0.38 0.33 0.44 0.38 0.29 0.33 0.31 0.11 0.11 0.11 18
cros 0.16 0.44 0.24 0.36 0.56 0.43 0.24 0.50 0.33 0.27 0.67 0.38 0.00 0.00 0.00 18
crys 0.35 0.33 0.34 0.60 0.50 0.55 0.53 0.44 0.48 0.29 0.33 0.31 0.11 0.11 0.11 18
dott 0.80 0.22 0.35 0.15 0.11 0.13 0.42 0.28 0.33 0.50 0.28 0.36 0.00 0.00 0.00 18
fibr 0.17 0.28 0.21 0.41 0.39 0.40 0.35 0.44 0.39 0.30 0.39 0.34 0.12 0.33 0.18 18
flec 0.15 0.44 0.22 0.13 0.39 0.19 0.18 0.17 0.17 0.17 0.56 0.26 0.10 0.17 0.13 18
frec 0.43 0.56 0.49 0.64 0.78 0.70 0.93 0.78 0.85 0.50 0.72 0.59 0.21 0.67 0.32 18
fril 0.21 0.22 0.22 0.53 0.44 0.48 0.60 0.50 0.55 0.36 0.28 0.31 0.00 0.00 0.00 18

gauz 0.38 0.17 0.23 0.32 0.33 0.32 0.39 0.39 0.39 0.45 0.28 0.34 0.10 0.22 0.14 18
grid 0.14 0.06 0.08 0.36 0.44 0.40 0.40 0.56 0.47 0.40 0.56 0.47 0.00 0.00 0.00 18
groo 0.18 0.33 0.23 0.17 0.39 0.24 0.32 0.61 0.42 0.22 0.44 0.29 0.00 0.00 0.00 18
hone 0.50 0.06 0.10 0.50 0.17 0.25 0.42 0.28 0.33 0.00 0.00 0.00 0.00 0.00 0.00 18
inte 0.36 0.28 0.31 0.40 0.44 0.42 0.38 0.44 0.41 0.83 0.28 0.42 0.17 0.06 0.08 18
knit 0.13 0.50 0.21 0.43 0.56 0.49 0.57 0.44 0.50 0.25 0.56 0.34 0.00 0.00 0.00 18
lace 0.14 0.28 0.18 0.29 0.33 0.31 0.22 0.44 0.30 0.24 0.72 0.36 0.07 0.17 0.10 18
line 0.41 0.72 0.52 0.52 0.67 0.59 0.53 0.56 0.54 0.71 0.56 0.63 0.11 0.06 0.07 18

marb 0.21 0.33 0.26 0.43 0.33 0.38 0.23 0.28 0.25 0.25 0.17 0.20 0.06 0.11 0.07 18
matt 0.29 0.44 0.35 0.35 0.39 0.37 0.40 0.33 0.36 0.36 0.28 0.31 0.07 0.22 0.11 18
mesh 0.50 0.06 0.10 0.50 0.17 0.25 0.50 0.44 0.47 0.20 0.06 0.09 0.17 0.06 0.08 18
pais 0.19 0.22 0.21 0.34 0.72 0.46 0.31 0.56 0.40 0.33 0.44 0.38 0.50 0.06 0.10 18
perf 0.40 0.22 0.29 0.46 0.33 0.39 0.35 0.44 0.39 0.46 0.33 0.39 0.50 0.06 0.10 18
pitt 0.24 0.33 0.28 0.00 0.00 0.00 0.25 0.22 0.24 0.24 0.22 0.23 0.00 0.00 0.00 18
plea 0.60 0.17 0.26 0.30 0.33 0.32 0.37 0.56 0.44 0.75 0.17 0.27 0.00 0.00 0.00 18
polk 0.50 0.17 0.25 0.42 0.56 0.48 0.62 0.56 0.59 0.56 0.28 0.37 0.00 0.00 0.00 18
poro 0.05 0.06 0.05 0.50 0.28 0.36 0.13 0.11 0.12 0.17 0.22 0.19 0.07 0.17 0.10 18
poth 0.26 0.44 0.33 0.38 0.67 0.48 0.45 0.72 0.55 0.31 0.89 0.46 0.07 0.39 0.12 18
scal 0.00 0.00 0.00 0.33 0.11 0.17 0.22 0.11 0.15 0.00 0.00 0.00 0.12 0.06 0.08 18

