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Abstract: Deep learning-based methods succeed in remote sensing scene classification (RSSC). How-
ever, current methods require training on a large dataset, and if a class does not appear in the training
set, it does not work well. Zero-shot classification methods are designed to address the classification
for unseen category images in which the generative adversarial network (GAN) is a popular method.
Thus, our approach aims to achieve the zero-shot RSSC based on GAN. We employed the condi-
tional Wasserstein generative adversarial network (WGAN) to generate image features. Since remote
sensing images have inter-class similarity and intra-class diversity, we introduced classification loss,
semantic regression module, and class-prototype loss to constrain the generator. The classification
loss was used to preserve inter-class discrimination. We used the semantic regression module to
ensure that the image features generated by the generator can represent the semantic features. We
introduced class-prototype loss to ensure the intra-class diversity of the synthesized image features
and avoid generating too homogeneous image features. We studied the effect of different semantic
embeddings for zero-shot RSSC. We performed experiments on three datasets, and the experimental
results show that our method performs better than the state-of-the-art methods in zero-shot RSSC in
most cases.

Keywords: remote sensing scene classification; zero-shot learning; generative adversarial network

1. Introduction

Over the past decades, the epoch of remote sensing big data arrived, and remote
sensing technology has made excellent progress [1]. It has played an important role in en-
vironmental monitoring [2], urban construction planning [3], and land use classification [4].
Currently, the accuracy of remote sensing image classification is very high. Most of the
current remote sensing scene classification approaches rely on supervised learning [4–6],
which can obtain excellent results when trained on large-scale datasets [7]. Usually, it
requires labeling a lot of image data for each remote sensing image class. When we classify
an image, the classifier does not work well if the category corresponding to the image is
not in the training set, which is referred to as a zero-shot problem [8]. With the explosive
growth of remote sensing image classes, we will encounter many new classes, and it is
unrealistic to collect sufficient image samples for each class. It makes sense to identify
the unseen class images when the training set does not contain the corresponding class,
for instance, a rare aircraft species.

In order to overcome these problems in remote sensing images, it is of great interest to
study zero-shot learning methods for RSSC. Zero-shot classification methods for remote
sensing images are designed to address the classification for unseen category images,
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and more and more researchers are focusing on this topic. This can alleviate manual
labeling, reduce a lot of labor, and make the existing classification model more scalable.

Humans can recognize about 30,000 object categories of information [8], and humans
can transfer their knowledge to identify new classes when only textual descriptions of the
new classes are available. The key of zero-shot learning to identify unseen classes is that
zero-shot learning uses semantic and visual information from all image classes. Semantic
information builds a bridge of knowledge transfer between seen and unseen categories,
breaking the boundary of category mutual exclusion between training and testing sets.

The concept of zero-shot learning can be traced back to 2008 when Larochelle first
introduced zero-shot learning [8]. Lampert et al. [9] first extended this approach to the
field of computer vision. We can summarize the ZSL methods into two types: The first
is embedding-based methods that map image features and semantic embeddings into
one space and perform metric learning for ZSL. Zhang et al. [10] solved the zero-shot
learning task by using the semantic similarity embedding (SSE) method. SSE fuses multiple
semantic information into the same semantic space and calculates the similarity of them.
Frome et al. [11] used a novel visual-semantic embedding approach to use annotated im-
age data and semantic information from the unannotated text to recognize visual objects.
Li et al. [12] presented a dual visual-semantic mapping framework for zero-shot classifi-
cation (DMaP), which studies the relationship between the semantic space manifold and
the transferability of visual-semantic mapping. However, they cannot work well in the
generalized zero-shot learning (GZSL) setting because they overfit to seen classes. The sec-
ond is GAN-based methods which generate fake image features for unseen classes and
train KNN [13] or softmax classifier to perform ZSL. Xian et al. [14] first used generative
adversarial networks (GANs) [15] to convert semantic features to visual features, providing
a new idea for zero-shot learning. Felix et al. [16] mainly added a cycle consistency loss
term, allowing GAN to generate more realistic images. Li et al. [17] introduced soul
samples for generative zero-shot learning and used the cascade classifier to classify the
unseen class. Yu et al. [18] presented an episode-based training pattern to improve the
model’s performance for zero-shot learning. Generative adversarial networks (GANs) [15]
is a popular zero-shot classification method. GAN-based methods generally work better
than embedding-based methods.

