Aptamer-Based Biosensors for the Analytical Determination of Bisphenol A in Foodstuffs
Abstract
:Featured Application
Abstract
1. Introduction
2. BPA Aptamers: Sequence and Three-Dimensional Structure
3. Aptamer-Based Biosensor Applications Tested for the Determination of BPA in Real Food Samples
4. Detection Techniques Applied in the Analysis of Real Food Samples
4.1. Electrochemical Aptasensors
4.2. Electrochemiluminescence-Based Aptasensor
4.3. Capacitive Aptasensors
4.4. Optical Aptasensors
4.5. Other Detection Techniques
Type of Aptasensor | Probe | Detection Technique | Aptamer Sequence | Food Tested for Practical Application | Recovery (%) | LOD (M) | References | |
---|---|---|---|---|---|---|---|---|
Method of Use | Type | |||||||
Electrochemical | External | [Fe(CN)6]3-/4- | Differential Pulse Voltammetry | BPA-Apt-2 | liquid milk | 96–116 | 5.0 × 10−9 | [47] |
milk powder | 90–112 | |||||||
Square Wave Voltammetry | BPA-Apt-2 | mineral water | 98.00–102.00 | 5.0 × 10−11 | [53] | |||
milk | 96–103 | |||||||
orange juice | 96–106 | |||||||
Impedance Spectroscopy | BPA-Apt-2 | milk | 92–108 | 7.2 × 10−15 | [46] | |||
Square Wave Voltammetry | BPA-Apt-2 | water | 102.6–123.6 | 3.9 × 10−10 | [50] | |||
Differential Pulse Voltammetry | BPA-Apt-2 | tap water | 88.6–97.3 | 1.5 × 10−11 | [69] | |||
grape juice | 89.5–95.8 | |||||||
Impedance Spectroscopy | BPA-Apt-2 | tap water | 94 | 8.0 × 10−17 | [69] | |||
milk | 96.0–102.0 | |||||||
Ag0/+ | Stripping Voltammetry | BPA-Apt-2 | tap water | 95.2–108.4 | 6.0 × 10−16 | [60] | ||
mineral water | 98.0–103.6 | |||||||
milk | 96.0–103.8 | |||||||
orange juice | 105.4–106.4 | |||||||
Conjugated | Acryflavine | Differential Pulse Voltammetry | BPA-Apt-2 | water | 94–103.6 | 3.5 × 10−14 | [58] | |
Intercalated | Methylene blue | Square Wave Voltammetry | BPA-Apt-2 | drinking and tap water | 99.1–103.3 | 8 × 10−15 | [70] | |
milk | 103.3–106.2 | |||||||
Biotine–avidine interaction | SHP/HQ/H2O2 | Differential Pulse Voltammetry | BPA-Apt-2 | tap water | 95–105 | 4.1 × 10−13 | [55] | |
Intarcalated | Methylene blue | Differential Pulse Voltammetry | BPA-Apt-2 | red wine | 95.0–103.0 | 4.4*10−11 | [64] | |
- | - | Capacitance | BPA-Apt-2 | canned food | 75.1–106.1 | 1.53 × 10−16 | [65] | |
Electrochemical luminescence | Conjugated | NaYF4:Yb,Er/Mn UCNPs | Chemiluminescence | BPA-Apt-2 | mineral water | 0–102.50 | 1.6 × 10−10 | [54] |
Intercalated | [Ru(phen)3]2+ | Chemiluminescence | BPA-Apt-6 | mineral water | 96–105 | 7.6 × 10−14 | [59] | |
milk | ||||||||
canned juices | ||||||||
Intercalated | [Ru(phen)3]2+ | Chemiluminescence | BPA-Apt-2 | milk | 98.4–105 | 1.5 × 10−12 | [73] | |
orange juice | 96.0–101.2 | |||||||
coconut juice | 97.3–103 | |||||||
Photo-electrochemical | Covered on the ITO electrode | Au/ZnO | Photo-induced current | BPA-Apt-2 | drinking water | 97.3–108.4 | 5.0 × 10−10 | [49] |
milk | 96.2–105.7 | |||||||
Optical | Conjugated | Cyanine dye (Cy3) | SERS | BPA-Apt-2 | tap water | not reported | 1.0 × 10−14 | [51] |
Hybridized | hetero-assembled material (nanoroad-nanoparticles) | SERS | BPA-Apt-2 | tap water | 91–95.3 | 1.64 × 10−11 | [56] | |
Conjugated | carboxyfluorescein | FRETe | BPA-Apt-2 1 | tap water | 96.8–104.0 | 2.2 × 10−10 | [52] | |
Intercalated | Tetramethylrhodamine | Fluorescence | Truncated BPA-Apt-1 2 | tap water | 95–104 | 5 × 10−7 | [77] | |