smea 0.00 0.00 0.00 0.22 0.11 0.15 0.14 0.11 0.12 0.20 0.06 0.09 0.00 0.00 0.00 18
spir 0.50 0.11 0.18 0.20 0.11 0.14 0.30 0.17 0.21 0.25 0.22 0.24 0.36 0.22 0.28 18
spri 0.75 0.17 0.27 0.50 0.33 0.40 0.50 0.33 0.40 0.33 0.11 0.17 1.00 0.06 0.11 18
stai 0.10 0.17 0.12 0.17 0.06 0.08 0.25 0.17 0.20 0.22 0.28 0.24 0.22 0.33 0.27 18
stra 0.31 0.50 0.38 0.38 0.67 0.48 0.40 0.56 0.47 0.24 0.28 0.26 0.00 0.00 0.00 18
stri 0.81 0.72 0.76 0.55 0.67 0.60 0.73 0.61 0.67 0.75 0.67 0.71 0.25 0.28 0.26 18

stud 0.64 0.50 0.56 0.60 0.67 0.63 0.55 0.61 0.58 0.64 0.39 0.48 0.20 0.50 0.28 18
swir 0.50 0.11 0.18 0.29 0.22 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18
vein 0.25 0.28 0.26 0.43 0.33 0.38 0.46 0.33 0.39 0.75 0.17 0.27 0.14 0.28 0.19 18
waff 0.55 0.67 0.60 0.79 0.61 0.69 0.52 0.78 0.62 0.52 0.67 0.59 0.25 0.56 0.34 18
wove 0.25 0.22 0.24 0.40 0.56 0.47 0.45 0.50 0.47 0.39 0.50 0.44 0.14 0.22 0.17 18
wrin 0.00 0.00 0.00 0.30 0.17 0.21 0.20 0.06 0.09 0.29 0.11 0.16 0.00 0.00 0.00 18
zigz 0.18 0.11 0.14 0.30 0.39 0.34 0.27 0.22 0.24 0.42 0.44 0.43 0.00 0.00 0.00 18
Acc 0.27 0.39 0.39 0.34 0.13 846
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Table A3. Experiment 2 with Adam Optimizer—classification report for the DTD dataset.

Method MaxP AveP DWTP DWTaP DWTdP

Class P R F1 P R F1 P R F1 P R F1 P R F1 Test

band 0.65 0.72 0.68 0.71 0.67 0.69 0.82 0.78 0.80 0.75 0.50 0.60 0.21 0.33 0.26 18
blot 0.50 0.06 0.10 0.10 0.06 0.07 0.22 0.11 0.15 0.33 0.22 0.27 0.00 0.00 0.00 18
brai 0.23 0.17 0.19 0.00 0.00 0.00 0.16 0.17 0.16 0.25 0.11 0.15 0.00 0.00 0.00 18

