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Abstract: Difference-frequency generation is a well-known method of obtaining IR and THz radiation.
It has many practical applications, such as sensing, optical metrology, diagnostics, detection and
identification of substances, etc. One of the generation methods is based on the three-wave interaction
in a medium with second-order nonlinear susceptibility. In this study, we investigated a special case
of the frequency down-conversion into IR and THz ranges of the frequencies: the frequencies of
interacting waves were multiple. We analyzed theoretically two cases of three-wave interactions:
amplification of the infrared (or THz) radiation (incident weak intensity of a wave at this frequency)
and a wave generation with the difference-frequency (incident zero-value intensity at this frequency).
The amplification efficiency could achieve 75% and the maximal frequency conversion efficiency is
about 25%. The computer simulation results made for the femtosecond pulse interaction in a crystal
with the wavelength 4, 10, and 24 µm demonstrates applicability of such a scheme for the frequency
down-conversion. This scheme of the THz radiation generation is a perspective tool for its application
in the screening system for the detection and identification of substances.

Keywords: frequency down-conversion; cascading processes; infrared optics; terahertz optics

1. Introduction

Infrared optics and THz optics have various practical applications, including spec-
troscopy [1,2], optical metrology [3], material measurements [4], sensing [5], diagnostics,
detection, identification of substances, etc. One of the possible ways to obtain laser radia-
tion in these ranges of the frequencies is via a frequency down-conversion process, due
to the difference frequency’s wave generation in a medium with a quadratic nonlinear
response.

The difference frequency’s wave generation, whose frequency belonging to an infrared
frequencies range, has attracted the attention of many researchers. Below, we mention some
of them. In [6], the femtosecond pulses with tunable wavelengths belonging to the interval
(3.2–4.8 µm), and possessing a maximal average power of about 1.1 mW, were generated
in the MgO:LiNbO3 crystal. In [7], a tunable source of the mid-infrared CW radiation
with a maximal power of 51 mW at a wavelength λ1 = 6543 nm was created based on the
difference frequency’s wave generation in a GaAs crystal. Optical frequency combs with
wavelengths belonging to their intervals (2.8–3.5 µm) were generated in MgO:PPLN crystal
using the difference frequency’s wave generation [8]; a similar result was also obtained in
GaSe crystal with the frequency combs generation, in the wavelength range 3–10 µm [9].

Frequency down-conversion also consists of using the optical parametric oscillation
process. Thus, in [10], by using this tool, a conversion efficiency of 34% was achieved
with the average output power of 7.7 W at the power of the incident pump pulse equal
to 23 W. The IR radiation at a wavelength 7 µm with an energy of 0.71 mJ was obtained
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with a 7.8% quantum conversion efficiency in BaGa4Se7 crystal [11]. Tunable IR radiation
generation belonging to the wavelength range 4.4–5.7 µm, with a maximal output energy
of 13.1 µJ, was achieved in [12], using La3Ga5.5Nb0.5O14 crystal. A review of the frequency
down-conversion processes in non-oxide media can be found in [13].

A THz radiation source using difference-frequency generation was also obtained in
many nonlinear media. For example, a THz pulse with the wavelength in the range of
290–140 µm was realized in a LiNbO3 crystal [14]. The periodically-poled LiNbO3 crystal
was used in [15], the frequency range was 1.5–1.8 THz; a maximal power was equal to
0.1 mW); and in [16], the wavelength range was 190–210 µm and 457–507 µm; the maximal
energies were equal to 0.37 and 0.057 pJ, respectively; in [17], the authors explored the
realization of a generation scheme of the difference-frequency equal to 0.5 THz with a
conversion efficiency of 30%.

It should be noted that, in a series of studies, i.e., [18–21] and the corresponding
references listed in those papers, the THz radiation with a wavelength range of 66.5 µm,
5664 µm was obtained in crystals GaSe, ZnGeP2 GaP based on difference frequency’s wave
generation with conversion efficiency equal to 0.1%.

Crystal ZnTe is often used for frequency down-conversion to obtain a THz radiation.
We can note, for example, the following papers: [22], where pulse 1 THz was obtained as 365
and 364 THz frequency differences and with a 0.6% conversion efficiency. In Reference [23],
the authors demonstrated the possibility of pulse generation with tunable frequency, in
the range of 0.3–2.5 THz, and power up to 1 µW based on difference-frequency generation
involving interactions of picosecond pulses, with intensity at 2.58 × 108 W/cm2 generated
with 1.5% conversion efficiency.

In another THz pulse source with tunable frequency, the frequency range was
0.3–19.6 THz, with energy at 870 nJ, and was obtained in the DAST crystal lit by an
incident pulse with a power density of 247 MW/cm2 [24]. Using a GaSe crystal with a
length of 8 mm and a down-conversion frequency process, a source of the tunable fre-
quency, belonging to a frequency range of 0.21–3 THz, and conversion efficiency equal
0.00168%, was created [25]. A review of the sources of the THz radiation based on the
frequency down-conversion process is presented in [26]. In turn, a review of quantum
cascade lasers using the the difference-frequency generation process for obtaining THz
radiation is found in [27]. It should be noted that a process of the difference-frequency
generation was also used for developing THz CW spectrometers based on lithium niobate
channel-waveguides [28], which is important regarding the problem of substance detection
and identification.

A crystal AgGaS2 is widely used for IR radiation generation [29–33]. IR radiation
generation with wavelength intervals at 3.9 µm and 9.4 µm, at incident pulse durations in
picosecond ranges, was discussed in [29]. The achieved conversion efficiency of the energy
transform was a few percent for the incident pulse energy of 10 mJ. The difference-frequency
generation was chosen as a base of the IR spectrometer [30]. The pulses possessing the
energy (10 µJ) and duration (50 ns), and wavelength intervals at 3–12 µm, were obtained
in [31]. The femtosecond pulse interaction scheme used for obtaining pulses with a tunable
frequency in the mid-infrared range and output energy, equaling several mJs, was discussed
in [32]. The source of pulses, constructed using the difference-frequency generation with
the efficiency 0.6%, with tunable wavelength intervals at 5–12 µm, and a duration 8 ns, was
presented in [33].

In past years, the frequency up-conversion in the tellurium chains have been widely
discussed (see, for example, [34]); thus, one may expect the frequency down-conversion
process in this crystal will be effective. The tellurium crystal has a big transmittance range
in the infrared range of the wavelengths (at least until 24 µm, according to [35]), and a
large second-order susceptibility [36]. The frequency down-conversion to the range of the
mid-infrared frequencies with a peak power of 100 µW, achieved in tellurium crystal with
a length 11 µm, is presented in [37].
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In the current study, we propose a new approach for the frequency down-conversion to
infrared (or even THz) range using the difference-frequency generation at wave interactions
with multiple frequencies ω (low-frequency wave, LFW), 2ω (intermediate frequency
wave, IFW), 3ω (high-frequency wave, HFW), in the case of large phase-mismatching
between two interacting waves. To our knowledge, such a scheme, regarding the frequency
down-conversion, has not been discussed in previous literature. We present the computer
simulation results for the frequency down-conversion of femtosecond pulses, with duration
equal to 100 fs for the pulses with corresponding wavelengths, 4 µm (75 THz), 10 µm
(50 THz; belongs to the infrared frequencies range), and 24 µm (12.5 THz; belongs to the
THz frequencies range), if the LFW and HFW interact in the phase-matched mode and the
phase mismatching between IFW and LFW is large enough. Therefore, it allowed us to
apply the multi-scale method to derive the modified set of equations and to solve those
equations analytically in the long pulse duration approximation framework and plane
wave approximation, but without using the energy non-depletion approximation of HFW.

