Bioactive Peptides from Lupinus spp. Seed Proteins-State-of-the-Art and Perspectives
Abstract
:1. Introduction
1.1. Enzymatic Hydrolysis
1.2. Microbial Fermentation
1.3. Gastrointestinal Digestion
2. Lupins and Their Proteins
3. Lupin Bioactive Peptides and Their Properties
3.1. Osteoprotective and Anti-Inflammatory Peptides
3.2. ACE-Inhibitory Peptides
3.3. Antioxidant Peptides
3.4. Cholesterol-Lowering Peptides
3.5. Potentially Anti-Amnesic Peptides
3.6. Antidiabetic Peptides
3.7. Anticancer Peptides
- Peptides with selective activity against carcinogenic cells. This type of peptides does not attack the normal cell; the action is direct to the carcinogenic cell.
- Peptides with nonselective activity. These are peptides with action to bacteria, carcinogenic cells, and against normal eukaryotic cells which mechanism is related to the permeabilization of the cell membrane mediated by electrostatic interaction. Key factors, related to the selectivity of peptides for carcinogenic cells, are electrostatic interactions between cationic peptides and anionic components of the cell membrane, surface area of the cell and membrane fluidity [8].
3.8. Antibacterial Peptides
3.9. Allergen Peptides
4. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, S.; Singh, R.; Rana, S. Bioactive peptides: A review. Int. J. Bioautom. 2011, 15, 223–250. [Google Scholar]
- Daliri, E.B.M.; Lee, B.H.; Oh, D.H. Current trends and perspectives of bioactive peptides. Crit. Rev. Food Sci. Nutr. 2018, 58, 2273–2284. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Daliri, E.B.M.; Oh, D.H.; Lee, B.H. Bioactive peptides. Foods 2017, 6, 32. [Google Scholar] [CrossRef]
- Kartal, C.; Kaplan Türköz, B.; Otles, S. Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. J. Food Meas. Charact. 2020, 14, 1865–1883. [Google Scholar] [CrossRef]
- Agyei, D.; Ongkudon, C.M.; Wei, C.Y.; Chan, A.S.; Danquah, M.K. Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod. Process. 2016, 98, 244–256. [Google Scholar] [CrossRef]
- Perez Espitia, P.J.; de Fátima Ferreira Soares, N.; dos Reis Coimbra, J.S.; de Andrade, N.J.; Souza Cruz, R.; Alves Medeiros, E.A. Bioactive Peptides: Synthesis, Properties, and Applications in the Packaging and Preservation of Food. Compr. Rev. Food Sci. Food Saf. 2012, 11, 187–204. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 2017, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Agyei, D.; Danquah, M.K. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol. Adv. 2011, 29, 272–277. [Google Scholar] [CrossRef]
- Cartwright, H. Artificial Neural Networks, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2015; pp. 1–333. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Amigo, L.; Hernández-Ledesma, B. Current evidence on the bioavailability of food bioactive peptides. Molecules 2020, 25, 4479. [Google Scholar] [CrossRef]
- Fernández-Tomé, S.; Hernández-Ledesma, B. Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Mol. Nutr. Food Res. 2020, 64, 2000401. [Google Scholar] [CrossRef] [PubMed]
- Australian Government of the Gene Technology Regulator. The Biology of Lupinus L. (Lupin or Lupine); Australian Government of the Gene Technology Regulator: Canberra, Australia, 2013.