For the remote sensing field, Li et al. [19] first proposed a zero-shot remote sensing
scene classification (RSSC) method called ZSL-LP. ZSL-LP constructs a semantic-directed
graph, then uses a label-propagation algorithm for zero-shot classification. Quan et al. [20]
introduced a novel zero-shot RSSC method, which relies on Sammon embedding and
spectral clustering. They modified semantic feature space class prototypes by Sammon
embedding, which ensures the consistency with the visual feature space class prototypes.
Wang et al. [21] introduced a distance-constrained semantic autoencoder for zero-shot
remote sensing scene classification. Sumbul et al. [22] conducted a zero-shot study for
fine-grained remote sensing image recognition. They first learned a compatible function
and then showed how to transfer knowledge for unseen classes. Although these approaches
have achieved promising results, most are devoted to designing visual-semantic embedding
models only with seen classes, in which it is difficult to guarantee an excellent extension to
unseen classes. In addition, these models trained only with seen data tend to misclassify
unseen test instances into the seen category, generating a special imbalanced classifica-
tion problem. Generative adversarial networks can alleviate the above issues to some
extent [14,17,23]. As far as we know, no one has tried to apply generative adversarial net-
works for zero-shot RSSC. The GAN-based method designed for ordinary images cannot
apply to remote sensing images well because remote sensing image scenes are complex.
Remote sensing images generated by the GAN model may have instability and mode
collapse problems. In addition, remote sensing images have inter-class similarity and
intra-class diversity. Overall, zero-shot RSSC deserves more exploration.

We propose a novel approach for zero-shot RSSC with the mentioned considerations.
Since the remote sensing image dataset does not directly provide class attribute information,
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we used four natural language processing models pre-trained on Wikipedia to obtain word
vectors as the semantic information we need. Word2vec [24], Glove [25], Fasttext [26],
and Bert [27] are the four natural language processing models. Because of the complexity
of remote sensing scenes, we employed the conditional Wasserstein generative adversarial
network [28] for generating image features directly instead of images to avoid instability
and mode collapse problems in training. We trained a generator that can generate an
arbitrary number of class image features from class semantic information, converting the
zero-shot classification problem into a traditional classification problem. Following the
characteristics of remote sensing images, we used the classification loss, semantic regression
module, and class-prototype loss to constrain the generator to ensure the generator can
generate image features close to the real image with the class semantic information. Our
model is referred to as CSPWGAN. The classification loss is used to preserve inter-class
discrimination. We used a semantic regression module to ensure that the image features
generated by the generator can represent the semantic features. We introduced class-
prototype loss when training the generator to constrain itself to ensure intra-class diversity
of the synthesized image features and avoid generating too homogeneous image features.
The contributions of this study are as follows:

1. We trained a generator that can generate class image features close to the real im-
age through class semantic information. We propose well-designed modules to con-
strain the generator, including classification loss module, class-prototype loss module,
and semantic regression module. To the best of our knowledge, we are the first to
employ generative adversarial networks for zero-shot remote sensing scene classifica-
tion (RSSC);

2. We explored the effect of different semantic embeddings for zero-shot RSSC. Specif-
ically, we investigated various natural language processing models, i.e., Word2vec,
Fasttest, Glove, and Bert, to extract semantic embeddings for each class either from the
class name or from the class sentence descriptions. Our conclusion may help future
work in understanding and choosing semantic embeddings for zero-shot RSSC;

3. We conduct experiments on three benchmark datasets, UCM21 [29], AID30 [30] and
NWPU45 [7]. The experimental results show that our method performs better than
most state-of-the-art methods in zero-shot RSSC.

2. Methods

In this section, we first define the remote sensing image zero-shot classification task.
Then we present our generative framework for zero-shot RSSC. Finally, we introduce each
part of the model in detail.

2.1. Problem Definition

Let D =
{

xi, yi, e(yi)
}N

i=1 where D denotes the dataset, x is the features of remote sens-
ing images, y is the class label of remote sensing images, e(y) denotes the classes semantic
feature. The dataset D is split into the seen and unseen datasets. Let Ds =

{
xi

s, yi
s, e(yi

s)
}Ns

i=1

represent the seen datasets and Du =
{

xi
u, yi

u, e(yi
u)
}Nu

i=1 represent the unseen datasets.
Class label set y includes the seen class label set ys and unseen class label set yu. The seen
class label set ys is disjointed yu. The relationship can be represented by y = ys ∪ yu and
ys ∩ yu = φ. The purpose of the ZSL task is to predict the class label yu, and the purpose of
the GZSL task is to predict the class label y.

2.2. Overall Framework

In this section, we present the overall framework of our CSPWGAN model. As shown
in Figure 1, our model is composed of two parts, including the Class Semantic Feature
Representation Module and the Feature Generation Module.
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Figure 1. The framework of our proposed CSPWGAN model for zero-shot RSSC.

Class Semantic Feature Representation Module. Typical zero-shot task datasets usu-
ally contain class attribute vectors [9]. Since there are no class attribute vectors in the remote
sensing image dataset, we used the natural language pre-training model to generate the
word vectors we need.