bubb 0.54 0.39 0.45 0.43 0.17 0.24 0.40 0.44 0.42 0.47 0.39 0.42 0.00 0.00 0.00 18
bump 0.18 0.17 0.17 0.18 0.11 0.14 0.25 0.06 0.09 0.38 0.17 0.23 0.00 0.00 0.00 18
cheq 0.65 0.72 0.68 0.60 0.67 0.63 0.93 0.72 0.81 0.76 0.72 0.74 0.42 0.28 0.33 18
cobw 0.65 0.83 0.73 0.67 0.89 0.76 0.61 0.94 0.74 0.52 0.78 0.62 0.29 0.11 0.16 18
crac 0.39 0.61 0.48 0.55 0.61 0.58 0.77 0.56 0.65 0.38 0.56 0.45 0.33 0.11 0.17 18
cros 0.39 0.61 0.48 0.23 0.50 0.31 0.40 0.44 0.42 0.34 0.61 0.44 0.00 0.00 0.00 18
crys 0.59 0.56 0.57 0.47 0.50 0.49 0.44 0.78 0.56 0.42 0.44 0.43 0.14 0.28 0.19 18
dott 0.62 0.28 0.38 0.45 0.28 0.34 0.36 0.22 0.28 0.50 0.28 0.36 0.00 0.00 0.00 18
fibr 1.00 0.33 0.50 0.53 0.50 0.51 0.65 0.61 0.63 0.60 0.50 0.55 0.09 0.17 0.12 18
flec 0.32 0.39 0.35 0.15 0.28 0.20 0.30 0.39 0.34 0.32 0.33 0.32 0.21 0.22 0.22 18
frec 0.88 0.83 0.86 0.74 0.78 0.76 0.88 0.83 0.86 0.68 0.83 0.75 0.17 0.44 0.25 18
fril 0.59 0.56 0.57 0.58 0.39 0.47 0.53 0.56 0.54 0.80 0.44 0.57 0.08 0.06 0.06 18

gauz 0.38 0.28 0.32 0.39 0.39 0.39 0.28 0.28 0.28 0.58 0.39 0.47 0.12 0.28 0.17 18
grid 0.56 0.56 0.56 0.56 0.56 0.56 0.41 0.67 0.51 0.33 0.44 0.38 0.00 0.00 0.00 18
groo 0.25 0.39 0.30 0.32 0.50 0.39 0.37 0.39 0.38 0.27 0.44 0.33 0.00 0.00 0.00 18
hone 0.29 0.39 0.33 0.47 0.44 0.46 0.24 0.28 0.26 0.33 0.33 0.33 0.00 0.00 0.00 18
inte 0.36 0.56 0.43 0.41 0.39 0.40 0.50 0.67 0.57 0.53 0.50 0.51 0.25 0.06 0.09 18
knit 0.45 0.56 0.50 0.36 0.67 0.47 0.50 0.50 0.50 0.50 0.44 0.47 0.17 0.28 0.21 18
lace 0.33 0.44 0.38 0.37 0.39 0.38 0.50 0.56 0.53 0.24 0.44 0.31 0.12 0.39 0.19 18
line 0.65 0.61 0.63 0.57 0.72 0.63 0.72 0.72 0.72 0.62 0.72 0.67 0.44 0.39 0.41 18

marb 0.43 0.17 0.24 0.26 0.28 0.27 0.43 0.33 0.38 0.36 0.22 0.28 0.10 0.17 0.12 18
matt 0.48 0.61 0.54 0.41 0.39 0.40 0.57 0.44 0.50 0.50 0.17 0.25 0.08 0.28 0.12 18
mesh 0.33 0.22 0.27 0.43 0.33 0.38 0.55 0.33 0.41 0.43 0.33 0.38 0.20 0.11 0.14 18
pais 0.45 0.50 0.47 0.41 0.72 0.52 0.48 0.67 0.56 0.43 0.50 0.46 0.29 0.22 0.25 18
perf 0.33 0.39 0.36 0.50 0.50 0.50 0.35 0.44 0.39 0.34 0.56 0.43 0.00 0.00 0.00 18
pitt 0.14 0.06 0.08 0.25 0.28 0.26 0.13 0.11 0.12 0.15 0.11 0.13 0.17 0.06 0.08 18
plea 0.53 0.50 0.51 0.44 0.39 0.41 0.32 0.44 0.37 0.37 0.39 0.38 0.25 0.11 0.15 18
polk 0.48 0.67 0.56 0.50 0.61 0.55 0.44 0.44 0.44 0.53 0.56 0.54 0.00 0.00 0.00 18
poro 0.36 0.28 0.31 0.17 0.06 0.08 0.29 0.28 0.29 0.17 0.28 0.21 0.06 0.11 0.08 18
poth 0.53 0.50 0.51 0.45 0.56 0.50 0.65 0.61 0.63 0.54 0.72 0.62 0.11 0.50 0.18 18
scal 0.29 0.33 0.31 0.33 0.22 0.27 0.46 0.67 0.55 0.35 0.33 0.34 0.00 0.00 0.00 18

