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Abstract: As a result of fluctuations in the shallow groundwater table, hydrodynamic conditions
change alongside environmental conditions and hydrogeochemical processes to affect pollutant
migration. The study aimed to investigate the migration, adsorption, and desorption characteristics
of Pb on fine, medium, and coarse sand in the water table fluctuation zone by using several laboratory
methods, including the kinetic aspects of Pb2+ adsorption/desorption and water table fluctuation
experiments. The results showed that the adsorption and desorption curves fit the Elovich equation
well at a correlation coefficient above 0.9. In the adsorption and desorption kinetic experiments
for fine, medium, and coarse sand collected and from the floodplain, the maximum adsorption
capacity of Pb2+ was 2367 mg·kg−1, 1848 mg·kg−1, and 1544 mg·kg−1, respectively. The maximum
desorption capacity of Pb2+ was 29.18 mg·kg−1, 62.38 mg·kg−1, and 81.60 mg·kg−1, respectively. In
environments with pH greater than 4, the adsorption capacity was proportional to the pH, but the
desorption capacity decreased as the pH increased in water. As the water table varied, the lowest
pH occurred in the polluted medium we set initially. When the distance between the pollutants and
sample solution grew further, pH increased, and the Pb2+ concentration decreased in the sample
solution. In the column experiment of water table fluctuations on coarse sand, Pb2+ migrated nearly
5 cm upward from the original pollutant and migrated less than 10 cm downward from that. In
our experiments on medium and fine sand, the upward and downward migration distances were
<5 cm. The groundwater table fluctuations, pH variation, and Pb concentration currently influence
the migration of Pb.

Keywords: kinetic adsorption and desorption; groundwater table fluctuations; Pb; migration;
experimental study

1. Introduction

As an essential water source, groundwater plays a significant role in supplying urban
and rural residents with water. The water table fluctuates under natural and human factors,
such as rainfall, evaporation, exploitation [1], and recharge [2]. The area between the
highest and lowest groundwater table is referred to as the groundwater table fluctuation
zone [3,4]. Water table fluctuations allow both saturated and unsaturated soil to alternate
within the environment. These fluctuations cause significant changes in the biochemical
characteristics of that zone [5], including the adsorption, desorption, and dilution of
pollutants, which correspondingly alter the groundwater environment. The influence
of water table fluctuations on pollutant migration and transformation has attracted the
attention of scholars.

Current studies mainly focus on solute migration and transformation, such as ni-
trogen [6], organic matter [7], heavy metals [8–10], and groundwater quality [11] under
water table fluctuations. Liu et al. studied the nitrate change law under water table rise
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using a sandbox model experiment, finding that the water environment gradually changed
into a state of relative reduction, and the lateral flow of the experiment was conducive
to the migration of nitrate [12]. Liu et al. studied the variation in nitrate concentration
for two water table fluctuation conditions (the water table stayed constant and varied by
20 cm/10 days) [13]. Tian et al. adopted an experimental simulation involving three kinds
of groundwater tables and different surface runoff velocities to study nitrate change laws
on solute migrates to the soil surface. Their results showed that the solute transport process
shares an essential relationship with surface runoff velocity and the groundwater table [14].
Wang et al. simulated and verified the regularity of soil salt migration under water table
fluctuations at different groundwater depths using a laboratory column experiment with
homogenic medium. They assumed that the capillary pressure and temperature field
variation caused by water table fluctuations significantly influence the migration of organic
pollutants [15]. Wang et al. used the TMVOC model (a numerical simulator for three-phase
non-isothermal flow of water, soil gas, and a multi-component mixture of volatile organic
chemicals) to simulate how benzene, toluene, ethylbenzene, and o-xylene (BTEX) migrate
in areas caused by steam extraction under natural attenuation and groundwater table
fluctuations [16]. Oostorm et al. used a two-dimensional sandbox to study the distribution
of pollutants migrating from their source into soil and groundwater under water table
fluctuations. They observed that pollutants migrate with the infiltrated water flow and
dissolve when the water table rises, increasing the pollutant concentration in the sample
solution [17]. Bustos Medina et al. studied iron hydroxide blockage in wells and its effect on
groundwater table fluctuations. This blockage affects indexes such as the water table, pH,
EC (electrical conductivity), and DO (dissolved oxygen). By adopting hydrogeochemical
simulations, Medina et al. determined the minerals’ reaction mode, such as iron ions
and manganese ions in the aquifer [18]. Li et al. explored the nitrogen transport law
for fluctuations in different water tables using laboratory-based column experiments and
numerical simulation. Their results showed that groundwater table fluctuations influence
the variation of dissolved oxygen in the solution and decrease the nitrate and ammonium
concentrations, which is conducive to removing ammonium [19]. Liu et al. employed a
numerical model to predict changes in Beijing’s groundwater table when the South–North
Water Diversion Project was open. They also analyzed changes to the vadose zone and the
impact of solid waste on the groundwater environment [20]. On account of the South–North
Water Diversion Project, Cao et al. analyzed chemical quality predictions in the Baoding
Plain for when the groundwater table rises using hydrogeochemical simulations [21].

