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Abstract: Mobile crowdsensing (MCS) has recently emerged as an urban-sensing paradigm that
takes advantage of smartphone sensing capabilities and user mobility. A major challenge in mobile
crowdsensing-based urban sensor networks is how to efficiently transfer data from sensors to the
sink (e.g., the server center). Therefore, this study proposes a human location prediction-based
routing protocol (HLPRP) in such networks. Specifically, a human location prediction (HLP) model is
designed to estimate the location of mobile nodes. The proposed HLP model is based on a recurrent
neural network with long short-term memory cells. The movement history of each person is used
in the HLP model to predict their future locations. Experimental results on real traces are used to
validate the proposed HLP model. Then, using predicted location information from the HLP model,
packet delivery predictability is obtained. Packet delivery predictability represents the possibility that
a node will deliver a packet to its destination and is used to select optimal relay nodes to maximize
the packet delivery ratio, minimize the packet delivery cost, and reduce delivery latency. In addition,
the proposed routing protocol considers social strength for relay selection. To evaluate the HLPRP,
we conduct simulations and compare results with other routing protocols, showing that the HLPRP
can outperform existing protocols.

Keywords: human location prediction; social relationship; packet delivery predictability; social
strength; routing protocol

1. Introduction

Mobile crowdsensing (MCS) [1–3] is an approach to data collection based on the
widespread use of mobile devices with sensor capabilities (e.g., smartphones, smartwatches,
and tablets). Mobile users can collect and share a lot of relevant data from their smart
devices. MCS has been used in a variety of urban-sensing applications, such as environmen-
tal monitoring [4,5], intelligent transportation systems [6,7], and public safety [8]. In this
work, MCS-based urban sensor networks are considered with the MCS as the main sensing
paradigm for a multi-access edge computing environment and additional static sensors.
This model includes a server center, edge nodes, sensors, and mobile users. Mobile users
collect data using sensors in their smart devices. Sensors are deployed in certain places to
capture data such as air pollution, radioactivity, noise level, and humidity. Edge nodes are
placed in particular locations to gather and preprocess data from sensors and mobile users.
Then, edge nodes send processed data to the server center, where it is used for a variety
of applications. The server center communicates with edge nodes using an infrastructure-
based wired or wireless network. For communication between other components (i.e.,
edge nodes, sensors, and mobile users), the wireless interfaces (e.g., Bluetooth 5.0) are used
without the need for an infrastructure network. The primary benefit of this network is that
it is cost-effective. However, owing to user mobility, the connections between nodes are
intermittent, making data collection difficult. That requires an effective routing protocol to
transfer data between edge nodes, sensors, and mobile users.
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A lot of routing protocols for transferring data between edge nodes, sensors, and
mobile users have been studied [9–15]. For example, several routing methods use the
flooding strategy [9,10]. However, with the flooding strategy, messages are immediately
spread when there are contacts between nodes. As a result, those routing protocols consume
a lot of resources and have a high network overhead ratio. To minimize overhead, the
number of replications was limited in [11]. Nevertheless, this routing protocol did not
take into account optimal relay selection. Therefore, low mobility nodes can be selected
to forward messages, resulting in a low packet delivery ratio and long delivery latency.
In [12–14], nodes that recently encountered the destination are preferred for selection as
relay nodes. However, in a real context, two individuals may often meet in the present
moment, but their next meeting may occur in the distant future. For example, family
members frequently interact in the morning but do not meet until the evening. As a result,
the optimal relay nodes may not be chosen, and those routing protocols may not achieve
high network performance.

In [15], a day is divided into time slots, and the meeting probability between nodes
is estimated for each time slot based on encounter histories. If two nodes frequently
encountered each other in a certain time slot in the past, they will have a high probability
of meeting in that time slot in the future. In other words, the estimated value of the
meeting probability between two nodes in a time slot only depends on the statistics of their
encounters in that time slot in the past. However, in the real context, meeting probability in
a certain time slot can be affected by encountering information in other time slots during the
day. Therefore, using statistics on encounters between nodes may not be the best method
for predicting meeting probability. As a result, high network performance might not be
obtained when using the meeting probability for relay selection.

To address those issues, in this paper, we propose a human location prediction (HLP)-
based relay selection model that uses a recurrent neural network (RNN) with long short-
term memory (LSTM) cells [16]. RNNs have emerged as a potential model for processing
sequential data in a variety of applications, such as time-series prediction, video tagging,
speed recognition, and generating image descriptions. However, RNNs suffer from both
gradient vanishing and gradient explosion problems with long sequences of input. There-
fore, we use LSTMs to overcome the problem. A RNN with LSTM cells contains states that
enable them to process variable-length sequences of input. In other words, those states
are capable of capturing historical information from an arbitrary length of the context
window. In the proposed HLP model, the movement histories of mobile users in current
and previous time slots (e.g., mobile users’ identities, mobile users’ positions, the time
slot of the day, the day of the week) are used to predict their positions in the next several
time slots with high accuracy. Note that edge nodes are deployed in specific locations in
MCS-based urban sensor networks, and packet destinations are among the edge nodes.
Packet delivery predictability is calculated based on the probability that a mobile node will
visit an edge node’s position. A mobile node with a high probability of meeting an edge
node during a certain time slot has a high value for packet delivery predictability to that
edge node. Packet delivery predictability represents the possibility that a node will deliver
a packet to its destination.