Feature Generation Module. We used a generative model to train a generator that can
generate class image features by class semantic features, which can convert the zero-shot
remote sensing scene classification problem into a traditional classification problem and
avoid the hubness problem [31]. In addition, using generative adversarial networks can
prevent the class imbalance problem under the GZSL setting. Meanwhile, we considered
that remote sensing images have inter-class similarity and intra-class diversity. We used the
classification loss, semantic regression module, and class-prototype loss to constrain the
generator. The classification loss was used to preserve inter-class discrimination. We used
semantic regression module to ensure that the image features generated by the generator
can represent the semantic features. To ensure intra-class diversity of the synthesized
image features and avoid generating too homogeneous image features, we introduced
class-prototype loss to constrain the generator. The key to solving this problem is to obtain
a high-performance generator, and multiple losses to jointly constrain the generator to
obtain better results.

2.3. Class Semantic Feature Representation Module

Zero-shot learning aims to solve the problem of recognizing unseen classes that cannot
be accomplished by traditional supervised learning. The key is that zero-shot learning uses
not only visual features but also class semantic features. Class semantic information builds
a bridge of knowledge transfer between seen and unseen categories, breaking the boundary
of category mutual exclusion between training and testing sets. There are usually two ways
to extract semantic features: attribute vectors and word embeddings.

Attributes vectors are manually annotated using expert knowledge and share attribute
space among all classes of objects. It is the most common and efficient method of semantic
feature construction. Attribute vectors can leverage prior human knowledge with good
interpretability and accuracy. At the same time, the disadvantage of attribute vectors is that
they are highly dependent on manual annotation and are challenging to annotate in the
absence of prior human knowledge.
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Using natural language pre-training models to generate the word vectors we need has
the advantage of being fast, simple, and does not require prior knowledge. Word2vec [24],
Glove [25], Fasttext [26], and Bert [27] are the most common methods used. These methods
can be trained with open-source corpora (e.g., Wikipedia), which significantly saves the
cost of manual annotation. We can use them to convert classes name or class text descrip-
tions into word vectors. For example, we can use Word2vec to convert remote sensing
image classes name into 300- or 500-dimensional word vectors and use Bert to convert the
description of remote sensing image classes into 768-dimensional word vectors.

2.4. Feature Generation Module

Since there are no samples of unseen categories in the training data, it is difficult to
train a classifier for unseen categories. Our method synthesizes unseen classes’ image
visual features through class semantic information and noise vectors. We trained a classifier
that can classify unseen class images based on the synthesized image features and their
corresponding unseen class labels. Our approach was inspired by [14]. CSPWGAN is
composed of a generative adversarial network. The generative adversarial network model
converts the zero-shot RSSC problem into a traditional classification problem.

We used the conditional generative adversarial net [32] as our baseline model. The net-
work is composed of a generative model G and a discriminative model D that compete in a
two-player minimax game. G generates the visual image representation x̂ by its semantic
feature e(y) and a noise vector sampled from a normal distribution z ∼ N(0, I). The
generation process can be represented as: y× z → x. We used the semantic feature e(y)
and a noise vector z as inputs of G, and x̂ of the class label y as outputs of G. θG denotes
the parameters of G. The discriminative model D can be represented as: e× x → [0, 1], θD
denotes the parameters of D. D aims to accurately distinguish the real image visual feature
x from the generated visual features x̂. θD denotes the parameters of the discriminative
model D. G aims to cheat the discriminator D by generating images that can be mistaken
for the real ones. This is the training process for estimating the parameters of θD and θG.

Our model only uses the seen class data for training, but it can also generate image
features of unseen classes. Generating models are usually hard to train and not easy to
stabilize. We used a stable training methods called WGAN [28], the loss function of WGAN
is as follows:

LWGAN = E[D(x, e(y)|θD)]− E[D(x̂, e(y)|θD)]− λE[(‖5x̂D(x̃, e(y))‖2 − 1)2] (1)

where E[.] denotes the expectation function. x̂ = G(z, e(y)|θG), x̃ = βx + (1− β)x̂ with
β ∼ U(0, 1). Both G and D are multilayer networks. λ represents the penalty factor. We set
λ = 10 in this study.

To achieve good optimization, we applied classification loss, semantic regression
module and class-prototype loss to train the network.

Classification Loss. Because of the complexity of remote sensing images, the WGAN
model cannot ensure that the generated samples are discriminative enough. Generating
inaccurate samples results in the bad performance of the classifier. To alleviate this issue,
we added a classifier to identify whether the generated image features can be classified into
the correct class. By doing this, the generated features are more discriminative. We added a
simple classifier that uses the negative log-likelihood:

LC = −Ex̂∼px̂ [logP(y|x̂; θ)] (2)

where x̂ = G(z, e(y)|θG), the class label of x̂ is y, and P(y|x̂; θ) represents the probability
that the class label of x̂ predicted by the classifier is its true label y. θ is pre-trained on the
seen classes dataset. It can be represented as:

P(y|x̂; θ) =
exp((θ)T x̂)