- Visvanathan, R.; Madhujith, T.; Gamage, A.; Zhang, N. Lupin. In Pulses. Processing and Product Development; Manickavasagan, A., Thirunathan, P., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 169–204. ISBN 978-3-030-41375-0. [Google Scholar]
- Pastor-Cavada, E.; Juan, R.; Pastor, J.E.; Alaiz, M.; Vioque, J. Analytical nutritional characteristics of seed proteins in six wild Lupinus species from Southern Spain. Food Chem. 2009, 117, 466–469. [Google Scholar] [CrossRef]
- Sedláková, K.; Straková, E.; Suchý, P.; Krejcarová, J.; Herzig, I. Lupin as a perspective protein plant for animal and human nutrition—A review. Acta Vet. Brno 2016, 85, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Kohajdová, Z.; Karovičová, J.; Schmidt, Š. Lupin Composition and Possible Use in Bakery—A Review. Czech J. Food Sci. 2011, 29, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Boukid, F.; Pasqualone, A. Lupine (Lupinus spp.) proteins: Characteristics, safety and food applications. Eur. Food Res. Technol. 2022, 248, 345–356. [Google Scholar] [CrossRef]
- Böhme, A.; Bojahr, J.; Dietze, M.; Gefrom, A.; Priepke, A.; Schachler, B.; Struck, C.; Wehling, P. Lupins. Cultivation and Uses; Gesellschaft zur Förderung der Lupine: Westerau, Germany, 2020. [Google Scholar]
- Arnoldi, A.; Boschin, G.; Zanoni, C.; Lammi, C. The health benefits of sweet lupin seed flours and isolated proteins. J. Funct. Foods 2015, 18, 550–563. [Google Scholar] [CrossRef]
- Gresta, F.; Wink, M.; Prins, U.; Abberton, M.; Capraro, J.; Scarafoni, A.; Hill, G. Lupins in European cropping systems. In Legumes in Cropping Systems; CABI: Wallingford, UK, 2017; pp. 88–108. ISBN 9781780644981. [Google Scholar]
- Oomah, B.D.; Bushuk, W. Characterization of Lupine Proteins. J. Food Sci. 1983, 48, 38–41. [Google Scholar] [CrossRef]
- Oliveira, L.; Torres, D.; Pinho, O. Lupin: Nutritional composition and applications in the food industry. In Proceedings of the 7th Meeting of Young Researchers of University of Porto, Porto, Portugal, February 2014; pp. 8–9. [Google Scholar]
- Yaver, E.; Bilgiçli, N. Ultrasound-treated lupin (Lupinus albus L.) flour: Protein- and fiber-rich ingredient to improve physical and textural quality of bread with a reduced glycemic index. LWT 2021, 148, 111767. [Google Scholar] [CrossRef]
- Aslan, M.; Bilgiçli, N. Improvement of functional cake formulation with fermented soy (Glycine max) and lupin (Lupinus albus L.) powders. Int. J. Gastron. Food Sci. 2021, 26, 100429. [Google Scholar] [CrossRef]
- Güémes-Vera, N.; Peña-Bautista, R.J.; Jiménez-Martínez, C.; Dávila-Ortiz, G.; Calderón-Domínguez, G. Effective detoxification and decoloration of Lupinus mutabilis seed derivatives, and effect of these derivatives on bread quality and acceptance. J. Sci. Food Agric. 2008, 88, 1135–1143. [Google Scholar] [CrossRef]
- Okagu, I.U.; Ndefo, J.C.; Aham, E.C.; Obeme-Nmom, J.I.; Agboinghale, P.E.; Aguchem, R.N.; Nechi, R.N.; Lammi, C. Lupin-Derived Bioactive Peptides: Intestinal Transport, Bioavailability and Health Benefits. Nutrients 2021, 13, 3266. [Google Scholar] [CrossRef] [PubMed]