External | Berberine | Fluorescence | Modified BPA-Apt-2 3 Bisphenol A-aptamer1 4 | tap water | 92.4–102.3 | 3.2 × 10−8 | [79] | |
Incorporated into DNA sequence | Carboxyfluorescein/Dabcyl | Fluorescence | BPA-Apt-2 | milk | 96–106.4 | 5.0 × 10−14 | [78] | |
External | Cadmium Tellured Quantum Dots (CdTe QDs) | Fluorescence | BPA-Apt-2 | tap water | 95.5–102 | 8.15 × 10−12 | [75] | |
- | 4-cyano-4’-pentylbiphenyl | Polarized light microscopy | BPA-Apt-1 | orange juice | not reported | 6.0 × 10−10 | [62] | |
External | Gold nano particles (AuNPs) | Color | BPA-Apt-2 | tap water | 100.9–112.7 | 1.5 × 10−9 | [76] | |
External | Gold nano particles (AuNPs) | Color | BPA-Apt-3 | rice | not reported | 4.4 × 10−12 | [67] | |
Conjugated | AuNPs | Color | BPA-Apt-4 BPA-Apt-5 | mineral water | 98.33–102.78 | 7.60 × 10−15 BPA-Apt-4 1.441 × 10−14 BPA-Apt-5 | [46] | |
milk | 96–97.08 | |||||||
orange juice | 98.26–02.83 | |||||||
RT-qPCR | - | - | Cycle threshold (Ct) values | BPA-Apt-2 | tap water | 96.0–104.5 | 7.0 × 10−10 | [57] |
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Vogel, S. The Politics of Plastics: The Making and Unmaking of Bisphenol A Safety. Am. J. Public Health 2009, 99, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.; Raposo, A. Bisphenol A: Food Exposure and Impact on Human Health. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1503–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, A.; Chakraborty, P. A rewiev on sources and health impacts of bisphenol A. Rev. Environ. Health 2020, 35, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Geens, T.; Aerts, D. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem. Toxicol. 2012, 50, 3725–3740. [Google Scholar] [CrossRef] [PubMed]
- Pironti, C.; Ricciardi, M.; Motta, O.; Miele, Y.; Proto, A. Microplastics in the Environment: Intake through the Food. Toxics 2021, 9, 224. [Google Scholar] [CrossRef]
- Liu, X.; Shi, H.; Xie, B.; Dionysiou, D.D.; Zhao, Y. Microplastics as Both a Sink and a Source of Bisphenol A in the Marine Environment. Environ. Sci. Technol. 2019, 53, 10188–10196. [Google Scholar] [CrossRef]
- Coffin, S.S.; Huang, G.Y.; Lee, I.; Schlenk, D. Fish and Seabird Gut Conditions Enhance Desorption of Estrogenic Chemicals from Commonly-Ingested Plastic Items. Environ. Sci. Technol. 2019, 53, 4588–4599. [Google Scholar] [CrossRef]
- Barboza, L.; Cunha, S.C.; Monteiro, C.; Fernandes, J.O. Bisphenol A and its analogs in muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. J. Hazard. Mater. 2020, 393, 122419–122429. [Google Scholar] [CrossRef]
- Bakir, A.; O’Connor, I.; Rowland, S.J.; Hendriks, A.J.; Thompson, R. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environ. Pollut. 2016, 219, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Shelby, M.D. NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Bisphenol A; National Toxycology Program, Center for the Evaluation of Risks to Human Reproduction, Research Triangle Park: New York, NY, USA, 2008. [Google Scholar]
- Pivonello, C.; Muscogiuri, G. Bisphenol A: An emerging threat to female fertility. Reprod. Biol. Endocrinol. 2020, 18, 1–33. [Google Scholar] [CrossRef]