∑c∈y exp((θ)T x̂)
(3)
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Semantic Regression Module. We used class semantic features to guide the generator
to generate image features for the corresponding class. The generator is trained using
seen class semantic features and visual features in the training phase, and using unseen
class semantic features synthesizes unseen visual features in the testing phase. Finally, we
converted the zero-shot classification problem into a traditional classification problem. Our
model relies on a high-performance generator that aims to generate image features similar
to real image features. We used the semantic features of the unseen class to synthesize image
features; if it differs significantly from the real image feature distribution, the synthesized
image features cannot represent the real image features of the class. The classifier trained
with synthetic image features of unseen categories misclassifies the real unseen class
images. We must ensure that the image features generated by the generator are similar
to the real image features, which allows us to achieve higher recognition results for the
unseen categories. We were inspired by [16], and used the semantic regression module to
constrain the generator. This can be represented as:

LSR = Ex∼Pr [||e(y)− R(G(z, e(y)|θG)|θR)||22] (4)

where R denotes the regressor, and θR denotes the parameters of R. θR is pre-trained on
seen classes using the following function:

LR = min
θR
||e(y)− R(x|θR)||22 (5)

Class-Prototype Loss. In remote sensing images, the features of different sample
images in the same class vary greatly and have diversity within the class. We used clas-
sification loss, the semantic regression module cannot guarantee that the image features
synthesized by the generator are diverse. To ensure that the synthesized image features
are more consistent with the distribution of real remote sensing image features and avoid
the generated image features being too homogeneous, we introduced class-prototype loss
in training to constrain the generator. We were inspired by [17]. First, we clustered each
class of real remote sensing image features to obtain k clusters. We obtained class prototype
sample image features by averaging all sample image features in each group, and can
obtain k class prototype samples for each real remote sensing image class. In the training
process, we hoped that the image features synthesized by the generator would be close to
at least one class prototype vector in the same class.

Let Xy
n denote the nth cluster of category y, each category has k clusters. In this study,

we set k = 5 for simplicity. Let py
n denote the nth prototype vector of category y, each

category has k prototype vectors. The py
n is defined as:

py
n =

1
Ny

n
∑

xi∈Xy
n

xi (6)

where Ny
n denotes the number of samples in cluster Xy

n. For the generated fake features x̂,
we also define the prototype vector p̂y

n as:

p̂y
n =

1
Ny

n
∑

x̂i∈X̂y
n

x̂i (7)

We hope that each sample x̂ generated for the category y is be close to at least one
prototype vector py. This loss can be defined as:

L1 =
1
n

n

∑
i=1

min
j∈[1,k]

∥∥∥x̂i − py
j

∥∥∥2

2
(8)

where n represents the number of generated samples for the category y and k represents the
number of prototype vectors per class. We also hope that the prototype vector of generated
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fake features p̂y
n is close to at least a real prototype vector py

n for the same class, which is
formulated as:

L2 =
1

ny

ny

∑
y=1

min
j∈[1,k]

∥∥∥ p̂y
j − py

j

∥∥∥2

2
(9)

where ny represents the number of all categories. Our class-prototype loss can be expressed
by the following equation:

LCPL = λ1L1 + λ2L2 (10)

With this class-prototype loss for constraint, our model can avoid generating single-
view image features and ensure the intra-class diversity of the synthesized image features
for remote sensing images.

Finally, our model was trained with the following overall loss function:

min
θG

max
θD

LWGAN + αLC + βLSR + λLCPL (11)

where α, β, and λ are hyperparameters of the model to balance the importance of each term.

2.5. Training and Testing

In the training phase, the generator was trained using class semantic features and
visual features from the seen categories. We used classification loss, semantic regression
module, and class-prototype loss to constrain the generator. We used classification loss
to allow the generator to learn to generate discriminative image features. We used the
semantic regression module to ensure that the generated image features represent semantic
features. Class-prototype loss ensures that the synthetic image features are more consistent
with the distribution of real remote sensing image features. The model is trained with
Equation (11).

After the training is complete, we repeated the generator to generate an arbitrary
number of image features for each unseen category. We obtained a training set of synthetic
images. In the ZSL task, we can classify the unseen images by the classifier trained on this
dataset. In the GZSL task, we added the synthetic images dataset to the seen class dataset
and trained a classifier to recognize both seen and unseen class images. We can choose a
softmax classifier or KNN, etc. In this study, we used the softmax classifier.

3. Results

In this section, we designed experiments to evaluate our method. First, we introduced
the remote sensing image datasets used in our experiments. Second, we introduced our
experimental setup. Third, we exploited the effect of our method on different semantic
vectors. Fourth, we compared our approach with the current state-of-the-art zero-shot
RSSC method. Finally, we performed ablation studies.

3.1. Dataset

We selected three datasets in the most widely used remote sensing images classification
datasets, namely UCM21 [29], AID30 [30] and NWPU45 [7].

