Multi-Physical and Electrochemical Coupling Model for the Protonic Ceramic Fuel Cells with H+/e−/O2− Mixed Conducting Cathodes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- (i)
- Compared with the O2−-SOFC, the ionic conductivity of PCFC greatly decreased, and the electronic conductivity only slightly changed, while the working temperature decreased from 800 °C to 550 °C. Thus, the cathodic electrochemical active zones for both the oxygen reducing and vapor producing half reactions would be further compressed to a smaller distance (i.e., 8 µm in the current situation) away from the electrolyte than that of O2—SOFC to achieve the minimal total energy loss (Figure 3, Figure 4, and Figure 9). The electrochemical contribution of the extending thickness would be negligible.
- (ii)
- Different from the O2−-SOFC, O2− within the PCFC cathode is only an intermediate transform substance between the electrons and protons. Thus, there is a peak oxygen ion current distribution within the composite cathode of PCFC (Figure 4). The oxygen reduction half reaction on the cathode side of PCFC is found to be a key factor to dominate the total PCFC voltage loss at intermediate temperature zone (Figure 6).
- (iii)
- Compared with the O2−-SOFC, the concentration polarization of anode-supported PCFC is small. This result is attributed to the reason that the vapors are generated in the cathode side of PCFC instead of the anode side (Figure 5). This means that high mole fraction of hydrogen can be maintained over the anode–electrolyte interface of PCFC, even if many hydrogens are consumed.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Ding, K.; Chen, Z.; Wei, T.; Liu, K. Physics field distributions within fuel cell stacks with manifolds penetrating through the plane zone and open outlet features. Energy Convers. Manag. 2018, 178, 190–199. [Google Scholar] [CrossRef]
- Lyu, Y.; Xie, J.; Wang, D.; Wang, J. Review of cell performance in solid oxide fuel cells. J. Mater. Sci. 2020, 55, 7184–7207. [Google Scholar] [CrossRef]
- Serbin, S.; Washchilenko, N.; Cherednichenko, O.; Burunsuz, K.; Dzida, M.; Chen, D. Application analysis of a hybrid solid oxide fuel cell-gas turbine system for marine power plants. Ships Offshore Struct. 2021. [Google Scholar] [CrossRef]
- Chen, D.; Hu, B.; Ding, K.; Yan, C.; Lu, L. The Geometry Effect of Cathode/Anode Areas Ratio on Electrochemical Performance of Button Fuel Cell Using Mixed Conducting Materials. Energies 2018, 11, 1875. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.K.; Biswas, M.C.; Chanda, R.K.; Rubel, M.H.K.; Khan, M.I.; Hashizume, K. A review on experimental and theoretical studies of perovskite barium zirconate proton conductors. Emergent Mater. 2021, 4, 999–1027. [Google Scholar] [CrossRef]
- Hong, S.; Bae, J.; Koo, B.; Kim, Y.-B. High-performance ultra-thin film solid oxide fuel cell using anodized-aluminum-oxide supporting structure. Electrochem. Commun. 2014, 47, 1–4. [Google Scholar] [CrossRef]
- Zhang, Y.; Knibbe, R.; Sunarso, J.; Zhong, Y.; Zhou, W.; Shao, Z.; Zhu, Z. Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500 degrees C. Adv. Mater. 2017, 29, 1700132. [Google Scholar] [CrossRef]
- Jo, S.; Sharma, B.; Park, D.-H.; Myung, J. Materials and nano-structural processes for use in solid oxide fuel cells: A review. J. Korean Ceram. Soc. 2020, 57, 135–151. [Google Scholar] [CrossRef]
