2D Personality of Multifunctional Carbon Nitrides towards Enhanced Catalytic Performance in Energy Storage and Remediation
Abstract
:1. Introduction
2. Developments and Engineering of g-C3N4
3. Surface and Structural Features of g-C3N4
3.1. Structural and Morphological Aspects
3.2. Crystal Phase Confirmations
3.3. Elemental Analysis: g-C3N4
4. Significance of g-C3N4 towards Energy Storage and Environmental Impacts
4.1. g-C3N4 for Energy Storage (Supercapacitor) Uses
4.2. Environmental Applications
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Modi, S.; Prajapati, R.; Inwati, G.K.; Deepa, N.; Tirth, V.; Yadav, V.K.; Yadav, K.K.; Islam, S.; Gupta, P.; Kim, D. Recent Trends in Fascinating Applications of Nanotechnology in Allied Health Sciences. Crystals 2021, 12, 39. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Zeng, G.; Chen, X.; Leng, L.; Li, H. Applied Catalysis B: Environmental Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl. Catal. B Environ. 2015, 174, 445–454. [Google Scholar] [CrossRef]
- Mei, E.; State, J.S.; Technol, S.; Jin, E.M.; Jeong, M.; Kang, H.; Gu, H. Science and Technology Photovoltaic Effect of Metal-Doped TiO2 Nanoparticles for Dye- Sensitized Solar Cells Photovoltaic Effect of Metal-Doped TiO2 Nanoparticles for Dye-Sensitized Solar Cells. ECS J. Solid State Sci. Technol. 2016, 5, Q109. [Google Scholar] [CrossRef]
- Fan, K.; Ho, W.; Fan, K. Materials Horizons Improving photoanodes to obtain highly efficient dye-sensitized solar cells: A brief review. Mater. Horiz. 2017, 4, 319–344. [Google Scholar] [CrossRef]
- Julkapli, N.M.; Bagheri, S.; Bee, S.; Hamid, A. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes. Sci. World J. 2014, 2014, 692307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Kumar, A.; Ahmad, M.; Kazim, S. Applied Surface Science Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Appl. Surf. Sci. 2020, 514, 145930. [Google Scholar] [CrossRef]
- Kumar, G.; Kumar, P.; Roos, W.D.; Swart, H.C. Colloids and Surfaces B: Biointerfaces Thermally induced structural metamorphosis of ZnO: Rb nanostructures for antibacterial impacts. Colloids Surf. B Biointerfaces 2020, 188, 110821. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xiao, P.; Li, H.; Carabineiro, A.C. Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465. [Google Scholar] [CrossRef]
- Idris, A.O.; Oseghe, E.O.; Msagati, T.A.M.; Kuvarega, A.T.; Feleni, U. Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing. Sensors 2020, 20, 5743. [Google Scholar] [CrossRef]
- Bai, G.; Yuan, S.; Zhao, Y.; Yang, Z.; Choi, S.Y.; Chai, Y.; Yu, S.F.; Lau, S.P.; Hao, J. 2D Layered Materials of Rare-Earth Er-Doped MoS2 with NIR-to-NIR Down- and Up-Conversion Photoluminescence. Adv. Mater. 2016, 28, 7472–7477. [Google Scholar] [CrossRef]
- Bao, Z.; Yang, X.; Li, B.; Luo, R.; Liu, B.; Tang, P. The study of CdSe thin film prepared by pulsed laser deposition for CdSe/CdTe solar cell. J. Mater. Sci. Mater. Electron. 2016, 27, 7233–7239. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, H.; Liu, X.; Shang, R.; Zhou, Y.; Zhou, Y. Graphitic carbon nitride nanosheets made by different methods as electrode material for supercapacitors. Ionics 2020, 26, 3599–3607. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, K.; Wang, X.; Wang, S.; Pan, H.; Liu, Y.; Xu, S.; Cao, S. Carbon-Coated Graphitic Carbon Nitride Nanotubes for Supercapacitor Applications. ACS Appl. Nano Mater. 2020, 3, 7016–7028. [Google Scholar] [CrossRef]
- Ragupathi, V.; Panigrahi, P.; Subramaniam, N.G. g-C3N4 doped MnS as high performance electrode material for supercapacitor application. Mater. Lett. 2019, 246, 88–91. [Google Scholar] [CrossRef]