Heavy metals (Pb) pose potential risks to the soil ecosystem and human health [22–24].
China and other nations have focused on soil pollution prevention and control plans and
the study of Pb migration characteristics [25,26]. Domestic and foreign scholars have
studied the adsorption, desorption, and migration of heavy metal pollutants such as Cu,
Cr, and Zn in soil [27–30]. Nonetheless, there are few reports on the migration laws of
heavy metals under groundwater table fluctuations. Therefore, in this article, technical
methods, including adsorption and desorption tests, water table fluctuation experiments,
etc., were used to analyze the distribution characteristics of Pb in the vadose and saturated
zones under different typical media. Our methods help research the migration of Pb in
the groundwater table fluctuation zone and provide theoretical support for heavy metal
pollution treatments for soil and groundwater, remediation, and protection.

2. Materials and Methods
2.1. Sample Collection and Process

The sample medium used in our laboratory was collected from the floodplain of the
Yellow River in Mengjin District, Luoyang City, Henan Province. The sampling location is
scoured by the Yellow River all the year round. As a result, the soil medium is relatively
clean, and the background concentration of Pb is small, which has little influence on the
laboratory experiment. Laboratory experiments need to separate sand into coarse medium
and fine medium. The sample sand was collected and processed using the Technical
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Specification for Soil Environmental Monitoring’s quarter method [31]. Then, the sample
sand was dried and crushed in the laboratory. Finally, the sample was divided into three
typical media, including coarse, medium, and fine sand in the pH range of 8.5–9.3 with
an organic matter content range of 0.241–1.070 g·kg−1. The basic physical and chemical
properties of the soil are shown in Table 1.

Table 1. Physical and chemical properties of soil.

Sample Particle Size (mm) pH Organic Matter Content (g·kg−1)

Coarse sand 0.5–1.0 8.5 0.241
Medium sand 0.25–0.5 8.8 0.587

Fine sand 0.125–0.25 9.3 1.070

2.2. Experimental Equipment

The following devices were employed for the adsorption and desorption kinetic as-
pects of Pb2+: a digital water bath oscillator, high-speed desktop centrifuge, and microwave.

The experimental devices for water table fluctuations include a 90 cm long column,
water tank with 25 L volume, peristaltic pump with 100 rpm speed, piezometer tube, and
soil solution sampler. We set eight openings for sampling in every column at heights of 20,
30, 35, 40, 45, 50, 55, and 60 cm. The experimental devices are shown in Figure 1.

Figure 1. Experimental devices for the water table fluctuations. (a) The schematic diagram. (b) The
field experiment diagram.