- Amir, S.; Shah, S.T.A.; Mamoulakis, C.; Docea, A.O.; Kalantzi, O.; Zachariou, A.; Calina, D.; Carvalho, F.; Sofikitis, N.; Makrigiannakis, A.; et al. Endocrine Disruptors Acting on Estrogen and Androgen Pathways Cause Reproductive Disorders. Int. J. Environ. Res. Public Health 2021, 18, 1464. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, H.; Wua, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P.W.; Petlulu, P.; Chen, X.; et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 2019, 176, 108575–108591. [Google Scholar] [CrossRef] [PubMed]
- Provvisiero, D.P.; Pivonello, C.; Muscogiuri, G.; Negri, M.; Angelis, C.D.; Simeoli, C.; Pivonello, R.; Colao, A. Influence of Bisphenol A on Type 2 Diabetes Mellitus. Int. J. Environ. Res. 2016, 13, 989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Predieri, B.; Bruzzi, P.; Bigi, E.; Ciancia, S.; Madeo, S.F.; Lucaccioni, L.; Iughetti, L. Endocrine Disrupting Chemicals and Type 1 Diabetes. Int. J. Mol. Sci. 2020, 21, 2937. [Google Scholar] [CrossRef] [PubMed]
- Braun, J. Early Life Exposure to Endocrine Disrupting Chemicals and Childhood Obesity and Neurodevelopment. Nat. Rev. Endocrinol. 2017, 13, 161–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, J.B.; Bilenberg, N.; Timmermann, C.A.G.; Jensen, R.C.; Frederiksen, H.; Andersson, A.; Kyhl, H.B.; Jensen, T.K. Prenatal exposure to bisphenol A and autistic- and ADHD-related symptoms in children aged 2 and 5 years from the Odense Child Cohort. J. Environ. Health 2021, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- The European Commision. Regulation No 2018/213 of 12 February 2018 on the use of bisphenol A in varnishes and coatings intended to come into contact with food and amending Regulation (EU) No 10/2011 as regards the use of that substance in plastic food contact materials. Off. J. Eur. Union 2018, 41, 6–12. [Google Scholar]
- The European Commision. Regulation No 1907/2006 of the European Parliament and of the Council. Off. J. Eur. Union 2006, 396, 1–831. [Google Scholar]
- Beausoleil, C.; Emond, C.; Cravedi, J.P.; Antignac, J.P.; Applanat, M. Regulatory identification of BPA as an endocrine disruptor: Context and methodology. Mol. Cell. Endocrinol. 2018, 475, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Braver-Sewradj, S.P.D.; Spronsen, R.V.; Hessel, E.V.S. Substitution of bisphenol A: A review of the carcinogenicity, reproductive toxicity, and endocrine disruption potential of alternative substances. Crit. Rev. Toxicol. 2020, 50, 128–147. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Shan, C.C.; Wanga, Y.; Qian, L.L.; Jia, D.D.; Zhang, Y.F.; Hao, X.D.; Xu, H.M. Cardiovascular toxicity and mechanism of bisphenol A and emerging risk of bisphenol S. Sci. Total Environ. 2020, 723, 137952–137962. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lehmler, H.J.; Sun, Y.; Xu, G.; Sun, Q.; Snetselaar, L.G.; Wallace, R.B.; Bao, W. Association of bisphenol A and its substitutes, bisphenol F and bisphenol S, with obesity in United States children and adolescents. Diabetes Metab. J. 2019, 49, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Pelch, K.; Wignall, J.A.; Goldstone, A.E.; Ross, P.K.; Blain, R.B.; Shapiro, A.J.; Holmgren, S.D.; Hsieh, J.H.; Svoboda, D.; Auerbach, S.S.; et al. A scoping review of the health and toxicological activity of bisphenol A (BPA) structural analogues and functional alternatives. Toxicology 2019, 424, 152235–152252. [Google Scholar] [CrossRef] [PubMed]