smea 0.00 0.00 0.00 0.08 0.06 0.06 0.12 0.06 0.08 0.18 0.11 0.14 0.00 0.00 0.00 18
spir 0.19 0.17 0.18 0.23 0.17 0.19 0.50 0.28 0.36 0.28 0.28 0.28 0.33 0.11 0.17 18
spri 0.56 0.28 0.37 0.57 0.22 0.32 0.56 0.50 0.53 0.50 0.33 0.40 0.00 0.00 0.00 18
stai 0.56 0.28 0.37 0.32 0.33 0.32 0.57 0.44 0.50 0.33 0.33 0.33 0.17 0.22 0.19 18
stra 0.56 0.56 0.56 0.38 0.44 0.41 0.59 0.56 0.57 0.47 0.50 0.49 0.00 0.00 0.00 18
stri 0.44 0.61 0.51 0.60 0.67 0.63 1.00 0.67 0.80 0.60 0.83 0.70 0.26 0.44 0.33 18

stud 0.44 0.61 0.51 0.60 0.67 0.63 0.61 0.61 0.61 0.73 0.61 0.67 0.38 0.33 0.35 18
swir 0.33 0.44 0.38 0.43 0.33 0.38 0.41 0.39 0.40 0.35 0.39 0.37 0.00 0.00 0.00 18
vein 0.22 0.28 0.24 0.30 0.33 0.32 0.45 0.28 0.34 0.37 0.39 0.38 0.12 0.28 0.17 18
waff 0.67 0.67 0.67 0.71 0.56 0.63 0.60 0.67 0.63 0.63 0.67 0.65 0.19 0.56 0.29 18
wove 0.43 0.67 0.52 0.35 0.44 0.39 0.45 0.72 0.55 0.38 0.28 0.32 0.24 0.28 0.26 18
wrin 0.50 0.11 0.18 0.40 0.11 0.17 0.33 0.44 0.38 0.31 0.22 0.26 0.00 0.00 0.00 18
zigz 0.36 0.56 0.43 0.45 0.56 0.50 0.60 0.50 0.55 0.47 0.50 0.49 0.04 0.06 0.05 18
Acc 0.43 0.42 0.48 0.43 0.15 846
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Appendix C.3. FMD Dataset

Table A4. Experiment 1 with SGD Optimizer—classification report for the FMD dataset.

Method MaxP AveP DWTP DWTaP DWTdP

Class P R F1 P R F1 P R F1 P R F1 P R F1 Test

fabric 0.00 0.00 0.00 0.07 0.07 0.07 0.00 0.00 0.00 0.29 0.13 0.18 0.14 0.07 0.09 15
foliage 0.00 0.00 0.00 1.00 0.33 0.50 1.00 0.73 0.85 0.73 0.73 0.73 0.31 0.53 0.39 15
glass 0.00 0.00 0.00 0.33 0.07 0.11 0.12 0.07 0.09 0.38 0.20 0.26 0.00 0.00 0.00 15