2.3. Experimental Methods
2.3.1. Adsorption and Desorption Experimental Methods of Pb

In this work, we completed the adsorption and desorption experiments, including the
adsorption kinetics experiment, the desorption kinetics experiment, and the Pb adsorption
and desorption quantities due to pH variation, in the laboratory. The experimental principle
for adsorption was as follows: For the experiment, 50 mL of a 200 mg·L−1 Pb(NO3)2 solution
was prepared mixing sample sand (the sample sand was divided into coarse, medium, and
fine sand). After mingling, the supernatant liquids, which were samples obtained in 5, 10,
15, 20, 30, 60, 90, 120, 180, 240, 360, 480, 720, and 1440 min, passed through the oscillator
for centrifugal filtration. The experimental principle for desorption was as follows. The
desorption process resembles the first step of the adsorption process, i.e., the pollutant was



Appl. Sci. 2022, 12, 3870 4 of 13

mixed with the sand medium. After shaking this mixture for 24 h, the filtered samples
were passed through centrifugal filtration. Then, 50 mL of a 0.01 mg·L−1 NaNO3 solution
appended the filtered samples. The desorption time was the same as the adsorption time.
The supernatant liquids were left behind by the oscillator via centrifugal filtration. The
adsorption experiment at pH range of 4 to 6 and desorption experiment at pH range of
4 to 9 were as follows: Combining 50 mL of 500 mg·L−1 Pb(NO3)2 solution with 10 g of
sample sand, the pH of the background solution was adjusted to target values, such as pH 4,
5, 6, with either HCl or NaOH. When reaching the equilibrium (1440 min), the supernatant
liquids and residue for adsorption were obtained through centrifugal filtration. The residue
was obtained at the end of the experiment on the adsorption due to pH variation. The
solutions at pH 4, 5, 6, 7, 8, 9 were added to the residue. Then the mixture was shaken
using oscillator (200 rpm·min−1), the supernatant liquids for desorption were obtained
through centrifugal filtration. The following equations reveal the calculation formulae for
the adsorption and desorption capacities [32]:

Qads =
V(C1 − C2)

M
(1)

Qdes =
VC3

M
(2)

where Qads is the adsorption capacity for the medium (mg·kg−1), Qdes is the desorption
capacity for the medium (mg·kg−1), V is the supernatant volume (mL), C1 is the original
concentration for adsorption aspect (mg·L−1), C2 is the supernatant concentration for
adsorption aspect (mg·L−1), M is the mass of the sand sample (g), C3 is the supernatant
concentration for desorption aspect (mg·L−1).

2.3.2. Experimental Methods for Water Table Fluctuations

The columns were filled with sand collected and processed from the field, including
coarse, medium, and fine sand. The column was filled with gritstone around the 5 cm
length, unpolluted medium around the 30 cm length, polluted medium around the 10 cm
length, unpolluted medium around the 40 cm length, and gritstone around the 10 cm
length, respectively, from bottom to top. A Pb(NO3)2 solution was mixed with the sample
sand to produce 2000 mg·kg−1 contaminated mixture. After loading, the deionized water at
pH 7 flowed up from the base of the column, whose pressure tube was used to measure the
water table. The peristaltic pump controlled the water table variation, rising or falling. The
initial water table was set in the column at the beginning of the experiment at about 20 cm
high. Then, the water table was adjusted to increase 10 cm per day until it had continuously
risen to 60 cm by adjusting the peristaltic pump. The same method was applied to the
water table decrease, which decreased 10 cm per day until it reached a height of 20 cm.
This process represented the completion of one water table fluctuation cycle. In the column
for water table fluctuations, two cycles were continuously conducted. Figure 2 shows how
the water table varies with time. In order to further understand the migration process of
Pb in the medium under water table fluctuations, the Pb2+ concentration adsorbed in the
medium was measured by digestion treatment after the experiment. The sampling medium
was obtained from the 20–60 cm height at an interval of 5 cm.

2.3.3. Experimental Test Instrument

According to the groundwater quality standard (GB/T 14848-2017) and other stan-
dards, the Pb concentrations for the sample solution and sample sand were detected by
a flame atomic adsorption spectrophotometer (FAAS, Manufacturer: Beijing Ruili Ana-
lytical Instrument Co. Ltd., Beijing, China). The pH of the solution was detected using
the glass electrode method (Micro600, Manufacturer: Palintest Co. Ltd., Newcastle, UK).
The medium sample was digested under microwave irradiation. The Pb contents were
determined by FAAS.
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Figure 2. Water table fluctuations process.