- Siwal, S.S.; Zhang, Q.; Sun, C.; Thakur, V.K. Graphitic Carbon Nitride Doped Copper—Manganese Alloy as High—Performance Electrode Material in Supercapacitor for Energy Storage. Nanomaterials 2019, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Inwati, G.K.; Rao, Y.; Singh, M. Thermodynamically induced in Situ and Tunable Cu Plasmonic Behaviour. Sci. Rep. 2018, 8, 3006. [Google Scholar] [CrossRef]
- Inwati, G.K.; Kumar, P.; Roos, W.D.; Swart, H.C.; Singh, M. UV-irradiation effects on tuning LSPR of Cu/Ag nanoclusters in ion exchanged glass matrix and its thermodynamic behaviour. J. Alloys Compd. 2020, 823, 153820. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Rehman, A.; Siddique, S. Prospects and challenges of graphene based fuel cells. J. Energy Chem. 2019, 39, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Li, Z.; Abou, I.; Amaiem, E.; Zhang, B.; Brett, D.J.L.; Parkin, I.P. A general method for boosting the supercapacitor performance of graphitic carbon nitride/graphene hybrids. J. Mater. Chem. A 2017, 5, 25545–25554. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Mathpal, M.C.; Prakash, J.; Jagannath, G.; Roos, W.D.; Swart, H.C. Plasmonic and nonlinear optical behavior of nanostructures in glass matrix for photonics application. Mater. Res. Bull. 2020, 125, 110799. [Google Scholar] [CrossRef]
- Lam, S.-M.; Sin, J.-C.; Mohamed, A.R. Magnetic-Based Photocatalyst for Antibacterial Application and Catalytic Performance. In Nanophotocatalysis and Environmental Applications; Springer: Cham, Switzerland, 2020; pp. 195–215. [Google Scholar] [CrossRef]
- Liu, M.; Niu, B.; Guo, H.; Ying, S.; Chen, Z. Simple preparation of g-C3N4@Ni3C nanosheets and its application in supercapacitor electrode materials, hydrogengeneration via NaBH4 hydrolysis and reduction of p-nitrophenol. Inorg. Chem. Commun. 2021, 130, 108687. [Google Scholar] [CrossRef]
- Kumar, P.; Chandra, M.; Kumar, G.; Ghosh, S.; Kumar, V.; Roos, W.D.; Swart, H.C. Optical and surface properties of Zn doped CdO nanorods and antimicrobial applications. Colloids Surf. A 2020, 605, 125369. [Google Scholar] [CrossRef]
- Sh, F.; Alkaim, A.F.; Salim, S.J.; Omran, A.H. E ff ect of (Ag, Pd) doping on structural, and optical properties of ZnO nanoparticales: As a model of photocatalytic activity for water pollution treatment. Chem. Phys. Lett. 2019, 737, 136828. [Google Scholar] [CrossRef]
- Rajendran, S.; Inwati, G.K.; Yadav, V.K.; Choudhary, N.; Solanki, M.B.; Abdellattif, M.H.; Yadav, K.K.; Gupta, N.; Islam, S.; Jeon, B.-H. Enriched Catalytic Activity of TiO2 Nanoparticles Supported by Activated Carbon for Noxious Pollutant Elimination. Nanomaterials 2021, 11, 2808. [Google Scholar] [CrossRef]
- Inwati, G.K.; Kumar, P.; Singh, M.; Yadav, V.K.; Kumar, A.; Soma, V.R.; Swart, S.C. Study of photoluminescence and nonlinear optical behaviour of AgCu nanoparticles for nanophotonics. Nano-Struct. Nano-Objects 2021, 28, 100807. [Google Scholar] [CrossRef]
- Jiang, X.; Fan, X.; Xu, W.; Zhang, R.; Wu, G. Biosynthesis of Bimetallic Au-Ag Nanoparticles Using Escherichia coli and its Biomedical Applications, ACS Biomater. Sci. Eng. 2020, 6, 680–689. [Google Scholar] [CrossRef]
- Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity. Small 2017, 13, 1603938. [Google Scholar] [CrossRef]
- Panda, P.K.; Grigoriev, A. Nanoscale Advances Progress in supercapacitors: Roles of two dimensional nanotubular materials. Nanoscale Adv. 2020, 2, 70–108. [Google Scholar] [CrossRef] [Green Version]