- Millan-linares, M.C.; Lemus-conejo, A.; Yust, M.M.; Pedroche, J.; Carrillo-vico, A.; Millan, F.; Montserrat-de, S. Short communications GPETAFLR, a novel bioactive peptide from Lupinus angustifolius L. protein hydrolysate, reduces osteoclastogenesis. J. Funct. Foods 2018, 47, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhang, X.; Ren, G.; Wu, C.; Qin, P.Y.; Yao, Y. Peptides from extruded lupin (Lupinus albus L.) regulate inflammatory activity via the p38 MAPK signal transduction pathway in RAW 264. J. Agric. Food Chem. 2020, 68, 11702–11709. [Google Scholar] [CrossRef] [PubMed]
- Boschin, G.; Scigliuolo, G.M.; Resta, D.; Arnoldi, A. Optimization of the Enzymatic Hydrolysis of Lupin (Lupinus) Proteins for Producing ACE-Inhibitory Peptides. J. Agric. Food Chem. 2014, 62, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, E.B.; Luna-vital, D.A.; Fornasini, M.; Baldeón, M.E.; Gonzalez, E.; Mejia, D. Gamma-conglutin peptides from Andean lupin legume (Lupinus mutabilis Sweet ) enhanced glucose uptake and reduced gluconeogenesis in vitro. J. Funct. Foods 2018, 45, 339–347. [Google Scholar] [CrossRef]
- Babini, E.; Tagliazucchi, D.; Martini, S.; Dei Più, L.; Gianotti, A. LC-ESI-QTOF-MS identification of novel antioxidant peptides obtained by enzymatic and microbial hydrolysis of vegetable proteins. Food Chem. 2017, 228, 186–196. [Google Scholar] [CrossRef]
- Lammi, C.; Aiello, G.; Boschin, G.; Arnoldi, A. Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. J. Funct. Foods 2019, 55, 135–145. [Google Scholar] [CrossRef]
- Lammi, C.; Aiello, G.; Vistoli, G.; Zanoni, C.; Arnoldi, A.; Sambuy, Y.; Ferruzza, S.; Ranaldi, G. A multidisciplinary investigation on the bioavailability and activity of peptides from lupin protein. J. Funct. Foods 2016, 24, 297–306. [Google Scholar] [CrossRef]
- Lammi, C.; Bollati, C.; Lecca, D.; Abbracchio, M.P.; Arnoldi, A. Lupin Peptide T9 (GQEQSHQDEGVIVR) Modulates the Mutant PCSK9D374Y Pathway: In vitro Characterization of its Dual Hypocholesterolemic Behavior. Nutrients 2019, 11, 1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.P.; Goswami, A.; Kalia, K.; Kate, A.S. Plant-Derived Bioactive Peptides: A Treatment to Cure Diabetes. Int. J. Pept. Res. Ther. 2020, 26, 955–968. [Google Scholar] [CrossRef] [PubMed]
- Javier, O.; Herrera, R.; Jimenez, G.S.; Rosa, A.; Laredo, L.; Hernandez-ledesma, B.; Hsieh, C.; De Lumen, B.; Torres, K.B. Identification of Chemopreventive Peptide Lunasin in Some Lupinus Species; International Lupin Association: Cochabamba, Bolivia, 2011; pp. 185–189. ISBN 9788361607731. [Google Scholar]
- Romeo, F.; Fabroni, S.; Ballistreri, G.; Muccilli, S.; Spina, A.; Rapisarda, P. Characterization and Antimicrobial Activity of Alkaloid Extracts from Seeds of Different Genotypes of Lupinus spp. Sustainability 2018, 10, 788. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.; El-araby, G.M.; Taha, H. Potential use as a bio-preservative from lupin protein hydrolysate generated by alcalase in food system. J. Appl. Biol. Biotechnol. 2016, 4, 76–81. [Google Scholar] [CrossRef]
- Guillamón, E.; Rodríguez, J.; Burbano, C.; Muzquiz, M.; Pedrosa, M.M.; Cabanillas, B.; Crespo, J.F.; Sancho, A.I.; Mills, E.N.C.; Cuadrado, C. Characterization of lupin major allergens (Lupinus albus L.). Mol. Nutr. Food Res. 2010, 54, 1668–1676. [Google Scholar] [CrossRef]
- Lima-Cabello, E.; Alché, J.D.; Jimenez-Lopez, J.C. Narrow-leafed lupin main allergen β-conglutin (lup an 1) detection and quantification assessment in natural and processed foods. Foods 2019, 8, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czubinski, J.; Montowska, M.; Springer, E.; Pospiech, E.; Lampart-Szczapa, E. Immunoreactivity changes during lupin seed storage proteins digestion. Eur. Food Res. Technol. 2017, 243, 2095–2103. [Google Scholar] [CrossRef] [Green Version]