3. Results and Discussion
3.1. The Curve of Adsorption and Desorption Kinetics

Figure 3 shows the curves of adsorption and desorption kinetics of Pb. The adsorption
and desorption capacities of Pb2+ in the three sand media were significantly dissimilar.
The adsorption and desorption quantity reached equilibrium in 1440 min. The maximum
adsorption capacity of fine sand, medium sand, and coarse sand were 2366.6 mg·kg−1,
1847.6 mg·kg−1, and 1543.8 mg·kg−1, respectively. The maximum desorption capacity
of coarse sand, medium sand, and fine sand were 81.6 mg·kg−1, 62.38 mg·kg−1, and
29.18 mg·kg−1, respectively. Compared to the hyperbolic diffusion model, pseudo-second-
order model and Weber–Morris model, the data fit well to the Elovich model against various
time ranges because the minimum R2 value was 0.90. The fitting parameters are shown
in Table 2. Based on the adsorption kinetics experiment data, Pb2+ in the contaminated
solution was adsorbed rapidly onto the sampling sand within 240 min. The adsorption
quantity gradually was stable from 240 to 1440 min in the experiment; this implies several
points that adsorbed Pb2+ quickly on the medium surface at the initial stage. The effective
points that adsorb Pb2+ gradually decreased with increasing reaction time, which gradually
weakened the adsorption capacity until it reached equilibrium. The experiment’s result
aligned with the study of Ren, L. [33]. The same conditions occurred in the desorption
kinetics experiment.

Figure 4 illustrates the effects of pH on the adsorption and desorption of sand medium.
The adsorption capacity of Pb2+ in three sand media gradually increased at pH range of
4 to 6. The desorption capacity gradually decreased with increasing pH and the desorption
quantity steadily approached equilibrium when the pH was between 8 and 9. Fine sand’s
adsorption and desorption capacities showed almost no change at different pH levels com-
pared with medium and coarse sand. When the pH increased, the competitive adsorption
sites of hydrogen ions in the medium decreased, and heavy metals mainly existed in the
combined state of hydroxide or carbonic acid. This state is not conducive to their migration
in the medium and increases adsorption capacity. These experimental conclusions are
consistent with the literature [30,34].
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Figure 3. Curves of adsorption and desorption kinetics of Pb in different media: (a) the adsorption
quantity variation of Pb based on adsorption kinetics; (b) the desorption quantity variation of Pb
based on desorption kinetics.

Table 2. Kinetic parameters for adsorption and desorption of Pb in different media.

Category Media
Elovich Equation Hyperbolic Diffusion

Equation
Pseudo-Second-
Order Equation

Weber–Morris
Equation

a1 b1 R2 a2 b2 R2 k1 R2 k2 c R2

adsorption
Coarse sand 437.20 163.15 0.96 0.5513 0.0159 0.81 0.00005 0.72 24.52 851.0 0.81

Medium sand 667.04 179.76 0.97 0.6171 0.0140 0.74 0.00006 0.83 25.81 1139.9 0.74
Fine sand 799.14 252.62 0.90 0.6326 0.0143 0.60 0.00005 0.95 33.89 1497.1 0.60

desorption
Coarse sand 15.18 10.21 0.94 0.5208 0.0176 0.69 0.0008 0.96 1.43 42.50 0.69

Medium sand 26.14 5.39 0.94 0.6465 0.0124 0.72 0.0022 0.81 0.77 40.33 0.72
Fine sand 21.00 1.24 0.97 0.8298 0.0062 0.76 0.0165 0.55 0.18 24.21 0.76

Note: The data were fitted to the Elovich equation: Q = a1 + b1 lnt, the hyperbolic diffusion equation:
Q/Qmax = a2 + b2 t1/2, the pseudo-second-order equation: Q = k1 Qmax

2 t/(1 + k1 Qmax t) and the Weber–Morris
equation: Q = k2 t1/2 + c, respectively, where Q is the adsorption/desorption capacity; t is time; a1 and a2 refer
to constant associated with maximum adsorption/desorption amount for the Elovich equation and the pseudo-
second-order equation, respectively, b1 and b2 refer to adsorption/desorption rate coefficient, k1 and k2 refer to
adsorption/desorption rate coefficient for pseudo-second-order model and Weber–Morris model, respectively, c is
constants related to the medium for Weber–Morris model, Qmax refers the equilibrium adsorption/desorption
capacity for coarse sand, medium sand and fine medium.