- Usman, A.; Ikhlas, S.; Ahmad, M. Occurrence, toxicity and endocrine disrupting potential of Bisphenol-B and Bisphenol-F: A mini-review. Toxicol. Lett. 2019, 312, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Andújar, N.; Gálvez-Ontiveros, Y.; Zafra-Gómez, A.; Rodrigo, L.; Álvarez-Cubero, M.J.; Aguilera, M.; Monteagudo, C.; Rivas, A.A. Bisphenol A Analogues in Food and Their Hormonal and Obesogenic Effects: A Review. Nutrients 2019, 11, 2136. [Google Scholar] [CrossRef] [Green Version]
- Serra, H.; Beausoleil, C.; Habert, R.; Minier, C.; Picard-Hagen, N.; Michel, C. Evidence for Bisphenol B Endocrine Properties: Scientific and Regulatory Perspectives. Environ. Health Perspect. 2019, 127, 106001–106014. [Google Scholar] [CrossRef]
- Siracusa, J.S.; Yina, L.; Measela, E.; Lianga, S.; Yu, X. Effects of bisphenol A and its analogs on reproductive health: A mini review. Reprod. Toxicol. 2018, 79, 96–123. [Google Scholar] [CrossRef]
- Ullah, A.; Pirzada, M.; Jahan, S.; Ullah, H.; Shaheen, G.; Rehman, H.; Siddiqui, M.F.; Butt, M.A. Bisphenol A and its analogs bisphenol B, bisphenol F, and bisphenol S: Comparative in vitro and in vivo studies on the sperms and testicular tissues of rats. Chemosphere 2018, 209, 508–516. [Google Scholar] [CrossRef]
- The European Commision. Regulation No. 10/2011 14 January 2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2011, 12, 1–89. [Google Scholar]
- Grumetto, L.; Montesano, D.; Seccia, S.; Albrizio, S.; Barbato, F. Determination of bisphenol a and bisphenol B residues in canned peeled tomatoes by reversed-phase liquid chromatography. J. Agric. Food Chem. 2008, 26, 10633–10637. [Google Scholar] [CrossRef]
- Grumetto, L.; Gennari, O.; Montesano, D.; Ferracane, R.; Ritieni, A.; Albrizio, S.; Barbato, F. Determination of five bisphenols in commercial milk samples by liquid chromatography coupled to fluorescence detection. J. Food Prot. 2013, 76, 1590–1596. [Google Scholar] [CrossRef] [PubMed]
- Fattore, M.; Russo, G.; Barbato, F.; Grumetto, L.; Albrizio, S. Monitoring of bisphenols in canned tuna from Italian markets. Food Chem. Toxicol. 2015, 83, 68–75. [Google Scholar] [CrossRef]
- Gallo, P.; Pisciottano, I.D.M.; Fattore, M.; Rimoli, M.G.; Seccia, S.; Albrizio, S. A method to determine BPA, BPB, and BPF levels in fruit juices by liquid chromatography coupled to tandem mass spectrometry. Food Addit. Contam. A 2019, 36, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Gòmez, A.; Rubio, S. Analytical methods for the determination of bisphenol A in food. J. Chromatogr. A 2009, 1216, 449–469. [Google Scholar] [CrossRef] [PubMed]
- Sanchis, Y.; Yusà, V.; Coscollà, C. Analytical strategies for organic food packaging contaminants. J. Chromatogr. A 2017, 1490, 22–46. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Kang, L.; Xiang, X.; Li, H.; Luo, X.; Luo, R.; Lu, C.; Peng, X. Recent advances and progress in the detection of bisphenol A. Anal. Bioanal. Chem. 2016, 408, 6913–6927. [Google Scholar] [CrossRef]
- McNaught, A.; Wilkinson, A. Compendium of Chemical Terminology; Blackwell Science: Hoboken, NJ, USA, 1997. [Google Scholar]
- Rajabnejad, S.H.; Badibostan, H.; Verdian, A.; Karimib, G.R.; Fooladic, E.; Feizyc, J. Aptasensors as promising new tools in bisphenol A detection—An invisible pollution in food and environment. Microchem. J. 2020, 155, 104722–104740. [Google Scholar] [CrossRef]
- Amaya-González, S.; De-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J. Aptamer-Based Analysis: A Promising Alternative for Food Safety Control. Sensors 2013, 13, 16292–16311. [Google Scholar] [CrossRef] [Green Version]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Kohlberger, M.; Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 2021, 1–22. [Google Scholar] [CrossRef]