The computer simulation is provided for two well-known crystals—AgGaS2 and
tellurium. Our calculations, based on the results of the Sellmeier equations, taken from
study [38], show that it is possible to achieve phase matching between LFW and HFW
in this crystal at the LFW wavelength, up to 10 µm in the crystal AgGaS2. Thus, we
use this crystal’s data for the frequency down-conversion into the radiation possessing
wavelength equal to 4 µm and 10 µm, and the tellurium crystal data [39] for the frequency
down-conversion to wavelength 24 µm.

Our paper is organized as follows. We begin with the set of nonlinear Schrödinger
equations accounting for the group velocity dispersion (GVD) of the laser pulses. Then,
based on the multi-scale method, we derive the modified set of equations and solve them
without using the energy non-depletion approximation for HFW in the framework of the
long pulse duration approximation. This solution demonstrates that the effective energy
conversion of HFW to LFW is possible, even if the incident IFW’s intensity is small.

The latter part of our study contains computer simulation results, showing how GVD
influences energy conversion efficiency. That section is divided into two parts: investigation
of the amplification process (small incident LFW’s intensity) and the generation process
(incident LFW’s intensity is equal to zero). In both cases, we demonstrate that a highly-
effective frequency down-conversion process occurs under certain conditions.

2. Problem Statement

The three-wave interaction process with multiple frequencies in a medium with
quadratic nonlinear responses can be described by the set of nonlinear Schrödinger equa-
tions [40]:

∂A1

∂z
+ iD1

∂2 A1

∂t2 + i
(

γ12 A∗1 A2e−i∆21kz + γ23 A∗2 A3e−i(∆31k−∆21k)z
)
= 0,

∂A2

∂z
+ ν21

∂A2

∂t
+ iD2

∂2 A2

∂t2 + i
(

γ11 A2
1ei∆21kz + 2γ13 A∗1 A3e−i(∆31k−∆21k)z

)
= 0,

∂A3

∂z
+ ν31

∂A3

∂t
+ iD3

∂2 A3

∂t2 + 3iγ21 A1 A2ei(∆31k−∆21k)z = 0, 0 < z ≤ Lz. 0 < t < Lt.

(1)

The initial condition and boundary conditions (BCs) are the following:

A1(0, t) = A10(t), A2(0, t) = A20(t), A3(0, t) = A30(t), t ∈ [0, Lt],

A1(z, 0) = A2(z, 0) = A3(z, 0) = A1(z, Lt) = A2(z, Lt) = A3(z, Lt) = 0, z ∈ [0, Lz],
(2)

which correspond to the absence of the laser radiation of all optical waves out of a certain
time interval. Here, Aj are dimensionless complex amplitudes of LFW, IFW, and HFW.
Coefficients γjk—of nonlinear coupling of interacting waves—characterize a second-order
nonlinear response at the corresponding frequencies. Below, for simplicity, we omit a
dependence of this coefficient on the optical frequency. Therefore, these coefficients are
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equal to the same value: γjk = γ. We emphasize that this is not a strong restriction for our
analysis. Parameters ∆21k and ∆31k denote dimensionless phases mismatching between
IFW and LFW, and HFW and LFW, respectively. Coefficients ν21 and ν31 are dimensionless
mismatching of the group velocities between pulses of IFW and LFW, and HFW and LFW,
respectively. Parameters D1, D2 and D3 are dimensionless coefficients of the second order
dispersion (SOD) at the corresponding frequencies, characterizing GVD of the propagating
pulses. t and z are dimensionless time and space coordinates, correspondingly.

Let us note that the diffraction is not taken into account in Equation (1). This is valid
if the radii of the incident beams are large enough to satisfy the following conditions: the
diffraction length is greater than the crystal’s length and the nonlinear length, which is
defined by the incident beam’s maximal intensity. Such conditions often occur in physical
experiments (see, for example, [41–43]). Writing Equation (1), we neglected the cubic
nonlinear response of a crystal. It can be done if the maximal intensity of the incident pulse
is less than the certain value, depending on the used crystal [40].

The dimensionless variables and parameters are expressed through the physical ones
as follows:

νj1 =

(
∂k̄
∂ω̄
|ω̄j −

∂k̄
∂ω̄
|ω̄1

)
Zn

τp
, j = 2, 3, Dj = −

1
2

∂2k̄
∂ω̄2 |ω̄j

Zn

τ2
p

, Aj =
ĀJ

A0
, j = 1, 2, 3,

γ =
2πχ(2) k̄1 A01

n2 Zn, ∆21k = ∆21k̄Zn, ∆31k = ∆31k̄Zn.

(3)

where τp is the incident pulse duration of the LFW (ω̄1 = ω̄), which is chosen to be equal to
100 fs, if we do not specify otherwise. Time coordinates are measured in τp. Parameter Zn
is a normalization length chosen equal 1 mm. The propagation distance of the optical pulse
is measured in this units. Coefficients χ(2)(ω̄j, ω̄l) are the quadratic susceptibilities of a
medium at the frequencies ω̄j, ω̄l . The frequency ω̄j = jω̄ is associated with the wavelength
λj by the known ratio: ω̄j = 2πc/λj, j = 1, 2, 3. Parameter k̄1 is a dimensional wave-
number of the LFW. In turn, ∆21k̄ and ∆31k̄ are dimensional phases mismatching between
the IFW or the HFW and the LFW, respectively: ∆j1k̄ = k̄ j − jk̄1, j = 2, 3. Parameters
k̄2, k̄3 are the wavenumbers at the frequencies ω̄2, ω̄3, respectively. Variables Āj are the
complex envelopes of the wave packets measured in physical units. A0 is a normalization
value, which is chosen as the squared root of the LFW and HFW intensities sum at their
pulse centers.

In Table 1, we present the physical parameters at various frequencies in a dependence
of the wavelength of LFW (4, 10, and 24 µm, respectively). These values were used in the
computer simulation and can be used for the arrangement of the physical experiment.

Table 1. Characteristics of nonlinear crystal.