The UCM21 dataset has 21 classes, and each scene class consists of 100 images. For each
scene class, the size of the image is 256× 256 pixels. The AID30 dataset has 30 categories,
each category has 200 to 400 samples, and each sample has a pixel size of 600 × 600.
The NWPU45 dataset has 45 classes, and each scene class consists of 700 images. For each
scene class, the size of the image is 256× 256 pixels. As shown in Figure 2, we can see the
diversity of images within the same class.
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Figure 2. Some remote sensing sample images in UCM21, AID30, and NWPU45 datasets.

3.2. Evaluation Protocols

In the ZSL task, we used the class average accuracy [14] as the performance evaluation
metric, i.e., the classification accuracy within a class is first counted for each class. Then the
class average accuracy is calculated by finding the mean value.

In the GZSL task, harmonic mean accuracy [14] is used to evaluate the classification
effect. The formula for calculating the harmonic mean accuracy is as follows:

H =
2× u× s

u + s
(12)

where u denotes the accuracy of unseen classes, s denotes the accuracy of seen classes,
and H denotes the harmonic mean accuracy.

3.3. Implementation Details

We first must extract image features, obtain the corresponding class semantic infor-
mation, and then use the GAN network for training. We used the ResNet-101 model
pre-trained on ImageNet to extract 2048-dimensional features of remote sensing images.
We obtained the word vectors of the corresponding class by using Word2vec, Glove, Fast-
text, and Bert. We implemented our model via multilayer neural networks. The generator
G contains a 4096 nodes hidden layer activated by LeakyRelu [33], the output layer has
2048 nodes activated by Relu [34]. The discriminator D also contains a 4096 nodes hidden
layer activated by LeakyRelu, and the output layer has no activation. The regressor R
contains a 2048 nodes hidden layer, the dimensionality of the output layer is the same as
the semantic information dimension. We used the adam [35] optimizer to optimize our
model , lr = 0.0001, β1 = 0.5, and β2 = 0.999. In this study, we set α = 0.001, β = 10, γ = 1,
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γ1 = 0.01, γ2 = 0.001. The above algorithms were implemented using the PyTorch, and the
experiments were completed on four RTX2080s.

3.4. Ablations on Different Word Vectors

We used four natural language processing models pre-trained on Wikipedia to obtain
word vectors for remote sensing datasets. Moreover, we obtained different dimensional
word vectors for each method as class semantic features. To find the word vectors with the
best results, we compared the word vectors obtained by these four methods with different
dimensions. The classification results on the UCM21 dataset are shown in Figure 3.
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Figure 3. The classification accuracy of different word vectors on the UCM21 dataset.

The Word2vec model pre-trained on Wikipedia has three dimensions, i.e., 100, 300,
and 500, and they correspond to an accuracy of 0.6097, 0.5698, and 0.6266, respectively.

The Glove model pre-trained on Wikipedia has four dimensions, i.e., 50, 100, 200, and
300, and they correspond to an accuracy of 0.5455, 0.5602, 0.5294, and 0.5236, respectively.

The Fasttext model pre-trained on Wikipedia has four dimensions, i.e., 50, 100, 200,
300, and they correspond to an accuracy of 0.5264, 0.5358, 0.5325, and 0.5166, respectively.

We used Bert in two ways to obtain word vectors, one using class names and the other
using class description texts, which correspond to an accuracy of 0.4536 and 0.3978, respectively.

We also explored the effect of different word vectors in GZSL tasks. We used Word2vec-
500, Glove-100, Fastetext-100, and Bert-768 as semantic information In Table 1. When we
used the Word2vec method to extract 500-dimensional word vectors as semantic infor-
mation for remote sensing image datasets, we achieved the best results in both ZSL and
GZSL tasks.

Table 1. The experimental results of different word vectors. Bold font denotes the best result.

Word2vec Glove Fasttext Bert
UC Merced Land Use Dataset

acc u s H

X 0.6266 0.4869 0.7348 0.5857
X 0.5602 0.4303 0.7389 0.5439

X 0.5358 0.4007 0.6875 0.5063
X 0.4536 0.3507 0.7138 0.4704

3.5. Comparison with State-of-the-Art

To show the superiority of CSPWGAN, we present a comparison of our method
with some previous methods. We chose these baselines: SSE [10], DMaP [12], SAE [36],
ZSL-LP [19], ZSC-SA [20], DASE [21], VSC [37], VSOP [38], f-CLSWGAN [14], CYCLEW-
GAN [16], and RBGN [39].
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SSE [10] fuses multiple semantic information into the same semantic space and cal-
culates the similarity of them. DMaP [12] studies the relationship between the semantic
space manifold and the transferability of visual-semantic mapping. SAE [36] is based on
learning a Semantic autoencoder for solving the label prediction problem. SAE adds a
constraint from visual mapping to semantic features to alleviate the domain drift problem.
ZSL-LP [19] constructs a semantic-directed graph, then uses a label-propagation algorithm
for zero-shot classification. ZSC-SA [20] is a novel zero-shot RSSC method, which relies on
Sammon embedding and spectral clustering. VSC [37] employs a novel visual architecture
constraint for ZSL. VSOP [38] proposes to match latent visual and semantic representations
in a shared subspace. DASE [21] proposes a distance-constrained semantic autoencoder
to handle ZSRSSC. RBGN [39] employs an adversarial attack and bidirectional generation
into GZSL to improve the generalizability and robustness of the model.

