Multi-Modal X-ray Imaging and Analysis for Characterization of Urinary Stones
Abstract
:1. Introduction
2. Materials and Methods
2.1. X-ray Speckle-Based Imaging (SBI)
2.2. X-ray Microtomography
2.3. X-ray Grating-Based Interferometry (GI)
2.4. X-ray Diffraction (XRD)
3. Results
3.1. X-ray Diffraction
3.2. MicroCT Volumetric Analysis
3.3. X-ray Speckle-Based IMAGING (SBI)
3.4. X-ray Grating-Based Interferometry (GI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CT | Computed tomography |
DECT | Dual-energy computed tomography |
EI | Edge-illumination |
GI | Grating-based interferometry |
SBI | Speckle-based imaging |
WAXD | Wide-angle X-ray diffraction |
XRD | X-ray diffraction |
Appendix A
References
- Straub, M.; Hautmann, R. Urolithiasis-Harnsteinerkrankung. In Urologie; Springer: Berlin/Heidelberg, Germany, 2010; pp. 269–302. [Google Scholar] [CrossRef]
- Green, W.; Ratan, H. Molecular mechanisms of urolithiasis. Urology 2013, 81, 701–704. [Google Scholar] [CrossRef] [PubMed]
- Hidas, G.; Eliahou, R.; Duvdevani, M.; Coulon, P.; Lemaitre, L.; Gofrit, O.N.; Pode, D.; Sosna, J. Determination of renal stone composition with dual-energy CT: In vivo analysis and comparison with x-ray diffraction. Radiology 2010, 257, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qu, M.; Carter, R.E.; Leng, S.; Ramirez-Giraldo, J.C.; Jaramillo, G.; Krambeck, A.E.; Lieske, J.C.; Vrtiska, T.J.; McCollough, C.H. Differentiating Calcium Oxalate and Hydroxyapatite Stones InVivo Using Dual-Energy CT and Urine Supersaturation and pH Values. Acad. Radiol. 2013, 20, 1521–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, C.J.; Baliyan, V.; Kordbacheh, H.; Sajjad, Z.; Sahani, D.; Kambadakone, A. Radiology of renal stone disease. Int. J. Surg. 2016, 36, 638–646. [Google Scholar] [CrossRef]
- Brisbane, W.; Bailey, M.R.; Sorensen, M.D. An overview of kidney stone imaging techniques. Nat. Rev. Urol. 2016, 13, 654–662. [Google Scholar] [CrossRef]
- Qu, M.; Ramirez-Giraldo, J.C.; Leng, S.; Williams, J.C.; Vrtiska, T.J.; Lieske, J.C.; McCollough, C.H. Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: An ex vivo phantom study. Am. J. Roentgenol. 2011, 196, 1279–1287. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; He, C.; Hao, X.; Kuang, C.; Liu, X. Principles of different x-ray phase-contrast imaging: A review. Appl. Sci. 2021, 11, 2971. [Google Scholar] [CrossRef]
- Wilkins, S.W.; Nesterets, Y.I.; Gureyev, T.E.; Mayo, S.C.; Pogany, A.; Stevenson, A.W. On the evolution and relative merits of hard X-ray phase-contrast imaging methods. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372. [Google Scholar] [CrossRef] [Green Version]
- Yashiro, W.; Terui, Y.; Kawabata, K.; Momose, A. On the origin of visibility contrast in x-ray Talbot interferometry. Opt. Express 2010, 18, 16890. [Google Scholar] [CrossRef]
- Strobl, M. General solution for quantitative dark-field contrast imaging with grating interferometers. Sci. Rep. 2014, 4, 7243. [Google Scholar] [CrossRef] [Green Version]
- Graetz, J.; Balles, A.; Hanke, R.; Zabler, S. Review and experimental verification of X-ray dark-field signal interpretations with respect to quantitative isotropic and anisotropic dark-field computed tomography. Phys. Med. Biol. 2020, 65, 235017. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Gupta, R.; Iwakoshi, A.; Kim, J.K.; Shimao, D.; Sugiyama, H.; Sunaguchi, N.; Yuasa, T.; Ichihara, S. X-ray dark-field phase-contrast imaging: Origins of the concept to practical implementation and applications. Phys. Med. 2020, 79, 188–208. [Google Scholar] [CrossRef] [PubMed]
- Mayo, S.C.; Stevenson, A.W.; Wilkins, S.W. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science. Materials 2012, 5, 937–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudspeth, M.; Claus, B.; Dubelman, S.; Black, J.; Mondal, A.; Parab, N.; Funnell, C.; Hai, F.; Qi, M.L.; Fezzaa, K.; et al. High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading. Rev. Sci. Instrum. 2013, 84. [Google Scholar] [CrossRef]