- Darkwah, W.K.; Ao, Y. Mini Review on the Structure and Properties (Photocatalysis), and Preparation Techniques of Graphitic Carbon Nitride Nano-Based Particle, and Its Applications. Nanoscale Res. Lett. 2018, 13, 388. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, K.; Guo, B.; Liu, Q.; Fang, L.; Gong, J.R. Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Adv. Mater. 2013, 25, 3820–3839. [Google Scholar] [CrossRef]
- Miller, T.S.; Jorge, A.B.; Suter, T.M.; Sella, A.; Corà, F.; McMillan, P.F. Carbon nitrides: Synthesis and characterization of a new class of functional materials. Phys. Chem. Chem. Phys. 2017, 19, 15613–15638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, N.J. Synthesis and Structure of Tri-s-triazine. Chem. Soc. 1982, 104, 5497–5499. [Google Scholar]
- Komatsu, T. Attempted chemical synthesis of graphite-like carbon nitride. J. Mater. Chem. 2001, 11, 799–801. [Google Scholar] [CrossRef]
- Hou, J.; Cao, C.; Idrees, F.; Ma, X. Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors. ACS Nano 2015, 9, 2556–2564. [Google Scholar] [CrossRef]
- Gonçalves, R.; Lima, T.M.; Paixão, M.W.; Pereira, E.C. Pristine carbon nitride as active material for high-performance metal-free supercapacitors: Simple, easy and cheap. RSC Adv. 2018, 8, 35327–35336. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Kan, Y.; Gu, L.; Wang, C.; Zhang, Y. Graphite Carbon Nitride and Its Composites for Medicine and Health Applications. Chem.—Asian J. 2021, 16, 2003–2013. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, S.; Yu, J.S. Template-directed synthesis of highly ordered nanoporous graphitic carbon nitride through polymerization of cyanamide. Appl. Surf. Sci. 2007, 253, 5656–5659. [Google Scholar] [CrossRef]
- Ding, M.; Wang, W.; Zhou, Y.; Lu, C.; Ni, Y.; Xu, Z. Facile in situ synthesis of 2D porous g-C3N4 and g-C3N4/P25 (N) heterojunction with enhanced quantum effect for efficient photocatalytic application. J. Alloys Compd. 2015, 635, 34–40. [Google Scholar] [CrossRef]
- Wu, G.; Hu, Y.; Liu, Y.; Zhao, J.; Chen, X.; Whoehling, V.; Plesse, C.; Nguyen, G.T.M.; Vidal, F.; Chen, W. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nat. Commun. 2015, 6, 7258. [Google Scholar] [CrossRef] [Green Version]
- Davardoostmanesh, M.; Ahmadzadeh, H.; Goharshadi, E.K.; Meshkini, A.; Sistanipour, E. Graphitic carbon nitride nanosheets prepared by electrophoretic size fractionation as an anticancer agent against human bone carcinoma. Mater. Sci. Eng. C 2020, 111, 110803. [Google Scholar] [CrossRef]
- Liu, S.X.; Qu, Z.P.; Han, X.W.; Sun, C.L. A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catal. Today 2004, 93, 877–884. [Google Scholar] [CrossRef]
- Kamal, S.; Balu, S.; Palanisamy, S.; Uma, K.; Velusamy, V.; Yang, T.C.K. Results in Physics Synthesis of boron doped C3N4/NiFe2O4 nanocomposite: An enhanced visible light photocatalyst for the degradation of methylene blue. Results Phys. 2019, 12, 1238–1244. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmad, I.; Ahmed, E.; Shoaib, M.; Khalid, N.R. Facile and inexpensive synthesis of Ag doped ZnO/CNTs composite: Study on the ef fi cient photocatalytic activity and photocatalytic mechanism. J. Mol. Liq. 2020, 311, 113326. [Google Scholar] [CrossRef]
- Malik, P.; Gupta, R.; Malik, V.; Ameta, R.K. Emerging nanomaterials for improved biosensing. Meas. Sens. 2021, 16, 100050. [Google Scholar] [CrossRef]
- Guo, S.; Wu, K.; Gao, Y.; Liu, L.; Zhu, X.; Li, X.; Zhang, F. Efficient Removal of Zn(II), Pb(II), and Cd(II) in Waste Water Based on Magnetic Graphitic Carbon Nitride Materials with Enhanced Adsorption Capacity. J. Chem. Eng. Data 2018, 63, 3902–3912. [Google Scholar] [CrossRef]