For a fair comparison with prior methods, we divided the dataset into four seen/unseen
ratios, and each ratio was randomly divided 25 times, and 25 zero-shot classification ex-
periments were performed. The average accuracy of the categories is taken as the result.
Regarding the splitting ratio setting of the remote sensing dataset, our method is consistent
with previous zero-shot classification methods for remote sensing images, such as articles
DSAE, ZSC-SA, and ZSL-LP. Tables 2–4 show the classification results for UCM21, AID30,
and NWPU45 datasets. As shown in Tables 2–4, our method significantly improved the
classification accuracy compared with the state-of-the-art(sota) approaches for zero-shot
RSSC in most cases. On the UCM21 dataset, our method improved 4.03%, 8.69%, 9.58%,
and 5.99% under different seen/unseen ratios (e.g., 16/5, 13/8, 10/11, and 7/14, respec-
tively). On the AID30 dataset, our method improves 2.37%, 2.61%, 1.05%, and 1.78% under
different seen/unseen ratios (e.g., 25/5, 20/10, 15/15, and 10/20, respectively). On the
NWPU45 dataset, our method improves 0.24% and 1.45% under two seen/unseen ratios
(e.g., 25/20 and 20/25, respectively). The standard deviation of our method is smaller
than DSAE in most cases, which also proves the superiority of our method. In conclusion,
the results show that our method is more adapted for remote sensing images. The re-
sults also show that our method works better with a higher ratio of unseen classes and
higher accuracy.

Table 2. With different seen/unseen ratios, the average ZSL classification accuracies and standard
deviation (%) of our CSPWGAN model and the sota methods on the UCM21 dataset. Bold font
denotes the best result.

Method 16/5 13/8 10/11 7/14

SSE [10] 35.59 ± 5.90 23.42 ± 3.81 17.07 ± 3.56 10.82 ± 2.10
DMaP [12] 48.92 ± 8.71 30.91 ± 4.77 22.99 ± 4.81 17.30 ± 3.04
SAE [36] 49.50 ± 8.42 32.71 ± 6.49 24.04 ± 4.36 18.63 ± 2.76

ZSL-LP [19] 49.01 ± 8.85 31.26 ± 5.09 23.28 ± 4.13 17.55 ± 2.90
ZSC-SA [20] 50.42 ± 8.84 34.12 ± 6.10 24.68 ± 4.22 18.38 ± 2.74

VSC [37] 55.91 ± 11.77 36.26 ± 7.31 25.97 ± 5.79 19.53 ± 3.05
VSOP [38] 46.48 ± 7.83 29.81 ± 4.56 21.97 ± 4.11 16.14 ± 2.59

f-CLSWGAN [14] 56.97 ± 11.06 36.47 ± 6.28 27.89 ± 4.99 19.34 ± 3.96
CYCLEWGAN [16] 58.36 ± 10.04 36.81 ± 5.53 28.37 ± 4.53 21.15 ± 3.51

RBGN [39] 57.93 ± 11.56 36.95 ± 5.99 27.74 ± 5.16 20.67 ± 3.95
DSAE [21] 58.63 ± 11.23 37.50 ± 7.79 25.59 ± 5.24 20.18 ± 3.07

CSPWGAN (our) 62.66 ± 10.79 46.19 ± 5.52 35.17 ± 4.93 26.17 ± 3.87
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Table 3. With different seen/unseen ratios, the average ZSL classification accuracies and standard
deviation (%) of our CSPWGAN model and the sota methods on the AID30 dataset. Bold font denotes
the best result.

Method 25/5 20/10 15/15 10/20

SSE [10] 46.11 ± 7.21 30.28 ± 4.90 19.94 ± 2.43 12.73 ± 1.27
DMaP [12] 43.40 ± 7.29 28.29 ± 4.78 19.38 ± 2.62 11.56 ± 1.29
SAE [36] 47.34 ± 8.42 32.12 ± 4.45 23.73 ± 3.28 13.77 ± 1.17

ZSL-LP [19] 46.77 ± 7.65 30.82 ± 4.90 21.78 ± 3.37 12.97 ± 1.06
ZSC-SA [20] 50.87 ± 8.74 33.46 ± 5.99 24.41 ± 3.83 15.89 ± 2.03