λ1 I0 (GW/cm2) θ (◦) d2 k̄
dω̄2 |ω=ω1 (m−1 s2) d2 k̄

dω̄2 |ω=ω2 (m−1 s2) d2 k̄
dω̄2 |ω=ω3 (m−1 s2)

4 µm (AgGaS2, [38]) 6.12 49.46 4× 10−27 2.5× 10−25 4.34× 10−25

10 µm (AgGaS2, [38]) 20.66 79.51 −3.2× 10−24 −1.51× 10−24 −8.28× 10−25

24 µm (Te, [39]) 0.11 15.78 −4.36× 10−24 1.58× 10−24 3.08× 10−24

Among them, we also present the angle θ between the laser pulse propagation direction
and the crystal axis, at which the phase matching between the LFW and HFW occurs (so
we assume that ∆31k = 0). We also present the sum incident intensity of the LFW and HFW
I0, at which the parameter γ equals unity. This choice is explained by our further analysis.
It should be noted that the phase mismatching between the IFW and LFW is partly defined
by the condition ∆31k = 0. Thus, the phase matching angle θ and the phase mismatching
are computed on the basis of Sellmeier equations, taken from [38,39], using the formulas
that can be found, for example, in [40] (paragraph 2.3).
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Below, we also neglect the group velocity mismatching: ν21 = ν31 = 0 to clarify the
SOD influence on the frequency conversion efficiency. This imposes certain restrictions
on the crystal length and the pulse durations, which should be large enough to avoid the
running away from each other at the output face of the crystal. If the pulse duration is
about 1 ps, then such a length can achieve a value about a few dozens of centimeters. If the
pulse duration is about 100 fs, then the group velocity mismatching does not essentially
influence the conversion efficiency, until ten centimeters of the optical pulse propagation
distance. It only changes the pulse shapes by making them asymmetric.

3. Modified Equations Derived in the Framework of the Multi-Scale Method
3.1. Set of Modified Equations

If the phase mismatching between LFW and IFW is much larger than the nonlinear co-
efficient (|∆21k| >> γ), we can derive the qualitative approximation of the problem (1), (2)
solution using the multi-scale method:

A1 = U +
1

∆21k

(
γ(U∗Ve−i∆21kz −V∗Wei∆21kz) + u1

)
,

A2 = V +
1

∆21k

(
−γ(U2 + 2U∗W)ei∆21kz + v1

)
,

A3 = W +
1

∆21k

(
3γUVe−i∆21kz + w1

)
,

(4)

with accuracy of O(∆21k−2). Here, the functions U, V, W are governed by the following set
of equations:

∂U
∂z

+ iD1
∂2U
∂t2 − iα̃(|U|2U + 3U∗2W − 4U|V|2 + 2U|W|2) = 0,

∂V
∂z

+ ν21
∂V
∂t

+ iD2
∂2V
∂t2 + 2iα̃(4|U|2 − |W|2)V = 0,

∂W
∂z

+ ν31
∂W
∂t

+ iD3
∂2W
∂t2 − 3iα̃(U3 + 2|U|2W + |V|2W) = 0,

(5)

where α̃ = γ2/∆21k. The functions u1, v1, w1 are the solutions of the following linear equations:

∂u1

∂z
+ iD1

∂2u1

∂t2 = 0,

∂v1

∂z
+ ν21

∂v1

∂t
+ iD2

∂2v1

∂t2 = 0,

∂w1

∂z
+ ν31

∂w1

∂t
+ iD3

∂2w1

∂t2 = 0.

(6)

Let us note that the derivation of these equations is made in Appendix A. The dis-
tributions for the new functions corresponding to the complex amplitudes of the incident
pulses are the following:

U(0, t) = A10(t), V(0, t) = A20(t), W(0, t) = A30(t),

u1(0, t) = γ(A∗20(t)A30(t)− A∗10(t)A20(t)), v1(0, t) = γ
(

A2
10(t) + 2A∗10(t)A30(t)

)
,

w1(0, t) = −3γA10(t)A20(t), t ∈ [0, Lt],

U(z, 0) = V(z, 0) = W(z, 0) = U(z, Lt) = V(z, Lt) = W(z, Lt) = 0,

u1(z, 0) = v1(z, 0) = w1(z, 0) = u1(z, Lt) = v1(z, Lt) = w1(z, Lt) = 0, z ∈ [0, Lz].

(7)

The set of Equation (5) possesses some conservation laws (invariants):
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I1UW =

Lt∫
0

(
|U|2 + |W|2

)
dt = const,

I1V =

Lt∫
0

|V|2dt = const,

I3 =

Lt∫
0

(
3ν21 Im

(
V∗

∂V
∂t

)
+ 2ν31 Im

(
W∗

∂W
∂t

)
− 6D1

∣∣∣∣∂U
∂t

∣∣∣∣2 − 3D2

∣∣∣∣∂V
∂t

∣∣∣∣2 − 2D3

∣∣∣∣∂W
∂t

∣∣∣∣2
−3α̃

(
4Re(U3W∗) + |U|4 + 4|U|2|W|2 − 8|U|2|V|2 + 2|V|2|W|2

))
dt = const.

(8)

These invariants show that, in the framework of the modified equations, the energy
exchanges occur only between LFW and HFW. Meanwhile, the IFW energy remains con-
stant. This fact explains why we choose the normalization value A0 in (3) as the square
root from the sum of the intensities of LFW and HFW achieved at the pulse center.

3.2. Frequency Down-Conversion in the Framework of the Long Pulse Duration Approximation

Although our primary goal was to analyze a process of the frequency down-conversion,
accounting for SOD, we will briefly present an analysis of this process using the long pulse
duration approximation. It allowed us to estimate maximal conversion efficiency.

Let us suppose that the SOD coefficients are equal to zero: Dj = 0, j = 1, 2, 3. Thus,
the functions U, V, W depend only on z—coordinate. In this case, the problem (5), (7) can
be rewritten as follows:

dU
dz
− iα̃(|U|2U + 3U∗2W − 4U|V|2 + 2U|W|2) = 0,

dV
dz

+ 2iα̃(4|U|2 − |W|2)V = 0,

dW
dz
− 3iα̃(U3 + 2|U|2W + |V|2W) = 0,

U(0) = A10, V(0) = A20, W(0) = A30.

(9)

The conservation laws (8) transform in the following way:

I1UW = |U|2 + |W|2 = 1,

I1V = |V|2 = |A20|2,

I3 = −3α̃
(

4Re(U3W∗) + |U|4 + 4|U|2|W|2 − 8|U|2|V|2 + 2|V|2|W|2
)
= const.

(10)

The energy invariant IUW is chosen equal to unity, for definiteness. This invariant’s
choice leads to more simple formulas for LFW generation/amplification efficiency. In
general, this value is easy to realize by renormalization of the complex amplitudes.