- Huang, T.; Fu, Y.; Peng, Q.; Yu, C.; Zhu, J.; Yu, A.; Wang, X. Applied Surface Science Catalytic hydrogenation of p-nitrophenol using a metal-free catalyst of porous crimped graphitic carbon nitride. Appl. Surf. Sci. 2019, 480, 888–895. [Google Scholar] [CrossRef]
- Liu, R.; Yang, W.; He, G.; Zheng, W.; Li, M.; Tao, W.; Tian, M. Ag-Modified g-C3N4 Prepared by a One-Step Calcination Method for Enhanced Catalytic Efficiency and Stability. ACS Omega 2020, 5, 19615–19624. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, H.; Yang, P.; Chen, Y.; Yu, X.; Yu, B.; Zhao, Y.; Yang, Z.; Liu, Z. Visible-light-driven photoreduction of CO2 to CO over porous nitrogen-deficient carbon nitride nanotubes. Catal. Sci. Technol. 2019, 9, 2485–2492. [Google Scholar] [CrossRef]
- Lakhi, K.S.; Park, D.H.; Al-Bahily, K.; Cha, W.; Viswanathan, B.; Choy, J.H.; Vinu, A. Mesoporous carbon nitrides: Synthesis, functionalization, and applications. Chem. Soc. Rev. 2017, 46, 72–101. [Google Scholar] [CrossRef]
- Sharma, M.; Gaur, A. Designing of Carbon Nitride Supported ZnCo2O4 Hybrid Electrode for High-Performance Energy Storage Applications. Sci. Rep. 2020, 10, 2035. [Google Scholar] [CrossRef]
- Thiagarajan, K.; Bavani, T.; Arunachalam, P.; Lee, S.J.; Theerthagiri, J.; Madhavan, J.; Pollet, B.G.; Choi, M.Y. Nanofiber NiMoO4/g-C3N4 Composite Electrode Materials for Redox Supercapacitor Applications. Nanomaterials 2020, 10, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Hu, B.; Zhao, W.; Yang, Q.; Yang, F.; Ren, J.; Li, X.; Jin, Y.; Fang, L.; Pan, Q. Bridging N-doped graphene and carbon rich C3N4 layers for photo-promoted multi-functional electrocatalysts. Electrochim. Acta 2019, 317, 25–33. [Google Scholar] [CrossRef]
- Mahmoud, M.H.H.; Ismail, A.A.; Sanad, M.M.S. Developing a cost-effective synthesis of active iron oxide doped titania photocatalysts loaded with palladium, platinum or silver nanoparticles. Chem. Eng. J. 2012, 187, 96–103. [Google Scholar] [CrossRef]
- Ekthammathat, N.; Phuruangrat, A.; Thongtem, T. Synthesis and characterization of Ce-doped CuO nanostructures and their photocatalytic activities. Mater. Lett. 2016, 167, 266–269. [Google Scholar] [CrossRef]
- Deepa, B.; Rajendran, V. Nano-Structures & Nano-Objects Pure and Cu metal doped WO3 prepared via co-precipitation method and studies on their structural, morphological, electrochemical and optical properties. Nano-Struct. Nano-Objects 2018, 16, 185–192. [Google Scholar] [CrossRef]
- Ren, J.; Bai, W.; Guan, G.; Zhang, Y.; Peng, H. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv. Mater. 2013, 25, 5965–5970. [Google Scholar] [CrossRef]
- Sun, H.; You, X.; Deng, J.; Chen, X.; Yang, Z.; Ren, J.; Peng, H. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 2014, 26, 2868–2873. [Google Scholar] [CrossRef]
- Lu, Z.; Raad, R.; Safaei, F.; Xi, J.; Liu, Z.; Foroughi, J. Carbon nanotube based fiber supercapacitor as wearable energy storage. Front. Mater. 2019, 6, 138. [Google Scholar] [CrossRef]
- Foroughi, J.; Spinks, G.M.; Antiohos, D.; Mirabedini, A.; Gambhir, S.; Wallace, G.G.; Ghorbani, S.R.; Peleckis, G.; Kozlov, M.E.; Lima, M.D.; et al. Highly Conductive Carbon Nanotube-Graphene Hybrid Yarn. Adv. Funct. Mater. 2014, 24, 5859–5865. [Google Scholar] [CrossRef]
- Xu, R.; Wei, J.; Guo, F.; Cui, X.; Zhang, T.; Zhu, H.; Wang, K.; Wu, D. Highly conductive, twistable and bendable polypyrrole-carbon nanotube fiber for efficient supercapacitor electrodes. RSC Adv. 2015, 5, 22015–22021. [Google Scholar] [CrossRef]
- Kumar, P.; Inwati, G.K.; Mathpal, M.C.; Ghosh, S.; Roos, W.D. Defects induced Enhancement of Antifungal activities of Zn doped CuO nanostructures. App. Sur. Sci. 2021, 560, 150026. [Google Scholar] [CrossRef]