- Bayer, F.; Dremova, O.; Khuu, M.P.; Mammadova, K.; Pontarollo, G.; Kiouptsi, K.; Soshnikova, N.; May-Simera, H.L.; Endres, K.; Reinhardt, C. The Interplay between Nutrition, Innate Immunity, and the Commensal Microbiota in Adaptive Intestinal Morphogenesis. Nutrients 2021, 13, 2198. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Bioactive peptides. J. AOAC Int. 2008, 91, 914–931. [Google Scholar] [CrossRef] [Green Version]
- Millán-Linares, M.D.C.; Millán, F.; Pedroche, J.; Yust, M.D.M. GPETAFLR: A new anti-inflammatory peptide from Lupinus angustifolius L. protein hydrolysate. J. Funct. Foods 2015, 18, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Millán-Linares, M.D.C.; Yust, M.D.M.; Alcaide-Hidalgo, J.M.; Millán, F.; Pedroche, J. Lupine protein hydrolysates inhibit enzymes involved in the inflammatory pathway. Food Chem. 2014, 151, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemus-Conejo, A.; Grao-Cruces, E.; Toscano, R.; Varela, L.M.; Claro, C.; Pedroche, J.; Millan, F.; Millan-Linares, M.C.; Montserrat-de la Paz, S. A lupine (Lupinus angustifolious L.) peptide prevents non-alcoholic fatty liver disease in high-fat-diet-induced obese mice. Food Funct. 2020, 11, 2943–2952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tardif, J.C. Angiotensin-converting enzyme inhibitors and atherosclerotic plaque: A key role in the cardiovascular protection of patients with coronary artery disease. Eur. Heart J. Suppl. 2009, 11, E9–E16. [Google Scholar] [CrossRef] [Green Version]
- Kamran, F.; Phillips, M.; Reddy, N. Functional properties of Australian blue lupin (Lupinus angustifolius) protein and biological activities of protein hydrolysates. Legum. Sci. 2021, 3, e65. [Google Scholar] [CrossRef]
- Yee, Y.; Yee, L.; Theng, G.; Salampessy, J.; Azlan, A. Food Bioscience Nutritional composition and angiotensin converting enzyme inhibitory activity of blue lupin (Lupinus angustifolius). Food Biosci. 2019, 31, 100401. [Google Scholar] [CrossRef]
- Yan, M.H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 2013, 62, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, S.; Jahandideh, F.; Wu, J. Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress. Biomed Res. Int. 2014, 2014, 608979. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Munekata, P.E.S.; Gómez, B.; Barba, F.J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F. Bioactive peptides as natural antioxidants in food products—A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Montserrat-de la Paz, S.; Villanueva, A.; Pedroche, J.; Millan, F.; Martin, M.E.; Millan-Linares, M.C. Antioxidant and Anti-Inflammatory Properties of Bioavailable Protein Hydrolysates from Lupin-Derived Agri-Waste. Biomolecules 2021, 11, 1458. [Google Scholar] [CrossRef]
- Zanoni, C.; Aiello, G.; Arnoldi, A.; Lammi, C. Investigations on the hypocholesterolaemic activity of LILPKHSDAD and LTFPGSAED, two peptides from lupin β-conglutin: Focus on LDLR and PCSK9 pathways. J. Funct. Foods 2017, 32, 1–8. [Google Scholar] [CrossRef]
- WHO. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 3 February 2022).