leather 0.12 0.80 0.21 0.17 0.33 0.23 0.17 0.20 0.18 0.17 0.47 0.25 0.10 0.20 0.13 15
metal 0.00 0.00 0.00 0.11 0.20 0.14 0.19 0.20 0.19 0.17 0.13 0.15 0.00 0.00 0.00 15
paper 0.43 0.40 0.41 0.15 0.13 0.14 0.30 0.20 0.24 0.00 0.00 0.00 0.13 0.47 0.21 15
plastic 0.00 0.00 0.00 1.00 0.13 0.17 0.43 0.20 0.27 0.33 0.13 0.19 0.18 0.13 0.15 15
stone 0.12 0.07 0.09 0.22 0.13 0.17 0.22 0.40 0.29 0.30 0.20 0.24 0.00 0.00 0.00 15
water 0.04 0.07 0.05 0.60 0.60 0.60 0.33 0.47 0.39 0.47 0.53 0.50 0.00 0.00 0.00 15
wood 0.00 0.00 0.00 0.21 0.47 0.29 0.25 0.40 0.31 0.25 0.53 0.34 0.00 0.00 0.00 15
Acc 0.13 0.25 0.29 0.31 0.14 150

Table A5. Experiment 2 with Adam Optimizer—classification report for the FMD dataset.

Method MaxP AveP DWTP DWTaP DWTdP

Class P R F1 P R F1 P R F1 P R F1 P R F1 Test

fabric 0.06 0.07 0.06 0.20 0.07 0.10 0.06 0.07 0.06 0.11 0.13 0.12 0.00 0.00 0.00 15
foliage 0.82 0.60 0.69 0.88 0.47 0.61 0.92 0.73 0.81 1.00 0.80 0.89 0.56 0.67 0.61 15
glass 0.50 0.07 0.12 0.32 0.53 0.40 0.29 0.13 0.18 0.20 0.20 0.20 0.00 0.00 0.00 15

leather 0.12 0.13 0.12 0.17 0.27 0.21 0.13 0.13 0.13 0.21 0.33 0.26 0.00 0.00 0.00 15
metal 0.14 0.13 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.07 0.11 0.00 0.00 0.00 15
paper 0.25 0.13 0.17 0.25 0.40 0.31 0.31 0.33 0.32 0.17 0.07 0.10 0.17 0.33 0.22 15
plastic 0.25 0.07 0.11 0.33 0.20 0.25 0.33 0.20 0.25 0.36 0.27 0.31 0.11 0.07 0.08 15
stone 0.33 0.60 0.43 0.36 0.33 0.34 0.30 0.60 0.40 0.17 0.27 0.21 0.22 0.53 0.31 15
water 0.35 0.80 0.49 0.42 0.33 0.37 0.47 0.53 0.50 0.50 0.40 0.44 0.27 0.47 0.34 15
wood 0.25 0.27 0.26 0.22 0.40 0.29 0.35 0.40 0.38 0.22 0.33 0.26 0.14 0.13 0.14 15
Acc 0.29 0.30 0.31 0.29 0.22 150

References
1. Perez, L.O.R.; Carranza, J.M. Autonomous Drone Racing with an Opponent: A First Approach. Comput. Sist. 2020, 24, 1271–1279.
2. Alcalá-Rmz, V.; Maeda-Gutiérrez, V.; Zanella-Calzada, L.A.; Valladares-Salgado, A.; Celaya-Padilla, J.M.; Galván-Tejada, C.E.

Convolutional Neural Network for Classification of Diabetic Retinopathy Grade. In Proceedings of the Mexican International
Conference on Artificial Intelligence, Mexico City, Mexico, 12–17 October 2020; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 104–118.

3. Tapia-Téllez, J.M.; Escalante, H.J. Data Augmentation with Transformers for Text Classification. In Proceedings of the Mexican
International Conference on Artificial Intelligence, Mexico City, Mexico, 12–17 October 2020; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 247–259.

4. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
5. Bengio, Y.; Goodfellow, I.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2017; Volume 1.
6. Vassilieva, N.S. Content-based image retrieval methods. Program. Comput. Softw. 2009, 35, 158–180. [CrossRef]
7. Fujieda, S.; Takayama, K.; Hachisuka, T. Wavelet convolutional neural networks. arXiv 2018, arXiv:1805.08620.
8. Andrearczyk, V.; Whelan, P.F. Using filter banks in convolutional neural networks for texture classification. Pattern Recognit. Lett.

2016, 84, 63–69. [CrossRef]
9. Williams, T.; Li, R. Wavelet pooling for convolutional neural networks. In Proceedings of the International Conference on

Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
10. Mallat, S.G. Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech Signal Process.

1989, 37, 2091–2110. [CrossRef]
11. Fortuna-Cervantes, J.M.; Ramírez-Torres, M.T.; Martínez-Carranza, J.; Murguía-Ibarra, J.; Mejía-Carlos, M. Object Detection in

Aerial Navigation using Wavelet Transform and Convolutional Neural Networks: A First Approach. Program. Comput. Softw.
2020, 46, 536–547. [CrossRef]

http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1134/S0361768809030049
http://dx.doi.org/10.1016/j.patrec.2016.08.016
http://dx.doi.org/10.1109/29.45554
http://dx.doi.org/10.1134/S0361768820080113


Appl. Sci. 2022, 12, 3592 25 of 26

12. Chaabane, C.B.; Mellouli, D.; Hamdani, T.M.; Alimi, A.M.; Abraham, A. Wavelet convolutional neural networks for handwritten
digits recognition. In Proceedings of the International Conference on Hybrid Intelligent Systems, Delhi, India, 14–16 December
2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 305–310.

13. Gholamalinejad, H.; Khosravi, H. Vehicle Classification using a Real-Time Convolutional Structure based on DWT pooling layer
and SE blocks. Expert Syst. Appl. 2021, 183, 115420. [CrossRef]

14. Ferrà, A.; Aguilar, E.; Radeva, P. Multiple Wavelet Pooling for CNNs. In Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018.

15. de Souza Brito, A.; Vieira, M.B.; de Andrade, M.L.S.C.; Feitosa, R.Q.; Giraldi, G.A. Combining max-pooling and wavelet pooling
strategies for semantic image segmentation. Expert Syst. Appl. 2021, 183, 115403. [CrossRef]

16. Li, Q.; Shen, L. 3D WaveUNet: 3D Wavelet Integrated Encoder-Decoder Network for Neuron Segmentation. arXiv 2021,
arXiv:2106.00259.

17. Alijamaat, A.; NikravanShalmani, A.; Bayat, P. Multiple sclerosis lesion segmentation from brain MRI using U-Net based on
wavelet pooling. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1459–1467. [CrossRef] [PubMed]

18. Liu, P.; Zhang, H.; Lian, W.; Zuo, W. Multi-level wavelet convolutional neural networks. IEEE Access 2019, 7, 74973–74985.
[CrossRef]

19. Williams, T.; Li, R. An ensemble of convolutional neural networks using wavelets for image classification. J. Softw. Eng. Appl.
2018, 11, 69. [CrossRef]

20. Piao, J.; Chen, Y.; Shin, H. A new deep learning based multi-spectral image fusion method. Entropy 2019, 21, 570. [CrossRef]
21. De Silva, D.; Fernando, S.; Piyatilake, I.T.S.; Karunarathne, A. Wavelet based edge feature enhancement for convolutional neural

networks. In Proceedings of the Eleventh International Conference on Machine Vision (ICMV 2018), Munich, Germany, 1–3
November 2018; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 11041, p. 110412R.

22. Burrus, C.S. Introduction to Wavelets and Wavelet Transforms: A Primer; Pearson: Upper Saddle River, NJ, USA, 1997.
23. Walker, J.S. A Primer on Wavelets and Their Scientific Applications, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2008.
24. Mallat, S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell.

