Frequency Down-Conversion of Optical Pulse to the Far Infrared and THz Frequency Ranges Due to the Cascading Process in a Medium with a Quadratic Nonlinear Response
Abstract
:1. Introduction
2. Problem Statement
3. Modified Equations Derived in the Framework of the Multi-Scale Method
3.1. Set of Modified Equations
3.2. Frequency Down-Conversion in the Framework of the Long Pulse Duration Approximation
4. Computer Simulation Results
4.1. Frequency Conversion to Radiation with the Wavelength 4 μm
4.1.1. Incident IFW’s Intensity Is Equal to Zero
4.1.2. Incident LFW’s Intensity Is Equal to Zero
4.2. Frequency Conversion to Radiation with the Wavelength 10 μm
4.3. Frequency Conversion to Radiation with the Wavelength to 24 μm
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Dexheimer, S.L. Terahertz Spectroscopy: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Consolino, L.; Bartalini, S.; De Natale, P. Terahertz frequency metrology for spectroscopic applications: A review. J. Infrared Millim. Terahertz Waves 2017, 38, 1289–1315. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H.; Che, W.; Zheng, S.; Xiu, X.; Xue, Q. Review and modification of permittivity measurement on open resonator for transparent material measurements at terahertz. IEEE Trans. Instrum. Meas. 2020, 69, 9144–9156. [Google Scholar] [CrossRef]
- Walsh, B.M.; Lee, H.R.; Barnes, N.P. Mid infrared lasers for remote sensing applications. J. Lumin. 2016, 169, 400–405. [Google Scholar] [CrossRef]
- Erny, C.; Moutzouris, K.; Biegert, J.; Kühlke, D.; Adler, F.; Leitenstorfer, A.; Keller, U. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source. Opt. Lett. 2007, 32, 1138–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, K.; Schunemann, P.; Ebrahim-Zadeh, M. Continuous-wave, multimilliwatt, mid-infrared source tunable across 6.4–7.5 μm based on orientation-patterned GaAs. Opt. Lett. 2014, 39, 6751–6754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, F.C.; Maser, D.L.; Johnson, T.; Ycas, G.; Klose, A.; Giorgetta, F.R.; Coddington, I.; Diddams, S.A. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. Opt. Express 2015, 23, 26814–26824. [Google Scholar] [CrossRef]
- Ruehl, A.; Gambetta, A.; Hartl, I.; Fermann, M.E.; Eikema, K.S.; Marangoni, M. Widely-tunable mid-infrared frequency comb source based on difference frequency generation. Opt. Lett. 2012, 37, 2232–2234. [Google Scholar] [CrossRef]
- Hildenbrand, A.; Kieleck, C.; Lallier, E.; Faye, D.; Grisard, A.; Gérard, B.; Eichhorn, M. Compact efficient mid-infrared laser source: OP-GaAs OPO pumped by Ho3+: YAG laser. In Technologies for Optical Countermeasures VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2011; Volume 8187, p. 81870H. [Google Scholar] [CrossRef]
- Boyko, A.A.; Kostyukova, N.Y.; Badikov, V.; Badikov, D.; Panyutin, V.; Shevyrdyaeva, G.; Pasiskevicius, V.; Zukauskas, A.; Marchev, G.M.; Kolker, D.B.; et al. Intracavity difference-frequency mixing of optical parametric oscillator signal and idler pulses in BaGa4Se7. Appl. Opt. 2017, 56, 2783–2786. [Google Scholar] [CrossRef]
- Cui, C.; Lu, D.; Liang, F.; Wang, J.; Yu, H.; Zhang, H. Mid-infrared pulsed nanosecond difference frequency generation of oxide LGN crystal up to 5.7 μm. Opt. Lett. 2021, 46, 785–788. [Google Scholar] [CrossRef]
- Petrov, V. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Prog. Quantum Electron. 2015, 42, 1–106. [Google Scholar] [CrossRef]
- Kawase, K.; Sato, M.; Taniuchi, T.; Ito, H. Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler. Appl. Phys. Lett. 1996, 68, 2483–2485. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y.; Avetisyan, Y.; Yokoyama, H.; Ito, H. Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate. Opt. Lett. 2005, 30, 2927–2929. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lin, S.; Lin, Y.; Chiang, A.; Huang, Y. Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate. Opt. Express 2008, 16, 6471–6478. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, X.; Zhang, H.; Li, Y.; Yuan, B.; Jiao, B.; Zhao, J.; Tan, L.; Bing, P.; Wang, Z.; et al. High-efficiency terahertz wave generation in aperiodically poled lithium niobate by cascaded difference frequency generation. JOSA B 2020, 37, 2416–2422. [Google Scholar] [CrossRef]