The Equation (9) can be reduced to a single differential equation. For this aim, we
represent the complex amplitudes in a standard way:

U(z) = a1(z) exp iϕ1(z), V(z) = a20 exp(iϕ2(z)), W(z) = a3(z) exp(iϕ3(z)), (11)

here, the functions aj, ϕj, j = 1, 2, 3 are real-valued functions. We notice that an equality
of a20 = |A20| takes place because of the IFW energy preservation. Thus, the problem (9)
takes the form
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da1

dz
= −3α̃a2

1a3 sin ϕ,

da3

dz
= 3α̃a3

1 sin ϕ,

dϕ

dz
− α̃

(
3

(
a3

1
a3
− 3a1a3

)
cos ϕ + 3a2

1 − 6a2
3 + 15a2

20

)
= 0,

dϕ2

dz
+ 2iα̃(4a2

1 − a2
3) = 0,

a1(0) = |A10|, a3(0) = |A30|, ϕ(0) = ϕ0, ϕ2(0) = arg(A20).

(12)

Here, ϕ = ϕ3 − 3ϕ1 is a phase difference between HFW and LFW, ϕ0 is its value in the
input section of a medium. Obviously, the invariants (10) are transformed to a form:

I1a1a3
= a2

1 + a2
3 = 1,

I1a2
= a2

2 = a2
20,

I3 = 3α̃
(
−4a3

1a3 cos ϕ− a4
1 − 4a2

1a2
3 + 8a20a2

1 − 2a2
20a2

3

)
.

To write the algebraic equation with respect to the phase difference, we modify Hamil-
tonian by dividing it on 3α̃:

Ĩ3 = −4a3
1a3 cos ϕ− a4

1 − 4a2
1a2

3 + 8a20a2
1 − 2a2

20a2
3 = Ĩ30 (13)

Thus, we can express cos ϕ from the Hamiltonian (13):

cos ϕ =
2a2

20(4a2
1 − a2

3)− Ĩ30 − a4
1 − 4a2

1a2
3

4a2
1a2

3
(14)

Substituting the expression (14) into the first equation of the set (12), we obtain the
equation with respect to the LFW amplitude a1:

da1

dz
= ∓α̃a2

1a3

√
1−

(2a2
20(4a2

1 − a2
3)− Ĩ30 − a4

1 − 4a2
1a2

3)

16a6
1a2

3
.

Multiplying both parts of the equation on a1, and using a new notation p1 = a2
1 (it

means the LFW intensity), we write the differential equation with respect to the intensity of
the LFW p1, accounting for an equality a2

3 = 1− p1:

dp1

dz
= ∓7.5α̃

√
f (p1),

f (p1) = −p4
1 + (0.64 + 0.48B)p3

1 + (0.24A− 0.16B2)p2
1 − 0.16ABp1 − 0.04A2,

A = Ĩ30 + 2a2
20, B = 2− 5a2

20.

(15)

The maximal LFW intensity is defined by the roots of the equation f (p1) = 0. As nei-
ther parameter A nor parameter B depend on γ and ∆21k, the maximal LFW intensity
depends only on the incident intensities of interacting waves. Obviously the nonlinear
coupling coefficient and phase mismatching ∆21k influence only on a distance on which
the maximal LFW intensity achieves.

Since we want to choose the intensity of incident LFW that is as small as possible,
the function p1(z) should achieve its minimum in section z = 0. Therefore, its deriva-
tive must be equal to zero. As follows from the first Equation (12), this means either
ϕ0 = 0 or ϕ0 = π. Under this assumption, we solve the equation f (p1) = 0 for various
values |A10|2, |A20|2 and depict the results of the computation on the plane (|A10|2, |A20|2)
(Figure 1).
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Figure 1. The LFW maximal intensity dependence on the incident LFW intensity and the incident
IFW intensity. The boundary of domains corresponding to the high-effective and low-effective modes
is depicted with a red solid line.

Thus, one can see that there are two regimes of the frequency conversion: low-efficient
and high-efficient. In the first one, the conversion efficiency is lower than 20%; in the second
one, the conversion efficiency is much higher and can be higher than 90%. We could also
see in Figure 1 that if the intensity of incident IFW equals zero then the intensity of incident
LFW must be greater or equal than 0.08: |A10|2 ≥ 0.08 to achieve the high-efficiency mode
of the frequency conversion. Thus, in accordance with data from Table 1, the following
incident intensities of the LFW and HFW are enough for the high-efficient amplification of
the pulse with the 4 µm wavelength: 0.4976 GW/cm2 and 5.7224 GW/cm2. If the intensity
of incident LFW is lower, then the amplification efficiency decreases significantly.

However, with the increasing incident of the IFW intensity, the incident LFW intensity
that is required to achieve the high-efficiency mode of the frequency conversion decreases.
Moreover, if the incident IFW intensity is equal to |A20|2 = 0.4, then the high-efficiency
mode occurs even for a zero-value of the incident LFW intensity. The IFW and HFW
incident intensities, corresponding to these dimensionless values, can be the following:
2.488 GW/cm2 and 6.22 GW/cm2.

It should be noted that the computer simulation results obtained by solving the original
problem mostly support this analysis provided on the basis of the modified equations.
In particular, two different modes of the frequency conversion also occur if we describe the
laser pulse interactions in the framework of the original problem (1).

4. Computer Simulation Results

To confirm the results, discussed in the previous paragraph, the computer simulation
results obtained on the basis of solving the problem (1), are presented below. The red solid
lines refer to LFW; the blue solid lines refer to IFW; the green solid lines refer to HFW; the
black solid lines with triangles denote the incident LFW intensity; the black dashed-dotted
lines denote the IFW intensity; the black dashed lines denote the incident HFW intensity.
We also placed numbers near the curves: 1—LFW, 2—IFW, 3—HFW.

The distributions of the complex amplitudes for the incident pulses are chosen as:

Aj0(t) = Aj0 exp(−(t− 0.5Lt)
2), j = 1, 2, 3. (16)

The intensities of LFW and HFW are satisfied to equality: |A10|2 + |A30|2 = 1. We also
estimate the conversion efficiency via the following formula:
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ηj =

Lt∫
0
|Aj(z, t)|2dt

Lt∫
0
(|A1(0, t)|2 + |A2(0, t)|2 + |A3(0, t)|2)dt

, j = 1, 2, 3.

4.1. Frequency Conversion to Radiation with the Wavelength 4 µm

Here, we present the computer simulation results of the energy conversion from HFW
to LFW, possessing wavelength 4 µm, occurring in the crystal AgGaS2. The SOD coefficients
are chosen as follows: D1 = −0.0002, D2 = −0.0125, D3 = −0.0217. So, the frequency
of LFW is near the zero-dispersion point and the SOD of the HFW is a large one. In our
notations, the negative sign of the SOD coefficient corresponds to the normal dispersion
of a medium. The coefficient of nonlinear coupling γ is chosen equal to unity, which is
achieved at a value of 6.12 GW/cm2 of the sum intensity of the incident pulses.

4.1.1. Incident IFW’s Intensity Is Equal to Zero

We begin our consideration from the case for which a non-zero value of the intensities
of incident LFW and HFW takes place (of course, the HFW possesses much more energy,
than LFW), meanwhile, the intensity of incident IFW is absent: |A20|2 = 0. In this case, we
analyze an influence of the intensity ratios between LFW and HFW on the effectiveness of
energy conversion.