- Yadav, V.K.; Choudhary, N.; Khan, S.K.; Malik, P.; Inwati, G.K.; Suriyaprabha, R.; Ravi, R.K. Synthesis and Characterisation of Nano-Biosorbents and Their Applications for Waste Water Treatment. In Handbook of Research on Emerging Developments and Environmental Impacts of Ecological Chemistry; IGI Global: Hershey, Pennsylvania, 2020; Volume 28, pp. 252–290. [Google Scholar] [CrossRef]
- Li, Y.; Yang, M.; Xing, Y.; Liu, X.; Yang, Y.; Wang, X.; Song, S. Preparation of Carbon-Rich g-C3N4 Nanosheets with Enhanced Visible Light Utilization for Efficient Photocatalytic Hydrogen Production. Small 2017, 13, 1701552. [Google Scholar] [CrossRef] [PubMed]
- Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 2015, 3, 10715–10722. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Ren, H.; Huang, X.; Li, M.; Tang, Y.; Guo, F. Low cost red mud modified graphitic carbon nitride for the removal of organic pollutants in wastewater by the synergistic effect of adsorption and photocatalysis. Sep. Purif. Technol. 2020, 237, 116477. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Yuan, X.; Jiang, L.; Xia, Q.; Chen, H. Photocatalytic removal of antibiotics from natural water matrices and swine wastewater via Cu(I) coordinately polymeric carbon nitride framework. Chem. Eng. J. 2020, 392, 123638. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, L.; Zhuang, C.; Peng, T.; Li, R.; Li, X. Highly asymmetric phthalocyanine as a sensitizer of graphitic carbon nitride for extremely efficient photocatalytic H2 production under near-infrared light. ACS Catal. 2013, 4, 162–170. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Wang, Q.; Jin, Y.; Huang, D.; Cui, Q.; Zou, G. Nitrogen-rich carbon nitride hollow vessels: Synthesis, characterization, and their properties. J. Phys. Chem. B 2010, 114, 9429–9434. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Y.; Guo, X.; Zhang, W.; Wang, Y.X.; Zhang, M.; Li, R.; Peng, Z.; Xie, H.; Huang, Y. In-situ construction of morphology-controllable 0D/1D g-C3N4 homojunction with enhanced photocatalytic activity. Appl. Surf. Sci. 2021, 563, 150317. [Google Scholar] [CrossRef]
- Niu, P.; Liu, G.; Cheng, H.M. Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J. Phys. Chem. C 2012, 116, 11013–11018. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inwati, G.K.; Yadav, V.K.; Ali, I.H.; Vuggili, S.B.; Kakodiya, S.D.; Solanki, M.K.; Yadav, K.K.; Ahn, Y.; Yadav, S.; Islam, S.; et al. 2D Personality of Multifunctional Carbon Nitrides towards Enhanced Catalytic Performance in Energy Storage and Remediation. Appl. Sci. 2022, 12, 3753. https://doi.org/10.3390/app12083753
Inwati GK, Yadav VK, Ali IH, Vuggili SB, Kakodiya SD, Solanki MK, Yadav KK, Ahn Y, Yadav S, Islam S, et al. 2D Personality of Multifunctional Carbon Nitrides towards Enhanced Catalytic Performance in Energy Storage and Remediation. Applied Sciences. 2022; 12(8):3753. https://doi.org/10.3390/app12083753
Chicago/Turabian StyleInwati, Gajendra Kumar, Virendra Kumar Yadav, Ismat H. Ali, Sai Bhargava Vuggili, Shakti Devi Kakodiya, Mitesh K. Solanki, Krishna Kumar Yadav, Yongtae Ahn, Shalini Yadav, Saiful Islam, and et al. 2022. "2D Personality of Multifunctional Carbon Nitrides towards Enhanced Catalytic Performance in Energy Storage and Remediation" Applied Sciences 12, no. 8: 3753. https://doi.org/10.3390/app12083753
APA StyleInwati, G. K., Yadav, V. K., Ali, I. H., Vuggili, S. B., Kakodiya, S. D., Solanki, M. K., Yadav, K. K., Ahn, Y., Yadav, S., Islam, S., & Jeon, B. -H. (2022). 2D Personality of Multifunctional Carbon Nitrides towards Enhanced Catalytic Performance in Energy Storage and Remediation. Applied Sciences, 12(8), 3753. https://doi.org/10.3390/app12083753