- Shi, W.; Ding, Y.J.; Fernelius, N.; Vodopyanov, K. Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal. Opt. Lett. 2002, 27, 1454–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Ding, Y.J. Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide. Appl. Phys. Lett. 2003, 83, 848–850. [Google Scholar] [CrossRef]
- Shi, W.; Ding, Y.J. Tunable terahertz waves generated by mixing two copropagating infrared beams in GaP. Opt. Lett. 2005, 30, 1030–1032. [Google Scholar] [CrossRef]
- Ding, Y.; Shi, W. Widely tunable monochromatic THz sources based on phase-matched difference-frequency generation in nonlinear-optical crystals: A novel approach. Laser Phys. 2006, 16, 562–570. [Google Scholar] [CrossRef]
- Cronin-Golomb, M. Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production. Opt. Lett. 2004, 29, 2046–2048. [Google Scholar] [CrossRef]
- Danielson, J.; Jameson, A.; Tomaino, J.; Hui, H.; Wetzel, J.; Lee, Y.S.; Vodopyanov, K. Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses. J. Appl. Phys. 2008, 104, 033111. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wang, Y.; Xu, D.; Nie, M.; Yan, C.; Tang, L.; Shi, J.; Feng, J.; Yan, D.; Liu, H.; et al. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation. Appl. Phys. B 2018, 124, 16. [Google Scholar] [CrossRef]
- Yan, D.; Wang, Y.; Xu, D.; Liu, P.; Yan, C.; Shi, J.; Liu, H.; He, Y.; Tang, L.; Feng, J.; et al. High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator. Photonics Res. 2017, 5, 82–87. [Google Scholar] [CrossRef]
- Ding, Y.J. Progress in terahertz sources based on difference-frequency generation. JOSA B 2014, 31, 2696–2711. [Google Scholar] [CrossRef]
- Fujita, K.; Jung, S.; Jiang, Y.; Kim, J.H.; Nakanishi, A.; Ito, A.; Hitaka, M.; Edamura, T.; Belkin, M.A. Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics 2018, 7, 1795–1817. [Google Scholar] [CrossRef]
- De Regis, M.; Consolino, L.; Bartalini, S.; De Natale, P. Waveguided approach for difference frequency generation of broadly-tunable continuous-wave terahertz radiation. Appl. Sci. 2018, 8, 2374. [Google Scholar] [CrossRef] [Green Version]
- Elsaesser, T.; Lobentanzer, H.; Seilmeier, A. Generation of tunable picosecond pulses in the medium infrared by down-conversion in AgGaS2. Opt. Commun. 1985, 52, 355–359. [Google Scholar] [CrossRef]
- Canarelli, P.; Benko, Z.; Curl, R.; Tittel, F.K. Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy. JOSA B 1992, 9, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Okorogu, A.; Mirov, S.; Lee, W.; Crouthamel, D.; Jenkins, N.; Dergachev, A.Y.; Vodopyanov, K.; Badikov, V. Tunable middle infrared downconversion in GaSe and AgGaS2. Opt. Commun. 1998, 155, 307–312. [Google Scholar] [CrossRef]
- Golubovic, B.; Reed, M. All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2. Opt. Lett. 1998, 23, 1760–1762. [Google Scholar] [CrossRef]
- Haidar, S.; Nakamura, K.; Niwa, E.; Masumoto, K.; Ito, H. Mid-infrared (5–12-μm) and limited (5.5–8.5-μm) single-knob tuning generated by difference-frequency mixing in single-crystal AgGaS2. Appl. Opt. 1999, 38, 1798–1801. [Google Scholar] [CrossRef]
- Cheng, M.; Wu, S.; Zhu, Z.Z.; Guo, G.Y. Large second-harmonic generation and linear electro-optic effect in trigonal selenium and tellurium. Phys. Rev. B 2019, 100, 035202. [Google Scholar] [CrossRef] [Green Version]
- Knyazev, G.; Voloshinov, V. Diffraction of IR radiation by ultrasound in tellurium single crystals. Bull. Russ. Acad. Sci. Phys. 2008, 72, 1643–1647. [Google Scholar] [CrossRef]
- Patel, C.K.N. Efficient Phase-Matched Harmonic Generation in Tellurium with a CO2 Laser at 10.6 μ. Phys. Rev. Lett. 1965, 15, 1027–1030. [Google Scholar] [CrossRef]
- Bridges, T.; Nguyen, V.; Burkhardt, E.; Patel, C. Tunable cw difference-frequency generation in tellurium at 11 μm. Appl. Phys. Lett. 1975, 27, 600–602. [Google Scholar] [CrossRef]
- Fan, Y.X.; Eckardt, R.; Byer, R.; Route, R.; Feigelson, R. AgGaS2 infrared parametric oscillator. Appl. Phys. Lett. 1984, 45, 313–315. [Google Scholar] [CrossRef]
- Bhar, G.C. Refractive index interpolation in phase-matching. Appl. Opt. 1976, 15, 305–307. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Gordienko, V.M.; Grechin, S.S.; Ivanov, A.A.; Podshivalov, A.A. Highly efficient generation of second and third harmonics of a femtosecond Cr: Forsterite laser in nonlinear optical crystals. Quantum Electron. 2005, 35, 525. [Google Scholar] [CrossRef]