- Chen, H.; Wang, F.; Wang, W.; Chen, D.; Li, S.-D.; Shao, Z. H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels. Appl. Energy 2016, 179, 765–777. [Google Scholar] [CrossRef]
- Park, J.H.; Han, S.M.; Yoon, K.J.; Kim, H.; Hong, J.; Kim, B.-K.; Lee, J.-H.; Son, J.-W. Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells. J. Power Sources 2016, 315, 324–330. [Google Scholar] [CrossRef]
- Rashid, N.L.R.M.; Samat, A.A.; Jais, A.A.; Somalu, M.R.; Muchtar, A.; Baharuddin, N.A.; Wan Isahak, W.N.R. Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell. Ceram. Int. 2019, 45, 6605–6615. [Google Scholar] [CrossRef]
- Yu, T.; Mao, X.; Ma, G. Performance of cobalt-free perovskite La0.6Sr0.4Fe1−xNbxO3−δ cathode materials for proton-conducting IT-SOFC. J. Alloy. Compd. 2014, 608, 30–34. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Cheng, Z. Fundamentals of Synthesis, Sintering Issues, and Chemical Stability of BaZr0.1Ce0.7Y0.1Yb0.1O3-δProton Conducting Electrolyte for SOFCs. J. Electrochem. Soc. 2015, 162, F803–F811. [Google Scholar] [CrossRef]
- Wrubel, J.A.; Gifford, J.; Ma, Z.; Ding, H.; Ding, D.; Zhu, T. Modeling the performance and faradaic efficiency of solid oxide electrolysis cells using doped barium zirconate perovskite electrolytes. Int. J. Hydrog. Energy 2021, 46, 11511–11522. [Google Scholar] [CrossRef]
- Fabbri, E.; Bi, L.; Pergolesi, D.; Traversa, E. Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600 degrees C with Chemically Stable Proton-Conducting Electrolytes. Adv. Mater. 2012, 24, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, Q.; Lu, L.; Periasamy, V.; Tade, M.O.; Shao, Z. Multi scale and physics models for intermediate and low temperatures H+-solid oxide fuel cells with H+/e−/O2− mixed conducting properties: Part A, generalized percolation theory for LSCF-SDC-BZCY 3-component cathodes. J. Power Sources 2016, 303, 305–316. [Google Scholar] [CrossRef]
- Fabbri, E.; D’Epifanio, A.; Di Bartolomeo, E.; Licoccia, S.; Traversa, E. Tailoring the chemical stability of Ba(Ce0.8-xZrx)Y0.2O3-delta protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Solid State Ion 2008, 179, 558–564. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Hernandez-Sanchez, R.; Haile, S.M. High Total Proton Conductivity in Large-Grained Yttrium-Doped Barium Zirconate. Chem. Mater. 2009, 21, 2755–2762. [Google Scholar] [CrossRef]
- Nasani, N.; Dias, P.A.N.; Saraiva, J.A.; Fagg, D.P. Synthesis and conductivity of Ba(Ce,Zr,Y)O3-delta electrolytes for PCFCs by new nitrate-free combustion method. Int. J. Hydrog. Energy 2013, 38, 8461–8470. [Google Scholar] [CrossRef]
- Vert, V.B.; Solis, C.; Serra, J.M. Electrochemical Properties of PSFC-BCYb Composites as Cathodes for Proton Conducting Solid Oxide Fuel Cells. Fuel Cells 2011, 11, 81–90. [Google Scholar] [CrossRef]
- Chen, D.; Zou, Y.; Shi, W.; Serbin, S.; You, H. Proton exchange membrane fuel cells using new cathode field designs of multi-inlet shunt intake design. Int. J. Energy Res. 2021, 45, 9948–9960. [Google Scholar] [CrossRef]
- Hossain, S.; Abdalla, A.M.; Jamain, S.N.B.; Zaini, J.H.; Azad, A.K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew. Sustain. Energy Rev. 2017, 79, 750–764. [Google Scholar] [CrossRef]
- Singh, B.; Ghosh, S.; Aich, S.; Roy, B. Low temperature solid oxide electrolytes (LT-SOE): A review. J. Power Sources 2017, 339, 103–135. [Google Scholar] [CrossRef]
- Loureiro, F.J.A.; Ramasamy, D.; Graca, V.C.D.; Holz, L.I.V.; Mikhalev, S.M.; Fagg, D.P. Analysis of La4Ni3O10 +/-delta-BaCe0.9Y0.1O3-delta Composite Cathodes for Proton Ceramic Fuel Cells. Appl. Sci. 2021, 11, 3407. [Google Scholar] [CrossRef]