- Jo, M.; Ahn, J.Y.; Lee, J.; Lee, S.; Hong, S.W.; Yoo, J.W.; Kang, J.; Dua, P.; Lee, D.; Hong, S.; et al. Development of Single-Stranded DNA Aptamers for Specific Bisphenol A Detection. Oligonucleotides 2011, 21, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.H.; Lim, H.J.; Lee, S.D.; Son, A. Highly Sensitive Detection of Bisphenol A by NanoAptamer Assay with Truncated Aptamer. ACS Appl. Mater. Interfaces 2017, 9, 14889–14898. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Sha, J.; Li, Z.; Wang, W.; Zhang, H. High affinity truncated aptamers for ultra-sensitive colorimetric detection of bisphenol A with label-free aptasensor. Food Chem. 2020, 317, 126459. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, J.; Li, H. Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A. Biosens. Bioelectron. 2017, 92, 21–25. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, J.; Li, D.; Li, Y. An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. Food Chem. 2014, 162, 34–40. [Google Scholar] [CrossRef]
- He, M.Q.; Wang, K.; Wang, J.; Yu, Y.L.; He, R.H. A sensitive aptasensor based on molybdenum carbide nanotubes and label-free aptamer for detection of bisphenol A. Anal. Bioanal Chem. 2017, 409, 1797–1803. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, J.; Li, H.; Fang, H.; Fan, D.; Wang, W.A. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils. Biosens. Bioelectron. 2016, 1, 315–320. [Google Scholar] [CrossRef]
- Tsekeli, T.R.; Tshwenya, L.; Sebokolodi, T.I.; Ndlovu, T.; Arotiba, O.A. An Electrochemical Aptamer Biosensor for Bisphenol A on a Carbon Nanofibre-silver Nanoparticle Immobilisation Platform. Electroanalysis 2021, 33, 2053–2061. [Google Scholar] [CrossRef]
- Chung, C.; Jeon, J.; Yu, J.; Lee, C.; Choo, J. Surface-enhanced Raman scattering aptasensor for ultrasensitive trace analysis of bisphenol A. Biosens. Bioelectron. 2015, 64, 560–565. [Google Scholar] [CrossRef]
- Zhu, Y.; Cai, Y.; Xu, L.; Zheng, L.; Wang, L.; Qi, L.; Xu, C. Building An Aptamer/Graphene Oxide FRET Biosensor for One-Step Detection of Bisphenol A. ACS Appl. Mater. Interfaces 2015, 7, 7492–7496. [Google Scholar] [CrossRef]
- Deiminiat, B.; Rounaghi, G.H.; Arbab-Zavar, H.M.; Razavipanah, I. A novel electrochemical aptasensor based on f-MWCNTs/GNPs nanocomposite for label-free detection of bisphenol A. Sens. Actuators B Chem. 2017, 242, 158–166. [Google Scholar] [CrossRef]
- Guo, X.; Wu, S.; Duan, N.; Wang, Z. Mn2+ -doped NaYF 4: Yb/Er upconversion nanoparticle-based electrochemiluminescent aptasensor for bisphenol A. Anal. Bioanal. Chem. 2016, 408, 3823–3831. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; Liu, B. A dual-signaling strategy for ultrasensitive detection of bisphenol A by aptamer-based electrochemical biosensor. J. Electroanal. Chem. 2016, 781, 265–271. [Google Scholar] [CrossRef]
- Feng, J.; Xu, L.; Cui, G.; Wu, X.; Ma, W.; Kuang, H.; Xu, C. Building SERS-active heteroassemblies for ultrasensitive Bisphenol A detection. Biosens. Bioelectron. 2016, 81, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gu, X.; Jiang, F.; Jia, R.; Jin, M.; Chen, M.; Zhang, G. Ultrasensitive detection of Bisphenol A based on an aptasensor with DNA amplification. Food Agr. Immunol. 2018, 29, 1106–1115. [Google Scholar] [CrossRef] [Green Version]