First, we consider the positive phase mismatching between LFW and IFW (∆21k = 20).
Figure 2 presents the computer simulation results for various maximal intensities of the
incident LFW: |A10|2 = 0.05, 0.07, 0.08, 0.1. We emphasize that the first two values of the
intensity lead to the low-effective mode of the frequency down-conversion, and the two
last values—to its high-effective mode.
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Figure 2. Pulses’ shapes in the sections z = 20 (a), 25 (b), 30 (c), 40 (d); pulse intensity evolution at
their centers (e–h), and the frequency conversion efficiency evolution (i–l) along the z-coordinate
computed for |A10|2 = 0.05 (a,e,i), 0.07 (b,f,j), 0.08 (c,g,k), 0.1 (d,h,l).
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Indeed, at the incident intensity |A2
10| = 0.05, there is no remarkable frequency

conversion between HFW and LFW (Figure 2i): η1 grows from 5% only to 7%. The LFW
intensity at the pulse center also grows a little bit (Figure 2e). As for the shapes of the
pulses (Figure 2a), the LFW pulse shape becomes flatter than the initial one, and the HFW
pulse decompresses due to the SOD influence. Moreover, a weak IFW generation occurs
(as it is supposed to).

The same situation is practically observed in the two next cases. At |A10|2 = 0.07,
the frequency conversion is slightly more effective: η1 grows two times; from 7% to 15%
(Figure 2j). Other peculiarities, such as the LFW intensity growth at the pulse center
(Figure 2f), flattening of the LFW pulse shape, the HFW pulse decompression, and weak
IFW generation (Figure 2b), are conserved. The incident intensity |A10|2 = 0.08 does
not experience enough improvement of the frequency down-conversion (η1, achieving
only 19% (Figure 2k)) in contrast to those achieved in the framework of the long-duration
pulse approximation.

The explosive increasing frequency conversion efficiency occurs at |A10|2 = 0.1. In this
case, the LFW intensity at the pulse center (Figure 2h) rises much faster than in all previous
cases and even achieves the incident HFW intensity. Moreover, the LFW pulse (Figure 2d)
is a bit more narrow than the incident HFW one.Thus, the resulting frequency conversion
is very impressive: more, than 69% of the sum energy transfers to LFW (Figure 2l). It is
worth noting that the HFW pulse has a local minimum near the pulse center, in this case
(Figure 2d).

If we take into account the GVDs of the optical pulses, then a sign of the phase
mismatching ∆21k will influence the conversion efficiency. So, if we choose a negative
(∆21k = −20), then the situation changes, essentially because an action of a medium leads to
decompression of the interacting pulses due to changing of the effective nonlinear response
(see above: α̃ = γ2/∆21k). Because the GVD coefficient D1 of the LFW is considerably
small, this pulse undergoes decompression very weakly. As a consequence, the energy
from the central part of the HFW converts to the energy of LFW, and the LFW intensity at
the pulse center becomes larger than those occurring for ∆21k = 20 (compare Figure 3e–h
with Figure 2e–h). However, the pulse of HFW spreads faster, and most of it locates out
of the time interval in which two other pulses are located. Consequently, no remarkable
frequency conversion occurs far from the pulse centers. Thus, the HFW pulse possesses a
local minimum near the pulse center in all cases (Figure 3a–d) despite the LFW pulse being
smooth, with a small duration in comparison with the HFW pulse duration. The conversion
efficiency is larger in the first three cases (18%, 34%, 38% in Figure 3i,j,k, correspondingly),
but lower for the incident intensity of the LFW equal to |A10|2 = 0.1 than the one occurring
for the positive phase mismatching: ∆21k = 20 (only 43%).

4.1.2. Incident LFW’s Intensity Is Equal to Zero

Below, we briefly discuss peculiarities of the frequency down-conversion if the incident
LFW intensity is equal to zero (|A10|2 = 0), and the intensity of the incident IFW is non-zero
(|A20|2 = 0.4, for instance). In this case, at γ = 1, a much longer distance (z = 80) of the
pulses’ interaction is required for the LFW generation. Obviously, the required distance
can be decreased by the incident intensity increasing. For example, at γ = 2, the distance
decreases five times, but the frequency down-conversion occurs in the same way as at
γ = 1: there are no improvements in the pulse shapes.

The main feature of the interactions of the pulses involve developing their instability,
which destroys the pulse shapes. Therefore, this scheme involving the pulse interactions at
chosen parameters cannot be effectively used.

As above, a sign of the phase mismatching ∆21k remarkably influences the frequency
down-conversion process, but the pulse shapes do not remain smooth. If ∆21k is positive,
then the IFW energy converts partially to the LFW’s one. The conversion efficiency of the
frequency down-conversion is about 24%. If the phase mismatching between LFW and
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IFW is negative, then the LFW generation is weaker than in the previous case (η1 = 0.12),
and the IFW amplification occurs.
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Figure 3. Pulse shapes in the section z = 50 (a–c), 30 (d); pulse intensity evolution at the centers
(e–h), and the frequency conversion efficiency evolution (i–l) along the z-coordinate computed for
|A10|2 = 0.05 (a,e,i), 0.07 (b,f,j), 0.08 (c,g,k), 0.1 (d,h,l).

It should be noted that, in contrast to the frequency conversion in the crystal AgGaS2,
for the tellurium crystal, we observe a completely different situation, as one can see below.

4.2. Frequency Conversion to Radiation with the Wavelength 10 µm

If the LFW’s wavelength equals 10 µm, then the dimensionless SOD coefficients are
equal to D1 = 0.1633, D2 = 0.0755, D3 = −0.0414 for the crystal AgGaS2, respectively.
Thus, the HFW undergoes a normal dispersion, and the LFW and IFW undergo anomalous
ones. In this case, LFW amplification is not monotonic as in the previous case.

A significant increase of the conversion efficiency can be achieved by increasing the
nonlinear coupling coefficient γ up to 4 to decrease the crystal length. In this case, the
sum incident pulses intensity has to equal 330 GW/cm2, keeping in mind the changing
of the wavelength, increasing the coefficient γ, and changing the quadratic susceptibility
due to changing the wavelength. It should be noted that this value is relatively high and
perhaps requires an account for the influence of the third-order susceptibility on the three
pulse interactions. Our computation shows that the dimensionless third-order nonlinear
coefficient is equal to 0.02 in the case under consideration. Therefore, analyzing laser pulse
interactions in short distances, the third-order nonlinear effects can be neglected.

The computer simulation results are depicted in Figure 4 for the phase mismatching
between IFW and LFW equaling ∆21k = 22.