- Begishev, I.A.; Kalashnikov, M.; Karpov, V.; Nickles, P.; Schönnagel, H.; Kulagin, I.A.; Usmanov, T. Limitation of second-harmonic generation of femtosecond Ti: Sapphire laser pulses. JOSA B 2004, 21, 318–322. [Google Scholar] [CrossRef]
- Trofimov, V.A.; Trofimov, V.V. High effective SHG of femtosecond pulse with ring profile of beam in bulk medium with cubic nonlinear response. In Laser Optics 2006: Solid State Lasers and Nonlinear Frequency Conversion; SPIE: Bellingham, WA, USA, 2007; Volume 6610, pp. 200–208. [Google Scholar] [CrossRef]
- Singh, N.; Hopkins, R.; Feichtner, J. Effect of annealing on the optical quality of AgGaS2 and AgGaSe2 single crystals. J. Mater. Sci. 1986, 21, 837–841. [Google Scholar] [CrossRef]
- Zhang, G.; Qin, J.; Liu, T.; Zhu, T.; Fu, P.; Wu, Y.; Chen, C. Synthesis, characterization, and crystal growth of Cs2Hg3I8: A new second-order nonlinear optical material. Cryst. Growth Des. 2008, 8, 2946–2949. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Jiang, K.; Zeng, H.; Liu, T.; Chen, X.; Qin, J.; Lin, Z.; Fu, P.; Wu, Y.; et al. A new mixed halide, Cs2HgI2Cl2: Molecular engineering for a new nonlinear optical material in the infrared region. J. Am. Chem. Soc. 2012, 134, 14818–14822. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Huang, Y.; Meng, X.; Zhong, C.; Chen, X.; Qin, J. Exploration of new second-order nonlinear optical materials of the Cs–Hg–Br–I system. Dalton Trans. 2014, 43, 8899–8904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.P.; Chi, Y.; Guo, G.C. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 2017, 335, 44–57. [Google Scholar] [CrossRef]
- Smith, A.; Mellis, J. Operating efficiencies in pulsed carbon dioxide lasers. Appl. Phys. Lett. 1982, 41, 1037–1039. [Google Scholar] [CrossRef]
- Schneide, J.; Carbonnier, C.; Unrau, U.B. Characterization of a Ho 3+-doped fluoride fiber laser with a 3.9-μm emission wavelength. Appl. Opt. 1997, 36, 8595–8600. [Google Scholar] [CrossRef]
- Duval, S.; Gauthier, J.C.; Robichaud, L.R.; Paradis, P.; Olivier, M.; Fortin, V.; Bernier, M.; Piché, M.; Vallée, R. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm. Opt. Lett. 2016, 41, 5294–5297. [Google Scholar] [CrossRef]
- Täschler, P.; Bertrand, M.; Schneider, B.; Singleton, M.; Jouy, P.; Kapsalidis, F.; Beck, M.; Faist, J. Femtosecond pulses from a mid-infrared quantum cascade laser. Nat. Photonics 2021, 15, 919–924. [Google Scholar] [CrossRef]
- Schmuttenmaer, C.A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 2004, 104, 1759–1780. [Google Scholar] [CrossRef]
- Liu, H.B.; Zhong, H.; Karpowicz, N.; Chen, Y.; Zhang, X.C. Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 2007, 95, 1514–1527. [Google Scholar] [CrossRef]
- Zhang, X.C.; Xu, J. Introduction to THz Wave Photonics; Springer: New York, NY, USA, 2010; Volume 29. [Google Scholar] [CrossRef]
- Novelli, F.; Guchhait, B.; Havenith, M. Towards intense THz spectroscopy on water: Characterization of optical rectification by GaP, OH1, and DSTMS at OPA wavelengths. Materials 2020, 13, 1311. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trofimov, V.A.; Kharitonov, D.M.; Fedotov, M.V.; Yang, Y. Frequency Down-Conversion of Optical Pulse to the Far Infrared and THz Frequency Ranges Due to the Cascading Process in a Medium with a Quadratic Nonlinear Response. Appl. Sci. 2022, 12, 3891. https://doi.org/10.3390/app12083891
Trofimov VA, Kharitonov DM, Fedotov MV, Yang Y. Frequency Down-Conversion of Optical Pulse to the Far Infrared and THz Frequency Ranges Due to the Cascading Process in a Medium with a Quadratic Nonlinear Response. Applied Sciences. 2022; 12(8):3891. https://doi.org/10.3390/app12083891
Chicago/Turabian StyleTrofimov, Vyacheslav A., Dmitry M. Kharitonov, Mikhail V. Fedotov, and Yongqiang Yang. 2022. "Frequency Down-Conversion of Optical Pulse to the Far Infrared and THz Frequency Ranges Due to the Cascading Process in a Medium with a Quadratic Nonlinear Response" Applied Sciences 12, no. 8: 3891. https://doi.org/10.3390/app12083891
APA StyleTrofimov, V. A., Kharitonov, D. M., Fedotov, M. V., & Yang, Y. (2022). Frequency Down-Conversion of Optical Pulse to the Far Infrared and THz Frequency Ranges Due to the Cascading Process in a Medium with a Quadratic Nonlinear Response. Applied Sciences, 12(8), 3891. https://doi.org/10.3390/app12083891