VSC [37] 52.61 ± 8.37 35.85 ± 5.52 26.11 ± 3.76 17.50 ± 2.19
VSOP [38] 48.56 ± 7.90 32.95 ± 5.52 24.84 ± 3.04 14.03 ± 2.47

f-CLSWGAN [14] 50.68 ± 11.25 33.89 ± 5.72 24.95 ± 2.96 17.26 ± 3.06
CYCLEWGAN [16] 52.37 ± 10.47 35.94 ± 5.46 25.28 ± 2.66 17.89 ± 2.86

RBGN [39] 51.99 ± 11.32 36.27 ± 5.65 24.83 ± 3.07 16.83 ± 3.14
DSAE [21] 53.49 ± 8.58 35.32 ± 5.17 25.92 ± 3.92 17.65 ± 2.52

CSPWGAN (our) 55.86 ± 10.60 37.93 ± 5.26 26.97 ± 2.53 19.43 ± 3.02

Table 4. With different seen/unseen ratios, the average ZSL classification accuracies and standard
deviation (%) of our CSPWGAN model and the sota methods on the NWPU45 dataset. Bold font
denotes the best result.

Method 35/10 30/15 25/20 20/25

SSE [10] 33.36 ± 3.58 23.30 ± 2.48 16.88 ± 2.29 12.94 ± 1.46
DMaP [12] 49.53 ± 6.31 38.07 ± 4.83 28.15 ± 3.86 23.95 ± 2.60
SAE [36] 44.81 ± 4.73 35.07 ± 3.91 24.65 ± 3.71 20.77 ± 2.02

ZSL-LP [19] 47.00 ± 6.64 36.45 ± 4.58 26.71 ± 3.43 22.90 ± 2.47
ZSC-SA [20] 48.40 ± 6.36 37.55 ± 4.54 28.27 ± 3.47 23.69 ± 2.38

VSC [37] 50.68 ± 6.60 40.92 ± 4.59 30.62 ± 3.10 25.51 ± 2.04
VSOP [38] 45.32 ± 5.71 36.09 ± 4.63 25.44 ± 3.13 22.18 ± 2.00

f-CLSWGAN [14] 45.35 ± 6.37 38.97 ± 4.93 30.06 ± 2.96 24.31 ± 2.57
CYCLEWGAN [16] 46.87 ± 5.99 39.85 ± 4.71 31.17 ± 2.66 25.06 ± 2.74

RBGN [39] 44.68 ± 6.14 40.31 ± 4.89 31.91 ± 3.07 24.89 ± 2.44
DSAE [21] 51.52 ± 6.91 41.94 ± 4.61 31.85 ± 3.32 25.20 ± 2.17

CSPWGAN (our) 50.66 ± 5.86 41.61 ± 4.48 32.09 ± 2.96 26.65 ± 2.33

To compare the classification performance for each unseen category, we fixed the
unseen classes for a given split ratio according to the DSAE setting. We present the
confusion matrix of our approach and the DASE method. Notably, each column of the
matrix represents an instance of the real class, and each row of the matrix represents an
instance of the predicted class. On the UCM21 dataset, we have five unseen classes with
the seen/unseen ratio set to 16/5, i.e., “freeway”, “golf course”, “intersection”, “medium
residential”, and “storage tanks”. Figure 4 shows the confusion matrix of the DASE
method and our method on the UCM21 datasets. We found that we obtained 27% and 22%
improvement on the classes “freeway” and “storage tanks”, respectively. Our method has a
decrease in classification accuracy on other unseen classes, but the average accuracy of the
five unseen classes is higher than DASE. The average accuracy of our method improved
from 63.6% to 68.8% on the five unseen categories. On the AID30 dataset, we have five
unseen classes with the seen/unseen ratio set to 25/5, i.e., “dense residential”, “desert”,
“forest”, “industrial”, and “pond”. Figure 5 shows the confusion matrix of the DASE
method and our method on the AID30 datasets. We achieved 31% and 80% improvement
on the classes “dense residential” and “forest”, respectively. The average accuracy of our
method improved from 64.8% to 72.4% on the five unseen categories. On the NWPU45
dataset, we have ten unseen classes with the seen/unseen ratio set to 35/10, i.e., “airport”,
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“basketball court”, “circular farmland”, “cloud”, “dense residential”, “desert”,“harbor”,
“intersection”, “medium residential” and “sparse residential”. Figure 6 shows the confusion
matrix of the DASE method and our method on the NWPU45 datasets. We achieved 2%,
5%, 60%, 16%, and 1% improvement on the classes “airport”, “circular farmland”, “dense
residential”, “medium residential” and “sparse residential”, respectively.

To visually display the efficiency of CSPWGAN, we visualized the synthesized image
features through our CSPWGAN method and the original image features of the unseen class
in Figure 7. We used the popular t-SNE [40] tool to display the synthesized image features
and the real image features. From Figure 7, we can observe that the unseen image features
synthesized by our method are relatively close to the real image feature distribution, which
proves that our approach is meaningful.