- Mather, G.C.; Munoz-Gil, D.; Zamudio-Garcia, J.; Porras-Vazquez, J.M.; Marrero-Lopez, D.; Perez-Coll, D. Perspectives on Cathodes for Protonic Ceramic Fuel Cells. Appl. Sci. 2021, 11, 5363. [Google Scholar] [CrossRef]
- Sun, C.; Hui, R.; Roller, J. Cathode materials for solid oxide fuel cells: A review. J. Solid State Electrochem. 2010, 14, 1125–1144. [Google Scholar] [CrossRef]
- Wang, S.-F.; Hsu, Y.F.; Chang, J.-H.; Cheng, S.; Lu, H.-C. Characteristics of Cu and Mo-doped Ca3Co4O9-delta cathode materials for use in solid oxide fuel cells. Ceram. Int. 2016, 42, 11239–11247. [Google Scholar] [CrossRef]
- Baharuddin, N.A.; Muchtar, A.; Somalu, M.R. Short review on cobalt-free cathodes for solid oxide fuel cells. Int. J. Hydrog. Energy 2017, 42, 9149–9155. [Google Scholar] [CrossRef]
- Shao, Z.; Haile, S.M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 2004, 431, 170–173. [Google Scholar] [CrossRef]
- Kim, W.-H.; Song, H.-S.; Moon, J.; Lee, H.-W. Intermediate temperature solid oxide fuel cell using (La,Sr)(Co,Fe)O-3-based cathodes. Solid State Ion. 2006, 177, 3211–3216. [Google Scholar] [CrossRef]
- Meng, X.; Yang, N.; Song, J.; Tan, X.; Ma, Z.-F.; Li, K. Synthesis and characterization of terbium doped barium cerates as a proton conducting SOFC electrolyte. Int. J. Hydrog. Energy 2011, 36, 13067–13072. [Google Scholar] [CrossRef]
- Duan, C.; Tong, J.; Shang, M.; Nikodemski, S.; Sanders, M.; Ricote, S.; Almansoori, A.; O’Hayre, R. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 2015, 349, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Rauf, S.; Zhu, B.; Shah, M.A.K.Y.; Tayyab, Z.; Attique, S.; Ali, N.; Mushtaq, N.; Wang, B.; Yang, C.; Asghar, M.I.; et al. Application of a Triple-Conducting Heterostructure Electrolyte of Ba0.5Sr0.5Co0.1Fe0.7Zr0.1Y0.1O3-delta and Ca0.04Ce0.80Sm0.16O2-delta in a High-Performance Low-Temperature Solid Oxide Fuel Cell. ACS Appl. Mater. Interfaces 2020, 12, 35071–35080. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, Z.; Wang, S.; Choi, Y.; Zuo, C.; Liu, M. A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors. J. Power Sources 2010, 195, 471–474. [Google Scholar] [CrossRef]
- Tao, Z.T.; Fu, M.; Liu, Y.; Gao, Y.J.; Tong, H.; Hu, W.J.; Lei, L.B.; Bi, L. High-performing proton-conducting solid oxide fuel cells with triple-conducting cathode of Pr0.5Ba0.5(Co0.7Fe0.3)O3-delta tailored with W. Int. J. Hydrog. Energy 2022, 47, 1947–1953. [Google Scholar] [CrossRef]
- Kasyanova, A.V.; Tarutina, L.R.; Rudenko, A.O.; Lyagaeva, J.G.; Medvedev, D.A. Ba(Ce,Zr)O-3-based electrodes for protonic ceramic electrochemical cells: Towards highly compatible functionality and triple-conducting behaviour. Russ. Chem. Rev. 2020, 89, 667–692. [Google Scholar] [CrossRef]
- Geng, C.; Wu, H.; Yang, Y.; Wei, B.; Hong, T.; Cheng, J. A New in Situ Synthetic Triple-Conducting Core-Shell Electrode for Protonic Ceramic Fuel Cells. ACS Sustain. Chem. Eng. 2021, 9, 11070–11079. [Google Scholar] [CrossRef]
- Hwang, S.H.; Kim, S.K.; Nam, J.-T.; Park, J.-S. Triple-component composite cathode for performance optimization of protonic ceramic fuel cells. Int. J. Hydrog. Energy 2021, 46, 33551–33560. [Google Scholar] [CrossRef]
- Zhao, Z.; Cui, J.; Zou, M.; Mu, S.; Huang, H.; Meng, Y.; He, K.; Brinkman, K.S.; Tong, J. Novel twin-perovskite nanocomposite of Ba-Ce-Fe-Co-O as a promising triple conducting cathode material for protonic ceramic fuel cells. J. Power Sources 2020, 450, 227609. [Google Scholar] [CrossRef]