- Beiranvand, Z.S.; Abbasi, A.R.; Dehdashtian, S.; Karimi, Z.; Azadbakht, A. Aptamer-based electrochemical biosensor by using Au-Pt nanoparticles, carbon nanotubes and acriflavine platform. Anal. Biochem. 2017, 518, 34–45. [Google Scholar] [CrossRef]
- Ye, S.; Ye, R.; Shi, Y.; Qiu, B.; Guo, L.; Huang, D.; Lin, Z.; Chen, G. Highly sensitive aptamer based on electrochemiluminescence biosensor for label-free detection of bisphenol A. Anal. Bioanal. Chem. 2017, 409, 7145–7151. [Google Scholar] [CrossRef]
- Farahbakhsh, F.; Heydari-Bafrooei, E.; Ahmadi, M.; Hekmatara, S.H.; Sabet, M. A novel aptasensing method for detecting bisphenol A using the catalytic effect of the Fe3O4/Au nanoparticles on the reduction reaction of the silver ions. Food Chem. 2021, 355, 129666–129673. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, Y.; Zhang, X.; Zhou, J.; Xiong, E.; Li, X.; Chen, J. A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy. Biosens. Bioelectron. 2016, 79, 22–28. [Google Scholar]
- Ren, H.; An, Z.; Jang, C. Liquid crystal-based aptamer sensor for sensitive detection of bisphenol A. Microchem. J. 2019, 146, 1064–1071. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Tang, Y.; Chen, M.; Chenand, W.; Cheng, Y. Aptamer-enhanced fluorescence determination of bisphenol A after magnetic solid-phase extraction using Fe3O4@SiO2@aptamer. Anal. Methods 2020, 12, 4479–4486. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Rong, X.; Wang, Y.; Dinga, S.; Tang, W. High-performance and versatile electrochemical aptasensor based on selfsupported nanoporous gold microelectrode and enzyme-induced signal. Biosens. Bioelectron. 2018, 102, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Mirzajani, H.; Cheng, C.; Wua, J.; Chen, J.; Edad, S.; Aghdamb, E.N.; Ghavifekr, H.B. A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods. Biosens. Bioelectron. 2017, 89, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Noonan, G.; Ackerman, L.; Begley, T.H. Concentration of Bisphenol A in Highly Consumed Canned Foods on the U.S. Market. Food Chem. 2011, 59, 7178–7185. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Leeb, S.K.; Kim, M.J.; Lee, S.W. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor. Food Chem. 2019, 287, 205–213. [Google Scholar] [CrossRef]
- Abnousa, K.; Daneshc, N.M.; Ramezania, M.; Alibolandia, M.; Taghdisi, S.M. A novel electrochemical sensor for bisphenol A detection based on nontarget-induced extension of aptamer length and formation of a physical barrier. Biosens. Bioelectron. 2018, 119, 204–208. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Amini, M.; Reazael, B. Molecularly imprinted electrochemical aptasensor for the attomolar detection of bisphenol A. Microchim. Acta 2018, 185, 265–271. [Google Scholar] [CrossRef]
- Li, H.; Ding, S.; Wang, W.; Lv, Q.; Wang, Z.; Bai, H.; Zhang, Q. Voltammetric aptasensor for bisphenol A based on double signal amplification via gold-coated multiwalled carbon nanotubes and an ssDNA–dye complex. Microchim. Acta 2019, 186, 860–870. [Google Scholar] [CrossRef]
- Bhaiyya, M.; Pattnaik, P.K.; Goel, S. A brief review on miniaturized electrochemiluminescence devices: From fabrication to applications. Curr. Opin. Electrochem. 2021, 30, 100800–100817. [Google Scholar] [CrossRef]