3.2. pH Variation of Sample Solution on Water Table Fluctuation Zone

In Section 3.1, pH is one of the major factors affecting the adsorption and desorption
capacities of Pb. Figure 5 illustrates pH variation at different sampling port heights in the
water table fluctuation experiment on three typical media. The average pH variation at
different sampling port heights is shown in Figure 6. The vertical direction of the column
shows the distribution properties of pH in the sample solution. Firstly, pH decreased and
then increased from the top to the bottom. The lowest pH often occurred at the height of
35 cm (pH = 4.7), where the location of original pollutants was consistent. The average
pH of the three typical media followed the sequence of fine sand > medium sand > coarse
sand. The aforementioned changes may be attributed to the increasing groundwater table
since Pb2+ was not only adsorbed by the adsorption sites on the surface of soil particles,
but also possibly combined with OH− ions to obtain Pb(OH)2 precipitation. Consequently,
the concentration of OH− ions decreased, so that the pH decreased in the solution, which
resulted in a higher pH the further the distance. As the water table rose, the Pb2+ in the
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solution was absorbed to saturation by the medium. A pH range from 4.5 to 7.5 was
detected in the sample solution by coarse sand, at pH range from 5.1 to 7.8 by medium
sand, and a pH range from 7.1 to 7.7 by fine sand. A comparison of the average pH values
for the three typical media revealed that pH at different grain diameters generally followed
the order of: coarse sand > medium sand > fine sand.

Figure 4. Effects of pH on adsorption (a) and desorption (b) on different media, including coarse,
medium, and fine sand.

3.3. Migration Law of Pb Due to Water Table Fluctuations

Due to the strong adsorption capacity of fine sand, the migration ability of Pb in fine
sand is weak. The Pb of each sample solution in the columns did not reach the instrument’s
detection limit (the instrument’s detection limit (TAS-990A) is 0.01 mg/L). Therefore, we
only analyzed the migration law of Pb in coarse and medium sand in this article. During
groundwater table fluctuations, the variation in Pb concentration at different sample
solutions is shown in Figure 7a (coarse sand) and Figure 7b (medium sand). The results of
how Pb concentration is altered with water table fluctuations are shown in Table 3 and can
be used to study the migration of Pb when the water table rises and falls in the experiment.
Our analysis is as follows. (1) In the sample solution, when the height was 30 cm high in
coarse sand, the water table height increased from 20 to 40 cm, and Pb2+ concentration
increased in the range of 8.29–42.42% in the early-stage relative to the initial concentration
on the first day. Then, with the water table fluctuations, Pb2+ concentration decreased in
the range of 37.12–94.34%. This concentration declined by 9.54% on average within 8 days.
(2) At the height of 35 cm for sample solutions in coarse sand, Pb2+ concentration decreased
in the range of 4.01–97.47% with water table fluctuations. This concentration decreased
by 6.68% on average within 14 days. (3) At the height of 40 cm for the sample solution in
coarse sand, the concentration declined by 5.54% on average within 12 days. (4) At the
height of 45 cm for the sample solution, Pb2+ was absorbed by coarse sand after 4 days.
(5) At the heights of 30 and 40 cm for the sample solution in medium sand, Pb2+ was only
detected on the first day. Afterward, Pb2+ was completely absorbed by the medium. (6) At
the 30 and 40 cm heights for the sample solution in medium sand, Pb2+ concentration
decreased in the range of 24.26–100%. This concentration decreased by 7.57% on average
until the water table fluctuated at between 50 and 60 cm.
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Figure 5. pH variation at different heights of sampling locations in the first and second cycles: (a) pH
variation of coarse sand at sampling positions with heights of 20, 30, and 35 cm; (b) pH variation of
coarse sand at sampling positions with heights of 35, 40, 45, 50, 55, and 60 cm; (c) pH variation of
medium sand at sampling positions with heights of 20, 30, and 35 cm; (d) pH variation of medium
sand at sampling positions with heights of 35, 40, 45, 50, 55, and 60 cm; (e) pH variation of fine sand
at sampling positions with heights of 20, 30, and 35 cm; (f) pH variation of fine sand at sampling
positions with heights of 35, 40, 45, 50, 55, and 60 cm.
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Figure 6. Average pH at different heights of sampling locations.