- Li, J.; Huang, Q.; Lei, Q.; Maxim, T.; Chen, D. The effects of microstructural parameters on the electrochemical properties of LSM-LSCF composite cathode by the particle-based discrete element method. Ionics 2021, 27, 2901–2907. [Google Scholar] [CrossRef]
- Li, Z.; He, Q.; Xia, L.; Xu, Q.; Cheng, C.; Wang, J.; Ni, M. Effects of cathode thickness and microstructural properties on the performance of protonic ceramic fuel cell (PCFC): A 3D modelling study. Int. J. Hydrog. Energy 2022, 47, 4047–4061. [Google Scholar] [CrossRef]
- Milewski, J.; Szczesniak, A. A reduced order model of proton conducting Solid Oxide Fuel Cell: A proposal. Energy Convers. Manag. 2021, 236, 114050. [Google Scholar] [CrossRef]
- Mojaver, P.; Khalilarya, S.; Chitsaz, A. Combined systems based on OSOFC/HSOFC: Comparative analysis and multi-objective optimization of power and emission. Int. J. Energy Res. 2021, 45, 5449–5469. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, Y.; Ding, J. Characterization of the conductivity distribution and leakage current in proton-conducting ceramic electrolyte through modeling and sensitivity analysis. Int. J. Hydrog. Energy 2021, 46, 31370–31381. [Google Scholar] [CrossRef]
- Chen, D.; Wang, H.; Zhang, S.; Tade, M.O.; Shao, Z.; Chen, H. Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material. Aiche J. 2015, 61, 3786–3803. [Google Scholar] [CrossRef]
- Chen, D.; Bi, W.; Kong, W.; Lin, Z. Combined micro-scale and macro-scale modeling of the composite electrode of a solid oxide fuel cell. J. Power Sources 2010, 195, 6598–6610. [Google Scholar] [CrossRef]
Cathode | Electrolyte | Anode | |
---|---|---|---|
Composition | LSCF-BZCY | BZCY | Ni-BZCY |
Thickness (μm) | 25 [34] | 55 [34] | 500 [34] |
Mass ratio | 70/30 [34] | 65/35 [34] | |
Particle diameter (μm) | 1/1 [34] | 1 [34] | 1/1 [34] |
30% [34] | 40% [34] | ||
2.54 × 104 750 °C 2.81 × 104 650 °C 2.92 × 104 550 °C | 3.32 × 105 750 °C 3.48 × 105 650 °C 3.64 × 105 550 °C | ||
0.012 750 °C 0.007 650 °C 0.004 550 °C | 2.457 750 °C 1.538 650 °C 0.708 550 °C | 0.064 750 °C 0.040 650 °C 0.022 550 °C | |
0.452 750 °C 0.121 650 °C 0.023 550 °C | |||
rg (μm) | 0.476 | 0.556 | |
0.80 × 1012 | 1.69 × 1012 | ||
1.74 × 106 | |||
3 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, D.; Wang, W.; Li, R.; Jiang, S.; Lu, L.; Levtsev, A.; Chen, D. Multi-Physical and Electrochemical Coupling Model for the Protonic Ceramic Fuel Cells with H+/e−/O2− Mixed Conducting Cathodes. Appl. Sci. 2022, 12, 3889. https://doi.org/10.3390/app12083889
Yan D, Wang W, Li R, Jiang S, Lu L, Levtsev A, Chen D. Multi-Physical and Electrochemical Coupling Model for the Protonic Ceramic Fuel Cells with H+/e−/O2− Mixed Conducting Cathodes. Applied Sciences. 2022; 12(8):3889. https://doi.org/10.3390/app12083889
Chicago/Turabian StyleYan, Dongping, Wansheng Wang, Runhua Li, Shanshan Jiang, Liu Lu, Aleksey Levtsev, and Daifen Chen. 2022. "Multi-Physical and Electrochemical Coupling Model for the Protonic Ceramic Fuel Cells with H+/e−/O2− Mixed Conducting Cathodes" Applied Sciences 12, no. 8: 3889. https://doi.org/10.3390/app12083889
APA StyleYan, D., Wang, W., Li, R., Jiang, S., Lu, L., Levtsev, A., & Chen, D. (2022). Multi-Physical and Electrochemical Coupling Model for the Protonic Ceramic Fuel Cells with H+/e−/O2− Mixed Conducting Cathodes. Applied Sciences, 12(8), 3889. https://doi.org/10.3390/app12083889