- Saghamanesh, S.; Griffa, M.; Zboray, R. X-ray speckle-based dark-field imaging of water transport in porous ceramics. In Proceedings of the International Conference on Industrial Computed Tomography, Wels, Austria, 8–11 February 2022; pp. 11–16. [Google Scholar]
- Gao, J.; Kedir, N.; Kirk, C.D.; Hernandez, J.; Wang, J.; Paulson, S.; Zhai, X.; Horn, T.; Kim, G.; Gao, J.; et al. Real-time damage characterization for GFRCs using high-speed synchrotron X-ray phase contrast imaging. Compos. Part B Eng. 2021, 207, 108565. [Google Scholar] [CrossRef]
- Nielsen, M.S.; Lauridsen, T.; Christensen, L.B.; Feidenhans’l, R. X-ray dark-field imaging for detection of foreign bodies in food. Food Control 2013, 30, 531–535. [Google Scholar] [CrossRef]
- Massimi, L.; Suaris, T.; Hagen, C.K.; Endrizzi, M.; Munro, P.R.T.; Havariyoun, G.; Hawker, P.M.S.; Smit, B.; Astolfo, A.; Larkin, O.J.; et al. Volumetric high-resolution X-ray phase-contrast virtual histology of breast specimens with a compact laboratory system. IEEE Trans. Med. Imaging 2021. [Google Scholar] [CrossRef]
- Saghamanesh, S.; Dimitriu LaGrange, D.; Reymond, P.; Wanke, I.; Lövblad, K.O.; Neels, A.; Zboray, R. Non contrast enhanced volumetric histology of blood clots through high resolution propagation-based X-ray microtomography. Sci. Rep. 2022, 12, 2778. [Google Scholar] [CrossRef]
- Romano, M.; Bravin, A.; Wright, M.D.; Jacques, L.; Miettinen, A.; Hlushchuk, R.; Dinkel, J.; Bartzsch, S.; Laissue, J.A.; Djonov, V.; et al. X-Ray Phase Contrast 3D Virtual Histology: Evaluation of Lung Alterations After Microbeam Irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 818–830. [Google Scholar] [CrossRef]
- Eckermann, M.; Schmitzer, B.; Van der Meer, F.; Franz, J.; Hansen, O.; Stadelmann, C.; Salditt, T. Three-dimensional virtual histology of the human hippocampus based on phase-contrast computed tomography. Proc. Natl. Acad. Sci. USA 2021, 118, 1–12. [Google Scholar] [CrossRef]
- Zdora, M.C.; Thibault, P.; Kuo, W.; Fernandez, V.; Deyhle, H.; Vila-Comamala, J.; Olbinado, M.P.; Rack, A.; Lackie, P.M.; Katsamenis, O.L.; et al. X-ray phase tomography with near-field speckles for three-dimensional virtual histology. Optica 2020, 7, 1221. [Google Scholar] [CrossRef]
- Chourrout, M.; Rositi, H.; Ong, E.; Hubert, V.; Paccalet, A.; Foucault, L.; Autret, A.; Fayard, B.; Olivier, C.; Bolbos, R.; et al. Brain virtual histology with X-rayphase-contrast tomographyPart I: Whole-brain myelin mapping in white-matter injury models. Biomed. Opt. Express 2021. [Google Scholar] [CrossRef]
- Horng, A.; Stroebel, J.; Geith, T.; Milz, S.; Pacureanu, A.; Yang, Y.; Cloetens, P.; Lovric, G.; Mittone, A.; Bravin, A.; et al. Multiscale X-ray phase contrast imaging of human cartilage for investigating osteoarthritis formation. J. Biomed. Sci. 2021, 28, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Momose, A. X-ray phase imaging reaching clinical uses. Phys. Med. 2020, 79, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Bravin, A.; Coan, P.; Suortti, P. X-ray phase-contrast imaging: From pre-clinical applications towards clinics. Phys. Med. Biol. 2013, 58, R1-35. [Google Scholar] [CrossRef]
- Gureyev, T.E.; Mayo, S.C.; Myers, D.E.; Nesterets, Y.; Paganin, D.M.; Pogany, A.; Stevenson, A.W.; Wilkins, S.W. Refracting Röntgen’s rays: Propagation-based x-ray phase contrast for biomedical imaging. J. Appl. Phys. 2009, 105. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Bech, M.; Bunk, O.; Kraft, P.; Eikenberry, E.F.; Brönnimann, C.; Grünzweig, C.; David, C. Hard-X-ray dark-field imaging using a grating interferometer. Nat. Mater. 2008, 7, 134–137. [Google Scholar] [CrossRef]