Figure 7. The Pb2+ concentrations vary in water table fluctuations. (a) The Pb2+ concentrations
vary in columns filled with coarse sand; (b) the Pb2+ concentrations vary in columns filled with
medium sand.

As seen in the analysis in Figure 5 of the pH and the water table, the closer the sample
solution was to the pollutant in the rising water table, the lower the pH became, the greater
the activity of Pb became, and the more desorption quantities resulted from polluted sand.
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Therefore, at the height of 35 cm for the sample solution, Pb2+ concentration reached its
maximum compared with the others. When the sample solutions were further away, the
maximum concentration of Pb2+ was smaller. In a column of coarse sand, when the water
table rose to 30 cm, the desorption quantity of Pb2+ reached its maximum, and the Pb2+

concentration in the solution reached its maximum. Throughout the whole experiment, the
maximum concentration of Pb2+ at the 20, 30, 35, 40, and 45 cm sample solutions were 0.072,
36.061, 38.973, 16.941, and 0.042 mg·L−1, respectively. Figure 7b shows that the adsorption
capacity of medium sand is greater than that of coarse sand; therefore, the migration
capacity of Pb2+ in medium sand becomes weak compared with that in coarse sand. Based
on Figure 7b, Pb2+ is only detected at the heights of 30, 35, and 40 cm. In these sample
solutions, the highest concentrations are 8.619, 18.862, and 0.164 mg·L−1, respectively.

Table 3. Variation range of concentration of Pb in coarse and medium sand sampling ports with
water table fluctuations.

Media

How Did
the Water

Table
Fluctuate

Concentration Variation of Pb in the First Cycle
(Compared with the Initial Concentration)

Concentration Variation of Pb in the Second Cycle
(Compared with the Initial Concentration)

Sampling
Port with
Height of

40 cm

Sampling
Port with
Height of

35 cm

Sampling
Port with
Height of

40 cm

Sampling
Port with
Height of

45 cm

Sampling
Port with
Height of

30 cm

Sampling
Port with
Height of

35 cm

Sampling
Port with
Height of

40 cm

Sampling
Port with
Height of

45 cm

Coarse sand

20→30 cm 8.29% - - - - - - -
30→40 cm 42.42% −4.01% - - −88.82% −86.67% - -
40→50 cm 2.00% −32.66% −33.14% 285.71% −94.34% −82.83% −98.91% -
50→60 cm −37.12% −33.04% −51.56% −100.00% - −84.93% −98.48% -
60→50 cm −40.23% −49.12% −87.05% - - −85.60% −98.82% -
50→40 cm −43.94% −50.60% −97.42% - - −90.68% −99.68% -
40→30 cm −65.96% −82.47% - - - −97.47% - -
30→20 cm - - - - - - - -

Medium sand

20→30 cm −85.09% - - - - - - -
30→40 cm - −24.26% - - - −94.05% - -
40→50 cm - −76.93% −100.00% - - −94.94% - -
50→60 cm - −92.21% - - - −100.00% - -
60→50 cm - −95.21% - - - - - -
50→40 cm - −79.59% - - - - - -
40→30 cm - −86.50% - - - - - -

Note: During the whole experiment, the concentrations in the solution sample at each sampling port did not
reach the detection limit for columns filled with fine sand because of the strong adsorption capacities of fine and
medium sand; therefore, they are not listed in this table. The “-” in the table indicates that the water sample was
not obtained due to water table fluctuation limitations.