As one can see, there is a very effective generation of the IFW, although this wave is
not phase-matched with two other waves in this case (Figure 4a). The LFW amplification
efficiency achieves 41% and the intensive energy conversion to this wave occurs between
sections z = 2 and z = 3, including the explosive energy conversion of the interacting
waves. Then the energy exchange between the interacting waves becomes very small.
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Unfortunately, the pulse shapes have many local maxima and minima, which make the use
of this mode of wave interactions for the frequency down-conversion impossible, in practice.
It should be stressed that at a smaller incident intensity of the LFW (|A10|2), the process of
the frequency conversion takes place in the same manner, but with lower efficiency.

There is a similar conclusion with the LFW. The pulse shapes are also not smooth,
and the HFW energy transfers to both LFW and IFW (Figure 4b). As a result, the frequency
down-conversion efficiency achieves 21%.
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Figure 4. An evolution of the frequency conversion efficiency (a,b,d) along the z-coordinate and
pulse shapes in the section z = 40 (c) computed for (γ, |A10|2, |A20|2) = (4, 0.1, 0) (a), (4, 0, 0.4) (b),
(1, 0.1, 0) (c,d).

The quality of the pulse shape and the frequency conversion efficiency can be suffi-
ciently improved by increasing the incident pulse duration, for instance, until τP = 1 ps.
This leads to decreases in the dimensionless GVD coefficients, for 100 times, and allows
us to avoid developing the modulation instability of the pulses (Figure 4c,d). We see
in this figure that even at a smaller value of the nonlinear coupling coefficient (γ = 1)
corresponding to the incident intensity 20.66 GW/cm2, the conversion efficiency achieves a
value of about 76% (Figure 4d). However, it requires increasing the length of the crystal:
about 4 cm.

4.3. Frequency Conversion to Radiation with the Wavelength to 24 µm

Finally, we consider the frequency down-conversion process in a tellurium crystal at
the incident pulse duration, 100 fs, which results in radiation generation with a frequency of
12.5 THz, corresponding to a wavelength of 24 µm. The phase mismatching between IFW
and LFW is small: ∆21k = 5.2. Therefore, the multi-scale method can give non-adequate
results. However, some features of those analyses remain valid. The dimensionless SOD
coefficients are also large, especially at the wavelength 24 µm (D1 = 0.218, D2 = −0.079,
D3 = −0.154). Consequently, we chose the coefficient of nonlinear coupling equal γ = 2.
Due to the large value of the quadratic susceptibility χ(2) of the tellurium crystal, the corre-
sponding sum intensity of the incident pulse can be small enough: 110 MW/cm2. The com-
puter simulation results are shown in Figure 5.
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As one can see, the high- and low-effective modes of the frequency conversion can
be observed in this figure. At the incident intensity |A10|2 = 0.07 of the LFW, its energy
changes from 7% to 34% (Figure 5g) and the pulse duration is about 200 fs (Figure 5a), which
approximately corresponds to three periods of wave phase changes. Meanwhile, if the
incident intensity slightly increases, up to |A10|2 = 0.08, then the conversion efficiency η1
achieves more than 82% (Figure 5h) and the pulse duration becomes equal, at about 500 fs
(Figure 5b), which approximately corresponds to eight periods of wave phase changes. It
is very important for practice that the LFW pulse shape is rather smooth (Figure 5a,b) in
contrast to the two other waves.

If the incident LFW intensity is equal to zero, then the conversion efficiency achieves
about 21% (Figure 5i) and the pulse duration is about 250 fs (Figure 5c), which corresponds
to 4.5 periods of wave phase changes, approximately. However, the LFW pulse shape
contains some local maxima and local minima. Nevertheless, its shape is smooth enough
(Figure 5c).
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Figure 5. Pulse shapes in the section z = 3 (a), 7 (b), 2.5 (c), and the LFW Fourier spectrum (d–f),
and the frequency conversion efficiency evolution (g–i) along the z-coordinate computed for
(|A10|2, |A20|2) = (0.07, 0) (a,d,g), (0.08, 0) (b,e,h), (0, 0.4) (c,f,i).

In Figure 5d–f, we depict the spectrum of the LFW . In the first two cases (Figure 5d,e),
the LFW spectrum is smooth and broadened compared to the incident pulse. Regarding
the LFW generation from its incident zero-value intensity (Figure 5f), the LFW spectrum
has three local maxima. Thus, one could analyze the three sub-pulses, as could be seen in
Figure 5c; they overlap each other in the time-domain.

The chirps of the incident pulses:

Aj0(t) = Aj0 exp(−(t− 0.5Lt)
2 + icj(t− 0.5Lt)

2), j = 1, 2, 3

can partially improve the frequency down-conversion efficiency. Above cj equals to −1,
1, or 0. We made a series of the computer simulations for the parameters: |A10|2 = 0.07,
|A20|2 = 0, γ = 2, ∆21k = 5.2, D1 = 0.218, D2 = −0.079, D3 = −0.154, at which the
frequency down-conversion is relatively small; a quality of the pulse shape is bad for
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non-chirped pulses (see Figure 5a,d,g). For comparison, the computer simulation results
are presented in Figure 6.

It should be noted that both the up-chirping (c3 = 1, Figure 6a,d,g) and the down-
chirping (c3 = −1, Figure 6b,e,h) of the HFW pulse lead to sufficient improvements of the
frequency down-conversion efficiency—about 70% is achieved in both cases (compared
with the 34% conversion efficiency in Figure 5g). However, there are some differences
between these two cases of the LFW generation. The mentioned conversion efficiency is
achieved for the down-chirped HFW pulse in a two-times smaller distance (z = 5) than the
corresponding value occurring for the up-chirped pulse of the HFW (z = 10). If the pulse
chirp is c3 = 1, then the pulse shapes are smoother (Figure 6a) and do not possess the local
minima, which can be observed in Figure 6b for IFW and HFW. However, the LFW pulse
spectrum is broadened if the incident pulse possesses down-chirp (c3 = −1): the remark-
able response of a medium can be observed in the pulse spectrum up to dimensionless
frequencies ω = ±6 in Figure 6e, meanwhile, the LFW pulse spectrum almost vanishes at
the frequency ω = ±3 in Figure 6d.

The effective LFW amplification also occurs if both the LFW and HFW possess down-
chirps c1 = −1, c3 = −1 in the input section z = 0 (Figure 6c,f,i). In general, the frequency
conversion process in this case is similar to those occurring for the pulse chirps c1 = 0,
c3 = −1 (Figure 6b,g,h). Only a slightly longer distance z = 6 is required to achieve the
high efficiency of the frequency conversion (Figure 6h) and a more pronounced spectral
response occurs at a range of the dimensionless frequencies ω = ±(2.5− 6.5) (Figure 6f).
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Figure 6. Pulse shapes in the section z = 10 (a), 5 (b), 6 (c), corresponding to the LFW Fourier spectrum
(d–f) and the frequency conversion efficiency evolution (g–i) along the z-coordinate computed for
(c1, c2, c3) = (0, 0, 1) (a,d,g), (0, 0, −1) (b,e,h), (−1, 0, 1) (c,f,i).