1989, 11, 674–693. [CrossRef]
25. Haar, A. Zur theorie der orthogonalen funktionensysteme. Math. Ann. 1910, 69, 331–371. [CrossRef]
26. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
27. Aggarwal, C.C. Neural Networks and deep Learning; Springer Nature: Berlin, Germany, 2018.
28. Williams, T.; Li, R. Advanced image classification using wavelets and convolutional neural networks. In Proceedings of the 2016

15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 18–20 December 2016;
pp. 233–239.

29. Nielsen, M.A. Neural Networks and Deep Learning; Determination Press: San Francisco, CA, USA, 2015; Volume 25.
30. Lee, C.Y.; Gallagher, P.W.; Tu, Z. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. In

Proceedings of the Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 464–472.
31. LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a

back-propagation network. Adv. Neural Inf. Process. Syst. 1989, 2, 396–404.
32. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
33. Ranzato, M.; Boureau, Y.L.; LeCun, Y. Sparse feature learning for deep belief networks. Adv. Neural Inf. Process. Syst. 2007,

20, 1185–1192.
34. Zeiler, M.D.; Ranzato, M.; Monga, R.; Mao, M.; Yang, K.; Le, Q.V.; Nguyen, P.; Senior, A.; Vanhoucke, V.; Dean, J.; et al. On

rectified linear units for speech processing. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3517–3521.

35. Chollet, F. Deep Learning with Python; Manning Publications Co.: Shelter Island, NY, USA, 2018.
36. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
37. Brigato, L.; Iocchi, L. A close look at deep learning with small data. In Proceedings of the 2020 25th International Conference on

Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 2490–2497.
38. Srivastava, N. Improving Neural Networks with Dropout. Ph.D. Dissertation, University of Toronto, Toronto, ON, Canada, 2013.
39. Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings

of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinoujscie, Poland, 9–12 May 2018; pp. 117–122.
40. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456.
41. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
42. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf (accessed on 7 March 2022).
43. Cimpoi, M.; Maji, S.; Kokkinos, I.; Mohamed, S.; Vedaldi, A. Describing textures in the wild. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3606–3613.

http://dx.doi.org/10.1016/j.eswa.2021.115420
http://dx.doi.org/10.1016/j.eswa.2021.115403
http://dx.doi.org/10.1007/s11548-021-02327-y
http://www.ncbi.nlm.nih.gov/pubmed/33928493
http://dx.doi.org/10.1109/ACCESS.2019.2921451
http://dx.doi.org/10.4236/jsea.2018.112004
http://dx.doi.org/10.3390/e21060570
http://dx.doi.org/10.1109/34.192463
http://dx.doi.org/10.1007/BF01456326
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1038/323533a0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf


Appl. Sci. 2022, 12, 3592 26 of 26

44. Sharan, L.; Rosenholtz, R.; Adelson, E. Material perception: What can you see in a brief glance? J. Vis. 2009, 9, 784. [CrossRef]
45. Lin, F.; Hou, T.; Jin, Q.; You, A. Improved YOLO Based Detection Algorithm for Floating Debris in Waterway. Entropy 2021,

23, 1111. [CrossRef] [PubMed]

http://dx.doi.org/10.1167/9.8.784
http://dx.doi.org/10.3390/e23091111
http://www.ncbi.nlm.nih.gov/pubmed/34573736

	Introduction
	Related Work
	Materials and Methods
	Wavelet Analysis
	2D Discrete Wavelet Transform
	Pooling Method

	Network Training and Parameter Setting
	Benchmark Dataset
	Evaluation Index

	Proposed Method
	Experimental Results
	Model Training Results and Analysis
	Image Classification CIFAR-10
	Image Classification with Textures DTD
	Image Classification with Materials FMD


	Discussion
	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	Appendix B
	Appendix B.1
	Appendix B.2
	Appendix B.3

	Appendix C
	Appendix C.1
	Appendix C.2
	Appendix C.3

	References