The experimental results of groundwater fluctuation showed that the underground
water table rose to a height of 30 cm in coarse and medium sand after coming into con-
tact with pollutants. The capillary band rose when the moisture content of the medium
increased at the height of 30 cm. Then, Pb2+ in the medium dissolved into water under the
effect of desorption. Pb2+ in the solution was still detectable since the water table fluctuated
rapidly and Pb2+ in the solution had not been fully adsorbed by the medium. Reasons for
why the concentration of Pb2+ decreased as the water table rose are as follows. (1) Due
to the alkaline soil, the solution’s pH increased with the rising water table, resulting in
OH− and Pb2+ combining in the water to form precipitation. (2) The adsorption quantity
of the unpolluted medium was stronger than that of the pollution medium. The rising
of the water table brought about Pb2+ adsorption one more time. (3) The adsorption and
desorption of Pb is affected by hydrodynamic conditions. The change in hydrodynamic
conditions caused Pb2+ to be desorbed and Pb2+ adsorbed by the medium. These two
reactions were mutual until the adsorption equilibrium was reached.

3.4. Migration Characteristics of Pb in Soils with a Fluctuating Water Table

Figure 8 shows how the contents of Pb adsorbed by the sand sample varied at different
heights. The maximum Pb content occurred at the height of 35 cm in three columns. Trace
amounts of Pb were detected at the height range of 25–45 cm. The analyses in Figures 5
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and 8 show that the maximum Pb content occurred where the minimum pH was detected.
Therefore, the presence of heavy metal Pb decreases pH as a consequence of acidic soil.
Zhai L et al. determined that precipitates and complexes may solidify the soil, causing
grievous pollution to soils and crops [35].

Figure 8. The variation of Pb concentration in the medium at different heights after experiments.

As the water table fluctuated, Pb2+ migrated upward or downward in the medium,
but the migration distance of Pb2+ was more positively affected by the adsorption. The
migration distance of Pb2+ in coarse sand was further than that in the medium sand or fine
sand. The water table varied in coarse sand, the upward migration distance was only 5 cm
high, and the downward migration distance was <10 cm high. In medium and fine sand,
the upward and downward migration distance height was <5 cm.

4. Conclusions

• In the adsorption and desorption kinetic experiments for fine, medium, and coarse
sand, the maximum adsorption capacity of Pb2+ was 2367 mg·kg−1, 1848 mg·kg−1,
and 1544 mg·kg−1, respectively. The maximum desorption capacity of Pb2+ was
29.18 mg·kg−1, 62.38 mg·kg−1, and 81.60 mg·kg−1, respectively. For adsorption
and adsorption experiments at different pH levels, the adsorption capacity of Pb2+

gradually increased and the desorption capacity gradually decreased with increasing
pH in the sample solution at pH 4.0 and above. In these experiments, the desorption
capacity held steady with an increase in pH from 8.0 to 9.0;

• In the water table fluctuation experiments, the pH detected in the sample solution
varied with the water table fluctuation. The location was further away from the origin
pollution we set, resulting in decreased pH in the sample solution. The minimum pH
was consistent with the original pollution. At the same sample port, this universally
followed the order of the medium’s average pH: fine sand > medium sand > coarse
sand. The Pb2+ concentration in the sample solution varies with time and water table
fluctuations. Pb concentration in the medium results in Pb2+ forming desorption
products in the solution that adsorb the experimental medium surfaces once again;
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• The migration of Pb2+ is affected by pH in the solution, water table fluctuations, and
the adsorption capacity of the medium. Water table fluctuations affect the desorption
of Pb in the polluted medium. Consequently, the Pb2+ concentration in the solution
changes. Then, the pH variation results in the adsorption and desorption capacities of
Pb2+ changing as well;

• The effects of Pb’s migration on groundwater table fluctuation zones are due to various
factors. In this article, we only considered the water table, pH, and adsorption and
desorption capacities in our analysis, which are the deficiencies of this work. Other
meaningful factors will be added for future studies, such as dissolved oxygen, redox
potential, etc.
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