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [Green Version]
- Chiangjong, W.; Chutipongtanate, S.; Hongeng, S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int. J. Oncol. 2020, 57, 678–696. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, J.A.F.; Evangelista, A.G.; Nazareth, T.d.M.; Luciano, F.B. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia 2019, 8, 100494. [Google Scholar] [CrossRef]
- Johnson, S.K.; Clements, J.; Villarino, C.B.J.; Coorey, R. Lupins: Their Unique Nutritional and Health-Promoting Attributes; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780081008669. [Google Scholar]
- Guillamón, E.; Burbano, C.; Cuadrado, C.; Muzquiz, M.; Pedrosa, M.M.; Sánchez, M.; Cabanil-las, B.; Crespo, J.F.; Rodriguez, J.; Haddad, J.; et al. Effect of an instantaneous controlled pressure drop on in vitro allergenicity to lupins (Lupinus albus var Multolupa). Int. Archiv. Allergy Immunol. 2008, 145, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ayala, A.L.; Paredes-López, O. Molecular characterization of the β-conglutin of lupin seeds. J. Food Biochem. 2001, 25, 15–31. [Google Scholar] [CrossRef]
- Jimenez-Lopez, J.C.; Lima-Cabello, E.; Melser, S.; Foley, R.C.; Singh, K.B.; Juan, D.A. Lupin Allergy: Uncovering Structural Features and Epitopes of β-conglutin Proteins in Lupinus Angustifolius L. with a Focus on Cross-allergenic Reactivity to Peanut and Other Legumes. In Proceedings of the International Conference on Bioinformatics and Biomedical Engineering, Washington, DC, USA, 2–4 November 2015; pp. 96–107. [Google Scholar]
- Schlegel, K.; Lidzba, N.; Ueberham, E.; Eisner, P.; Schweiggert-weisz, U. Fermentation of Lupin Protein Hydrolysates—Effects on Their Functional Properties, Sensory Profile and the Allergenic Potential of the Major Lupin Allergen Lup an 1. Foods 2021, 10, 281. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Oliveira, M.B.P.P. Trends in Food Science & Technology Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends Food Sci. Technol. 2019, 93, 53–68. [Google Scholar] [CrossRef]
Amino Acid | L. albus | L. angustifolius | L. luteus | L. mutabilis | FAO a |
---|---|---|---|---|---|
Essential amino acid | |||||
Histidine | 2.0 | 2.6 | 3.1 | 3.5 | 1.6 |
Threonine | 3.4 | 3.4 | 3.0 | 3.5 | 2.5 |
Valine | 3.8 | 3.7 | 3.4 | 3.8 | 4.0 |
Methionine | 0.7 | 0.7 | 0.6 | 0.8 | 2.3 b |
Isoleucine | 4.1 | 4.0 | 3.6 | 4.2 | 3.0 |
Tryptophan | 0.9 | 0.9 | 0.9 | 0.8 | 0.7 |
Leucine | 6.8 | 6.9 | 7.8 | 7.0 | 6.1 |
Lysine | 4.5 | 4.6 | 4.5 | 5.8 | 4.8 |
Phenylalanine | 3.4 | 3.7 | 3.7 | 3.5 | 4.1 c |
Conditionally essential amino acids | |||||
Cystine d | 1.5 | 1.6 | 2.4 | 1.6 | NA |
Tyrosine | 4.8 | 3.4 | 2.9 | 4.0 | 4.1 c |
Arginine | 12.4 | 12.0 | 9.1 | 10.2 | NA |
Glutamine | NA * | NA | NA | 24.3 | NA |
Glycine | NA | NA | NA | 3.8 | NA |
Proline | NA | NA | NA | 3.8 | NA |
Predicted Bioactivity/Source | Protein/Peptide | Purification Method | Main Outcomes | Methods of Obtention | Reference |
---|---|---|---|---|---|