- Olivo, A.; Speller, R. Image formation principles in coded-aperture based x-ray phase contrast imaging. Phys. Med. Biol. 2008, 53, 6461–6474. [Google Scholar] [CrossRef]
- Morgan, K.S.; Paganin, D.M.; Siu, K.K. X-ray phase imaging with a paper analyzer. Appl. Phys. Lett. 2012, 100. [Google Scholar] [CrossRef]
- Bérujon, S.; Ziegler, E.; Cerbino, R.; Peverini, L. Two-Dimensional X-Ray Beam Phase Sensing. Phys. Rev. Lett. 2012, 108, 158102. [Google Scholar] [CrossRef] [Green Version]
- Scherer, K.; Braig, E.; Willer, K.; Willner, M.; Fingerle, A.A.; Chabior, M.; Herzen, J.; Eiber, M.; Haller, B.; Straub, M.; et al. Non-invasive Differentiation of Kidney Stone Types using X-ray Dark-Field Radiography. Sci. Rep. 2015, 5, 9527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauridsen, T.; Willner, M.; Bech, M.; Pfeiffer, F.; Feidenhans’l, R. Detection of sub-pixel fractures in X-ray dark-field tomography. Appl. Phys. A 2015, 121, 1243–1250. [Google Scholar] [CrossRef]
- Hu, S.; Yang, F.; Griffa, M.; Kaufmann, R.; Anton, G.; Maier, A.; Riess, C. Towards quantification of kidney stones using X-ray dark-field tomography. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, Australia, 18–21 April 2017; pp. 1112–1115. [Google Scholar]
- Saghamanesh, S.; Aghamiri, S.M.R.; Olivo, A.; Sadeghilarijani, M.; Kato, H.; Kamali-Asl, A.; Yashiro, W. Edge-illumination X-ray phase contrast imaging with Pt-based metallic glass masks. Rev. Sci. Instrum. 2017, 88, 063705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdora, M.C. State of the Art of X-ray Speckle-Based Phase-Contrast and Dark-Field Imaging. J. Imaging 2018, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Saghamanesh, S.; Zboray, R. Virtual speckle-based X-ray phase-contrast and dark-field imaging with digital phantoms. Opt. Express 2021, 29, 41703. [Google Scholar] [CrossRef]
- Berujon, S.; Ziegler, E. Near-field speckle-scanning-based X-ray tomography. Phys. Rev. A 2017, 95, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, K.M.; Li, H.T.; Paganin, D.M.; Berujon, S.; Rougé-Labriet, H.; Brun, E. Single-Shot X-Ray Speckle-Based Imaging of a Single-Material Object. Phys. Rev. Appl. 2020, 13, 054023. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef] [Green Version]
Sample | Analysis | Chemical Formula | Crystal System | Space Group | Density (g/cm3) |
---|---|---|---|---|---|
Dog (SC) | Struvite | Mg(NH)(PO)·6HO | Orthorhombic | Pmn2 | 1.7 (white) |
Cat (poly) | Whewellite (minor) | Ca(CO)·HO | Monoclinic | P2 | 2.2 (brown-gray) |
Hydroxylapatite (main) | Ca(PO)(OH) | Hexagonal | P6 | 3.8 (gray-white) | |
Human (nano-poly) | Whitelockite (minor) | Ca(Mg,Fe)(PO) (POOH) | Tringonal | R3c | 3.1 (gray-white) |
Hydroxylapatite (main) | Ca(PO)(OH) | Hexagonal | P | 3.8 |
Value | Cat | Dog | Human |
---|---|---|---|
mean | 16.5 | 8.6 | 3.0 |
stdev | 11.0 | 6.5 | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saghamanesh, S.; Richter, H.; Neels, A.; Zboray, R. Multi-Modal X-ray Imaging and Analysis for Characterization of Urinary Stones. Appl. Sci. 2022, 12, 3798. https://doi.org/10.3390/app12083798
Saghamanesh S, Richter H, Neels A, Zboray R. Multi-Modal X-ray Imaging and Analysis for Characterization of Urinary Stones. Applied Sciences. 2022; 12(8):3798. https://doi.org/10.3390/app12083798
Chicago/Turabian StyleSaghamanesh, Somayeh, Henning Richter, Antonia Neels, and Robert Zboray. 2022. "Multi-Modal X-ray Imaging and Analysis for Characterization of Urinary Stones" Applied Sciences 12, no. 8: 3798. https://doi.org/10.3390/app12083798
APA StyleSaghamanesh, S., Richter, H., Neels, A., & Zboray, R. (2022). Multi-Modal X-ray Imaging and Analysis for Characterization of Urinary Stones. Applied Sciences, 12(8), 3798. https://doi.org/10.3390/app12083798