5. Discussion and Conclusions

We propose using the cascading process for frequency down-conversion to the mid-
infrared (or even THz) range, due to wave generation with difference frequency at multiple
frequencies of the interacting pulses. We showed that this method is applicable for fre-
quency down-conversion corresponding to a wavelength of at least 24 µm, but this is not a
strict ’upper bound’.
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In the framework of a multi-scale method, we derived a set of modified equations and
solved these equations without using the energy non-depletion approximation of the pump
wave. This solution was supported by numerical experiments.

Influence of the GVD—of the pulses on the frequency down-conversion efficiency—
was examined. The computer simulation results showed that non-zero incident LFW’s
energy could be amplified from an initial value of 8% to 75% and the LFW generation with
25% conversion efficiency is possible at the zero-value its incident intensity. It is important
(for practice) that the pulse with a larger wavelength possesses a smooth shape and that its
spectrum is also smooth.

Chirping of the incident HFW pulse could increase the conversion efficiency if the
pulse chirp is chosen in an appropriate way. The significant increasing is observed for both
up- and down-chirping of the pulse.

Concerning the possible experimental setup, based on data from Table 1 and computer
simulation results—for the amplification of the optical pulse with the wavelength 4 µm,
we suggest the following configuration: two pulses, approximately with 100 fs durations,
and the intensities of 0.612 GW/cm2 (10% of the sum intensity) and 5.508 GW/cm2 (90%
of sum intensity), with wavelengths λ1 = 4 µm (75 THz) and λ3 ≈ 1.333 µm (225 THz),
respectively, fall on the AgGaS2 crystal with the length 4 cm, cut at an angle 49.46◦.

For amplification of the optical pulse with 10 µm wavelength, the crystal cut angle
should be changed to 79.51◦. The duration of the pulses should be increased until 1 ps and
the intensities between them should be distributed in the following way: 2.066 GW/cm2

for the pulse with the wavelength λ1 = 10 µm (30 THz) and 18.54 GW/cm2 for the pulse
with the wavelength λ3 ≈ 3.333 µm (90 THz).

The experimental setup for a pulse generation with the wavelength 24 µm can be
implemented in the following way: the Te crystal, 2.5 mm in length, should be cut at an
angle, 15.78◦. Two pulses with 100 fs duration and with intensities of 0.44 GW/cm2 at the
wavelength λ3 = 8 µm (73.5 THz) and 0.176 GW/cm2 at the wavelength λ2 = 12 µm
(49 THz) should ‘fall’ on the crystal.

For the frequency down-conversion of the radiation with a wavelength λ = 1.3 (or
1.1) µm to the wavelength λ = 24 (or 30) µm, we propose, for example, two schemes
(Figure 7) that allows us to reach the frequency 12.5 THz (Figure 7a) and 10 THz (Figure 7b),
respectively. For this aim, it is necessary to use three crystals. In the first crystal (AgGaS2), a
radiation with the tripled wavelength 4µm is generated. Then, the second similar crystal is
used for the generation of a radiation with the wavelength 8µm or 10µm. The generation of
the radiation with wavelength 24µm or 30µm occurs in the third crystal (Te or Cs2HgI2Cl2).

Figure 7. Two possible schemes of the frequency down-conversion to the THz range of the frequencies.

In above consideration, we did not take into account the absorption of laser radiation
because our aim was a study of a maximal efficiency of the down-frequency based on
the cascaded processes. If this efficiency was to be small, then, evidently, it would not
make sense to consider other physical factors that decrease its effectiveness. One of
these factor is the crystal’s absorption of the laser radiation in the far IR and THz range
of frequencies. Two crystals, used in our computer simulation, possess the following
absorption coefficients for the radiation with wavelengths 4 mm and 10 mm: about 1.2 cm−1

for the crystal AgGaS2 [44]; and for the radiation with wavelength 24 mm: about 1.7 cm−1
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for the crystal Te [36]. In dependence of a ratio between the intensities of the incident pulses
the required crystals’ lengths can change in the interval (2 mm, 7 mm) or or even longer
if the nonlinear coupling coefficient γ is equal to unity. To decrease the absorption of the
laser energy, one can increase the intensity of the incident pulses that it is possible because
we used the low-intensive pulses. In this case, we can decrease the crystal length in two or
even more times. Moreover, there is other possibility to decrease the laser energy losses
caused by the absorption by the crystals.At present time, many new nonlinear crystals were
developed and they are transparent up to the wavelength 31µm (Cs2Hg3I8, [45]), 41µm
(Cs2HgI2Cl2, [46]), respectively, or even 50µm (6 THz, Cs2Hg2Br2I4·H2O, [47]) (full review
of this research can be seen in [48]).

It should be mentioned that there are various IR laser, such as CO2 lasers with the
wavelength 10.6 µm and the duration 200 ns [49], the fiber lasers with the wavelength
3.9 µm and with the pulse duration 160 fs with maximal power 200 kW [50,51], the
quantum cascade laser that can generate a pulse with the wavelength λ1 = 8 µm and with
the pulse duration up to 630 fs possessing maximal power max P(t) about of 4.5 W [52]
and some others. Our scheme of the frequency down-conversion allows us to obtain the
pulse with shorter duration and various wavelength and possessing broadband spectrum
and with much high power density. Therefore, this scheme supplements the existence
sources of the IR radiation and can be used for a generation of the THz broadband pulse.

Additional remark about the application of the converted frequency to the THz of the
frequencies. As a rule, the THz radiation refers to the range of frequencies belonging to
interval 0.1–10 THz. Figure 7 illustrates how one can reach this frequency range by using
proposed approach. One can also use the quantum cascade laser and sources of the IR
pulsed radiation and the chosen crystal for the frequency down-conversion. We emphasize
that the many dangerous substances have the absorption frequencies in the range of the
frequencies 10–20 THz (see, for example, [53], Table 1 in [54], Table 9.1 in [55], Figure 1
in [56]. Evidently, that these frequencies can be used for the problem of the detection and
identification of such substances that is very important for practice. Thus, the proposed
scheme of the frequency down-conversion can be covered this frequency range.
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Appendix A

Below, we derive the equation set (9) that describes the frequency conversion process
at large phase-mismatching between IFW and LFW: |∆21k| >> γ. In this case, the process
of the optical pulse interactions possess various spatial scales: in particular, a small scale,
defined by large-phase mismatching |∆21k|, and a long spatial scale defined by the smallest
dispersion length of the interacting pulses. Thus, we introduce a small parameter µ = 1

∆21k
and introduce various scales along the z coordinate: a small scale equal to the inverse
phase-mismatching length: ξ = z

µ and large longitudinal scales zl = µlz, l = 0, 1, 2 . . .
Therefore, the complex amplitudes are expanded in a power series of µ:
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A1 = U + µU1 + µ2U2 + . . . ,

A2 = V + µV1 + µ2V2 + . . . ,

A3 = W + µW1 + µ2W2 + . . . .