Osteoprotective/anti-inflammatory L. angustifolius L. | GPETAFLR | Ultrafiltration; chromatographic techniques | Prevention development and progression of osteoclast-related diseases, (anti-osteoclastogenic activity in human blood monocyte-derived osteoclasts), prevent the pro-inflammatory activation of microglial cells in cultures | in vitro hydrolysis | [30] |
Anti-inflammatory L. albus | AKIQDKEGIPPDQQR; LIFAGKQLEDGR; LDDALRAEK; IQDKEGIPPDQQR; RRAIGK; RDDAASCLVR (10 μM). | ultrafiltration | Inhibition the lipopolysaccharide (LPS) which induce overproduction of pro-inflammatory mediators | in vitro-simulating gastrointestinal digestion | [31] |
ACE-inhibitory activity L. angustifolius L. albus L. luteus | Unidentified peptides, IC50 = from 136 μg/mL (L. luteus) with chymotrypsin to 1053 μg/mL (L. albus) treated with umamizyme | Ultrafiltration | Lowering blood pressure, preventing/treating hypertension by inhibiting the angiotensin-converting enzyme (ACE) | Enzymatic Hydrolysis (pepsin, trypsin, chymotrypsin, flavourzym, umamizyme, and corolase PP) | [32] |
L. mutabilis | purified fractions of conglutin-gamma RLGN; VNEGA; SEIGGA; SAPRST; GALGLGH; PQNLDL; AGGPQQR; PSELSGAAH; LPKHSDAD; LTFPGSAD | anion and cation FPLC analysis | Enzymatic digestion (pancreatin, pepsin) | [33] | |
Antioxidant activity L. mutabilis | PSELSGAAH | anion and cation FPLC analysis | Reduce the formation of oxidative products along with the induction of antioxidant enzymes in vivo | Enzymatic digestion (pancreatin, pepsin) | [33] |
L. albus (DPPH) assay; (ABTS) assay; (FRAP) assay; Superoxide anion scavenging, Hydroxyl radical scavenging | FVPY | size exclusion chromatography (SEC) | Enzymatic hydrolysis-alcalase, chymotrypsin, pancreatin, pepsin, neutrase, thermolysin; Microbial hydrolysis (Lactobacillus spp.)-enzymes from bacterial and fungal sources | [34] | |
Cholesterol-lowering activity L. albus L. albus | E.LTFPGSAED.I (IC = 68.4 µM) GQEQSHQDEGVIVR (IC= 99.5 ± 0.56 µM), YDFYPSSTKDQQS (IC = 70 µM), LILPKHSDAD (IC = 147.2 µM) | Ultrafiltration | Modulate cholesterol metabolism in HepG2 cells; prevention of hypercholesterolemia | In vitro experiments using human recombinant HMGCoAR in silico molecular model and scoring approach; Enzymatic hydrolysis (pepsin) | [35,36,37] |
Anti-amnesic activity L. albus | R.AVNELTFPGSAEDIER.L; K.ELTFPGSAEDIER.L; A.IPPGIPYWT.Y; E.LTFPGSAED.I; | Chromatographic methods Ultrafiltration | Potential inhibitors of prolyl endopeptidase (PEP) activity; applications in the prevention and treatment of mental disorders. | In vitro | [36] |
AGGPQQR | anion and cation FPLC analysis | Enzymatic hydrolysis (pancreatin; pepsin) | [33] | ||
Antidiabetic activity L. albus L. | LTFPGSAED (IC = 228 μM)-LILPKHSDAD; GQEQSHQDEGVIVR; | Chromatographic methods | sources of DPP-IV inhibitory peptides useful for the prevention of type 2 diabetes | In vitro—enzymatic hydrolysis | [38] |
Lupinus angustifolius L. mutabilis | RLGN; NVLSQL; LPKHSDAD; LTFPGSAD; AGGPQQR | anion and cation FPLC analysis | Enzymatic hydrolysis | [33] | |
L. albus L. mutabilis | VNEGA; SEIGGA; NPDDC; SAPRST; GALGLGH; VVVVDE; LPKHSDAD; PQNLDL; PSELSGAAH; | ||||