- Gross, E.M.; Maddipati, S.S.; Snyder, S.M. A review of electrogenerated chemiluminescent biosensors for assays in biological matrices. Bioanalysis 2016, 8, 2071–2089. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Luo, F.; Wang, P.; Guo, L.; Qiu, B.; Lin, Z. Signal-on electrochemiluminescence aptasensor for bisphenol A based on hybridization chain reaction and electrically heated electrode. Biosens. Bioelectron. 2019, 129, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Ertürk, G.; Mattiasson, B. Capacitive biosensors and molecularly imprinted electrodes. Sensors 2017, 17, 390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Xu, J.; Wang, L.; Huang, Y.; Guo, J.; Cao, X.; Shen, F.; Luo, Y.; Sun, C. Aptamer-based fluorescent detection of bisphenol A using nonconjugated gold nanoparticles and CdTe quantum dots. Sens. Actuators B Chem. 2016, 222, 815–822. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, J.; Ye, J.; Xu, L.; Xu, H.; Zhan, S.; Xia, B.; Wang, L. Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles. Anal. Biochem. 2016, 499, 51–56. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, Q. A simple fluorescence anisotropy assay for detection of bisphenol A using fluorescently labeled aptamer. J. Environ. Sci. 2020, 97, 19–24. [Google Scholar] [CrossRef]
- Pan, J.; Liu, Z.; Chen, J. An amplifying DNA circuit coupled with Mg2+- dependent DNAzyme for bisphenol A detection in milk samples. Food Chem. 2021, 346, 128975–128979. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, Y.; Wei, Y.; Dong, C.; Wang, L. A fluorescent aptasensor based on berberine for ultrasensitive detection of bisphenol A in tap water. Anal. Methods 2021, 13, 1816–1822. [Google Scholar] [CrossRef]
Aptamer Binding BPA | Reference | ||||
---|---|---|---|---|---|
Acronym | Length | Sequence | Kd [nM] * | ||
BPA-Apt-1 | 60 nts | CCGCCGTTGGTGTGGTGGGCCTAGGGCCGGCGGCGCACAGCTGTTATAGACGCCTCCAGC | not reported | [43] | Table 1, group 2; ID #6 * |
BPA-Apt-2 | 63 nts | CCGGTGGGTGGTCAGGTGGGATAGCGTTCCGCGTATGGCCCAGCGCATCACGGGTTCGCACCA | 8.3 ** | [43] | Table 1, group 7; ID #3 * |
BPA-Apt-3 | 24 nts | TTTTTTTTTTGGATAGCGGGTTCC | not reported | [44] | Truncated BPA-Apt-2 |
BPA-Apt-4 | 38 nts | TGGGTGGTCAGGTGGGATAGCGTTCCGCGTATGGCCCA | 13.17 ± 1.02 *** | [45] | Truncated BPA-Apt-2 |
BPA-Apt-5 | 12 nts | GGATAGCGTTCC | 27.05 ± 2.08 *** | [45] | Truncated BPA-Apt-2 |
BPA-Apt-6 | 23 nts | TTTTTTTTTTCCGGTGGGTGGAA | 1190.61 ± 66.05 *** | [44] | Truncated BPA-Apt-2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiano, M.E.; Abduvakhidov, A.; Varra, M.; Albrizio, S. Aptamer-Based Biosensors for the Analytical Determination of Bisphenol A in Foodstuffs. Appl. Sci. 2022, 12, 3752. https://doi.org/10.3390/app12083752
Schiano ME, Abduvakhidov A, Varra M, Albrizio S. Aptamer-Based Biosensors for the Analytical Determination of Bisphenol A in Foodstuffs. Applied Sciences. 2022; 12(8):3752. https://doi.org/10.3390/app12083752
Chicago/Turabian StyleSchiano, Marica Erminia, Avazbek Abduvakhidov, Michela Varra, and Stefania Albrizio. 2022. "Aptamer-Based Biosensors for the Analytical Determination of Bisphenol A in Foodstuffs" Applied Sciences 12, no. 8: 3752. https://doi.org/10.3390/app12083752
APA StyleSchiano, M. E., Abduvakhidov, A., Varra, M., & Albrizio, S. (2022). Aptamer-Based Biosensors for the Analytical Determination of Bisphenol A in Foodstuffs. Applied Sciences, 12(8), 3752. https://doi.org/10.3390/app12083752