(A1)

Obviously, the functions in (A1) depend on all variables (t, ξ, zl |l ≥ 0).
Then, we transform the differential operators using new variables:

Lj =
∂

∂z
+ νj1

∂

∂t
+ iDj

∂2

∂t2 =
∂ξ

∂z
∂

∂ξ
+

∞

∑
l=0

∂zl
∂z

∂

∂zl
+ iDj

∂2

∂t2 =
1
µ

∂

∂ξ
+

∞

∑
l=0

µl ∂

∂zl
+ iDj

∂2

∂t2

=
1
µ

∂

∂ξ
+ L0

j + µ
∂

∂z1
+ µ2 ∂

∂z2
+ . . . , j = 1, 2, 3.

(A2)

Here, the operator Lj is defined by

L(0)
j =

∂

∂z0
+ νj1

∂

∂t
+ iDj

∂2

∂t2 .

Then, we substitute the representation (A1) of the complex amplitudes into the equa-
tion set (1), and keep terms with an order, which is greater than µ2:

1
µ

∂U
∂ξ

+ L(0)
1 U + µ

∂U
∂z1

+
∂U1

∂ξ
+ µL(0)

1 U1 + µ
∂U2

∂ξ
+

+iγ
(

U∗Ve−iξ + V∗Weiξ + µ((U∗V1 + U∗1 V)e−iξ + (V∗W1 + V∗1 W)eiξ)
)
+ O(µ2) = 0,

1
µ

∂V
∂ξ

+ L(0)
2 V + µ

∂V
∂z1

+
∂V1

∂ξ
+ µL(0)

1 V1 + µ
∂V2

∂ξ
+

+iγ
(

U2eiξ + 2U∗Weiξ + µ(2UU1eiξ + (U∗W1 + U∗1 W)eiξ)
)
+ O(µ2) = 0,

1
µ

∂W
∂ξ

+ L(0)
3 W + µ

∂W
∂z1

+
∂W1

∂ξ
+ µL(0)

1 W1 + µ
∂W2

∂ξ
+

+3iγ
(

UVe−iξ + µ(UV1 + U1V)e−iξ
)
+ O(µ2) = 0.

(A3)

Grouping the terms with respect to the power of µ, we obtain the equations:

∂U
∂ξ

=
∂V
∂ξ

=
∂W
∂ξ

= 0,

corresponding to 1
µ of the power series. Consequently, the functions U, V and W do not

depend on the fast changing coordinate ξ. Therefore, these functions do not change at the
small scale.

For the next order O(1) of the power series on µ, we obtain the following set of
equations:

L(0)
1 U +

∂U1

∂ξ
+ iγ(U∗Ve−iξ + V∗Weiξ) = 0,

L(0)
2 V +

∂V1

∂ξ
+ iγ(U2eiξ + 2U∗Weiξ) = 0,

L(0)
3 W +

∂W1

∂ξ
+ 3iγUVe−iξ = 0.

(A4)

The first terms in these equations do not depend on ξ; however, as other terms depend
on this variable, we can separate equations into two parts. The first of them is written as

L(0)
1 U = L(0)

2 V = L(0)
3 W = 0. (A5)
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The functions U1, V1, W1 can be written solving the second system by integrating (A4),
with respect to ξ variable:

U1 = γ(U∗Ve−iξ −V∗Weiξ) + u1(t, z0, z1 . . . ),

V1 = γ(−U2eiξ − 2U∗Weiξ) + v1(t, z0, z1 . . . ),

W1 = 3γUVe−iξ + w1(t, z0, z1 . . . ).

(A6)

Here u1, v1, w1 are the functions of integration: they do not depend on the ξ-coordinate.
The equations with respect to these functions are derived below.

For the functions at the order O(µ) of the power series, we obtain the following
equations:

∂U2

∂ξ
+ L(0)

1 U1 +
∂U
∂z1

+ iγ((U∗V1 + U∗1 V)e−iξ + (V∗W1 + V∗1 W)eiξ) = 0,

∂V2

∂ξ
+ L(0)

2 V1 +
∂V
∂z1

+ iγ(2UU1eiξ + (U∗W1 + U∗1 W)eiξ) = 0,

∂W2

∂ξ
+ L(0)

3 W1 +
∂W
∂z1

+ 3iγ(UV1 + U1V)e−iξ = 0.

Using the representation (A6), this set of equations transforms into the form:

∂U2
∂ξ

+ γ(L(0)
1 (U∗V)e−iξ − L(0)

1 (V∗W)eiξ) + iγ2(U∗v1e−iξ −V2W∗e−2iξ + u∗1Ve−iξ + V∗w1eiξ + v∗1Weiξ) =

−
(

∂U
∂z1

+ iγ2(−|U|2U − 3U∗2W + 4U|V|2 − 2U|W|2)
)
− L(0)

1 u1,

∂V2
∂ξ
− γ(L(0)

2 (U2)eiξ + 2L(0)
2 (U∗W)eiξ) + iγ2(−2UV∗We2iξ + 2Uu1eiξ + 2UV∗Weiξ + 2u∗1Weiξ + 2U∗weiξ) =

−
(

∂V
∂z1

+ 2iγ2(4|U| − |W|2)V
)
− L(0)

2 v1,

∂W2
∂ξ

+ 3γL(0)
3 (UV)e−iξ + 3iγ2(Uv1e−iξ + U∗V2 ∗ e−2iξ + u1V1e−iξ) =

−
(

∂W
∂z1
− 3iγ2(U3 + 2|U|2W + |V|2W)

)
− L(0)

1 w1.

As before, we can state that the right-hand sides of the equations are equal to zero
because they do not depend on ξ, in contrast to the left-hand sides of the equations. Thus,
we write the equations

∂U
∂z1

+ iγ2(−|U|2U − 3U∗2W + 4U|V|2 − 2U|W|2) = −L(0)
1 u1,

∂V
∂z1

+ 2iγ2(4|U|2 − |W|2)V = L(0)
2 v1,

∂W
∂z1
− 3iγ2(U3 + 2|U|2W + |V|2W) = L(0)

3 w1.

Above, we separate terms that contain u1, v1, w1. They belong to order O(µ) in the
representation (A1); meanwhile, U, V, W are aof order O(1), then one can once again
separate the obtained equation into two parts:

∂U
∂z1

+ iγ2(−|U|2U − 3U∗2W + 4U|V|2 − 2U|W|2) = 0,

∂V
∂z1

+ 2iγ2(4|U|2 − |W|2)V = 0,

∂W
∂z1
− 3iγ2(U3 + 2|U|2W + |V|2W) = 0.

(A7)
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Consequently, the equations
L(0)

1 u1 = 0,

L(0)
2 v1 = 0,

L(0)
3 w1 = 0

(A8)

take place.
After returning to the original variables, (ξ = ∆21kz, z0 = z, z1 = z/∆21k, ∂

∂z =

∆21k ∂
∂ξ + ∂

∂z0
+ 1

∆21k
∂

∂z1
+ O((∆21k)−2)), we obtain the sets of Equations (5) and (6). In turn,

the expansion series (A1) transforms into the form (4).
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