Chemopreventive/Anticancer L. albus L. mutalis L. montanus L. campestris | Lunasin/lunasin-like peptides | - | Inhibition of HT-29 cells and MMP-9 gelatinolytic activity; Prevents breast cancer induced by chemical carcinogens | in vitro and in vivo assays | [39] |
L. albus | Albumin and globulin fractions | Antiproliferative effects on HT-29 human colorectal cancer cells and affect MMP-9 gelatinolytic activity | |||
L. mutabilis. L. albus | VVVVDE | anion and cation FPLC analysis | Enzymatic hydrolysis | [33] | |
Antimicrobial activity of alkaloid extracts of Pseudomonas aeruginosa (from skin) Klebsiella pneumoniae (from inguinal skin) L. allbus | Unidentified peptides P. aeruginosa—MIC = 67 μM K. pneumoniae—MIC = 67 μM | Application in food preservation; therapeutic purpose in health care (Antibiotics) | Enzymatic hydrolysis by alcalase; chemical modification (esterification) | [40] | |
Antimicrobial activity against Gram-positive bacteria (S. aureus and B. subtilis) and Gram-negative bacteria (P. aeruginosa and E. coli) by conventional well-diffusion assay L. angustifolius L. | Lupin Protein Hydrolysates | Digestive proteases, microbial and plant proteolytic enzymes (alcalase is a bacterial extract from Bacillus licheniformis) | [41] | ||
Allergen activity L. albus | conglutin A | Anion-exchange fast liquid chromatography | Potential allergen | in vitro IgE-binding studies | [42] |
L. angustifolius | conglutin B | Lupin major allergen | Enzymatic hydrolysis (Papain, Alcalase and Pepsin) and lactic acid fermentation (Lactobacillus sakei ssp. carnosus, Lactobacillus amylolyticus and Lactobacillus helveticus) proteomic analysis | [43] | |
L. angustifolius L. luteus | Peptides with antigenetic properties (conglutin b) R.TNRLENLQNYR.I; R.IIEFQSKPNTLILPK.H; K.HSDADFILVVLNGR.A; R.ATITIVNPDK.R; R.LPAGTTSYILNPDDNQNLR.V; K.LAIPINNPGK.L; K.DQQSYFSGFSK.N; K.NTLEATFNTR.Y; R.GQEQSHQDEGVIVR.V; R.LLGFGINANENQR.N; R.TNRLENLQNYR.I; R.IVEFQSKPNTLILPK.H; K.HSDADYILVVLNGR.A; R.ATITIVNPDK; R.QAYNLEHGDALRLPAGTTSYILN; PDDNQNLR.V; R.LPAGTTSYILNPDDNQNLR.V; K.LAIPINNPGNFYDFYPSSTK.D; R.NTLEATFNTR.Y; R.NTLEATFNTRYEEIQR.I; R.YEEIQR.I; R.NFLAGSEDNVIR.Q | Peptides with antigenetic properties (conglutin b) | In vitro (simulating digestion taking place in digestive track), specific hydrolysis by trypsin | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garmidolova, A.; Desseva, I.; Mihaylova, D.; Lante, A. Bioactive Peptides from Lupinus spp. Seed Proteins-State-of-the-Art and Perspectives. Appl. Sci. 2022, 12, 3766. https://doi.org/10.3390/app12083766
Garmidolova A, Desseva I, Mihaylova D, Lante A. Bioactive Peptides from Lupinus spp. Seed Proteins-State-of-the-Art and Perspectives. Applied Sciences. 2022; 12(8):3766. https://doi.org/10.3390/app12083766
Chicago/Turabian StyleGarmidolova, Aleksandra, Ivelina Desseva, Dasha Mihaylova, and Anna Lante. 2022. "Bioactive Peptides from Lupinus spp. Seed Proteins-State-of-the-Art and Perspectives" Applied Sciences 12, no. 8: 3766. https://doi.org/10.3390/app12083766
APA StyleGarmidolova, A., Desseva, I., Mihaylova, D., & Lante, A. (2022). Bioactive Peptides from Lupinus spp. Seed Proteins-State-of-the-Art and Perspectives. Applied Sciences, 12(8), 3766. https://doi.org/10.3390/app12083766