(a) DASE (b) Ours

Figure 4. Confusion matrix of the two methods on the UCM21 dataset. Where “FW”, “GC”, “IT”,
“MR”, and “ST” denotes “freeway”, “golf course”, “intersection”, “medium residential”, and “storage
tanks”, respectively.

(a) DASE (b) Ours

Figure 5. Confusion matrix of the two methods on the AID30 dataset. Where “DR”, “DE”, “FO”,
“IN”, and “PO” denotes “dense residential”, “desert”, “forest”, “industrial”, and “pond”, respectively.
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(a) DASE (b) Ours

Figure 6. Confusion matrix of the two methods on the NWPU45 dataset. Where “AI”, “BA”, “CF”,
“CL”, “DE”, “DS”, “HB”, “IT”, “MR”, and “SR” denotes “airport”, “basketball court”, “circular
farmland”, “cloud”, “dense residential”, “desert”,“harbor”, “intersection”, “medium residential” and
“sparse residential”, respectively.

Figure 7. t-SNE visualizations of image features for five unseen classes on the AID30 dataset.
The pentagram denotes the real features of the unseen class. The solid circle denotes the synthetic
features of the unseen class. The real and synthetic features of the same unseen class have the
same color.

3.6. Ablation Studies

Our approach is based on generative adversarial networks. Following the characteris-
tics of remote sensing images, we used classification loss, class-prototype loss, and semantic
regression loss to constrain the generator, to ensure that we can obtain a high-performance
generator. We constructed ablation experiments to understand our model further and to
evaluate their effects. We set λ = 0 in (12), our model without classification loss term can be
referred to as CSPWGAN-λ; we set β = 0 in (12), our model without semantic regression
term can be referred to as CSPWGAN-β; we set γ = 0 in (12), our model without class-
prototype loss term can be referred to as CSPWGAN-γ. We executed ablation experiments
on the UCM21, AID30, and NWPU45 datasets. Table 5 shows the result of ablation studies
on the UCM21, AID30, and NWPU45 datasets. On the UCM21 dataset, when we removed
the classification loss item, the model accuracy decreased by 2.82%; when we removed the
semantic regression term, the model accuracy decreased by 2.23%; when we removed the
semantic regression term, the model accuracy decreased by 2.99%. The results show the
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effectiveness of the three items for zero-shot RSSC. We can find the same conclusion on the
AID30 and NWPU45 datasets.

Table 5. Ablation results on the UCM21, AID30, and NWPU45 datasets.

Method UCM21 AID30 NWPU45

CSPWGAN-λ 59.84 ± 9.64 53.05 ± 10.07 47.82 ± 6.24
CSPWGAN-β 60.43 ± 10.32 53.79 ± 10.34 48.79 ± 5.67
CSPWGAN-γ 59.67 ± 9.85 52.89 ± 9.59 47.07 ± 5.96
CSPWGAN 62.66 ± 10.79 55.86 ± 10.60 50.66 ± 5.86

4. Conclusions

This study presents a novel method for zero-shot remote sensing scene classification
(RSSC) named CSPWGAN. We are the first to apply generative adversarial networks for
zero-shot RSSC. Since the remote sensing image dataset does not directly provide class
attribute information, we used four natural language processing models pre-trained on
Wikipedia to obtain word vectors as the class semantic information we need. We used
generative adversarial networks to train a generator that can generate class image features
through class semantic features, converting the zero-shot RSSC problem into a traditional
classification problem. Following the characteristics of remote sensing images, we used
the classification loss, semantic regression module, and class-prototype loss to constrain
the generator. The classification loss was used to preserve inter-class discrimination. We
used a semantic regression module to ensure the image features generated by the generator
can represent the semantic features. We introduced class-prototype loss when training the
generator to constrain itself to ensure intra-class diversity of the synthesized image features
and avoid generating too homogeneous image features. We conducted experiments on two
benchmark datasets. The results demonstrate the superiority of our proposed CSPWGAN
method for remote sensing images. Our method can work better with a high ratio of unseen
classes. In the experiments, we found that the class semantic information significantly
affects the classification results. In future work, we will try to obtain better class semantic
vectors and use a better approach to reduce classification standard deviation and improve
the classification accuracy for remote sensing images.

In future work, we can also try to use active learning [41] to solve the problem of
unseen remote sensing image classes in the training data. The key idea of active learning
(AL) is that if a machine-learning algorithm is allowed to select the data it learns, then
it can achieve higher accuracy with fewer labeled training instances. Active learning
retrieves the most useful unlabeled data from a large set of unlabeled data, hands it over
to a professional for labeling, and then uses that sample to train the model to improve
its accuracy. Many excellent methods have emerged in the field of remote sensing and
deep learning using active learning, such as [42–44]. Our approach uses semantic and
visual information from all image classes. Class semantic information builds a bridge of
knowledge transfer between seen and unseen categories, breaking the boundary of category
mutual exclusion between training and testing sets. Active learning and our model are two
different ideas for solving the problem of addressing unseen classes in the training data.
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