In addition, the social relationships between nodes are taken into account based on
their movement histories. Two nodes have high social strength if they interact frequently
over a long period of time. Finally, the human location prediction-based routing protocol
(HLPRP) for mobile crowdsensing-based urban sensor networks is designed based on
a HLP-based relay selection and social strengths between nodes. More specifically, the
proposed routing algorithm has two phases. When a packet is generated, the proposed
forwarding algorithm quickly spreads a limited number of copies of the packet throughout
the network in the first phase. Then, optimal relay nodes are selected to forward the packet
based on packet delivery predictability and social strength in the second phase.

To evaluate the performance of the HLPRP, the proposed HLP model is first trained and
tested using a University at Buffalo (UB) dataset [17]. Then, we compare the HLPRP against
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other routing protocols. According to the obtained results, the HLPRP can outperform
existing protocols in terms of delivery cost (DC), packet delivery latency (PDL), and packet
delivery ratio (PDR). In summary, this study has the following main contributions.

• First, we design a RNN-based model for human location prediction. Using the pre-
dicted information, the packet delivery predictability is proposed and used for re-
lay selection.

• Second, we propose a forwarding algorithm based on the HLP and social strength.
There are two phases in the proposed forwarding algorithm. In the first phase, a
limited number of copies of the packet are quickly spread throughout the network. In
the second phase, packet delivery predictability and social relationships are used to
select optimal relay nodes, with the goal of maximizing the PDR, minimizing the DC,
and reducing the PDL.

• Third, using the UB dataset [17], we conduct various experiments to validate the
proposed routing protocol. The DC, PDL, and PDR are used to evaluate network
performance. The simulation results demonstrate that the HLPRP can outperform
existing routing protocols.

The rest of this paper is organized as follows. First, Section 2 discusses related work.
Then, the network model and problem definition are presented in Section 3. Section 4
describes the proposed routing protocol in more detail. In Section 5, simulation results
from the proposed routing protocol are evaluated. Finally, the conclusion is presented in
Section 6.

2. Related Work

In this section, the existing routing protocols for MCS-based urban sensing are pre-
sented and compared with the proposed routing protocol.

In early work, the flooding technique was used in a number of routing protocols [9,10].
Messages are spread throughout the network as widely as possible under those protocols.
There is a high DC because nodes continually replicate messages for newly found contacts
that have not yet processed a copy of the messages. To reduce the DC, several studies [11,18]
restricted the number of times a message was replicated. However, a method to quickly
spread copies of packets throughout the networks was not considered in those protocols.
To overcome this issue in our routing protocol, a forwarding token is used and updated
based on degree centrality. The node with a greater degree of centrality will be assigned
a larger value for the forwarding token. That helps the rapid spread of packets into the
network and minimizes PDL. Moreover, those other routing protocols did not take into
account the importance of selecting optimal relay nodes. As a result, messages could be
forwarded to nodes that rarely interact with the destination. That results in a low PDR and
high latency. To address this issue, the HLPRP executes relay selection in order to choose
the optimal nodes for packet relay.

Numerous studies have been proposed for relay selection [19–26]. For example,
in [19,20], the physical locations of nodes were used for relay selection. Specifically, the
distances between nodes were used to determine which node should be chosen as a
forwarding node. It is preferable to choose a node that is closer to the destination. The work
in [21] tried to improve the spray-and-wait routing protocol [11] by taking into account
node performance. Specifically, a node with a higher capability receives more copies of
messages during the spray phase. Then, in the wait phase, it not only delivers packets to
their destinations but also forwards them to higher capability nodes. However, the metrics
considered in those routing protocols (e.g., node capability and distance between nodes)
do not accurately represent the chance of a node encountering the destination in the future.
As a result, the probability of sending messages to the destination is still low. Unlike those
studies, our work proposes a human location prediction model based on a RNN to estimate
whether a node will meet or not meet the destination in the future. Then, optimal relay
nodes can be selected.
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To improve the relay selection method, a number of routing protocols have been
proposed based on social communities and the properties of nodes. For instance, in [25],
nodes are divided into communities, and packets were only forwarded to nodes belonging
to the destination’s community. In the BUBBLE Rap routing protocol [26], network com-
munities were determined by K-clique algorithm. The local ranking of a node refers to the
node’s betweenness centrality in its community, whereas the global ranking refers to the
node’s betweenness centrality with all other nodes in the network. A message is routed to
nodes that have a higher ranking. Until a node in the destination’s community is found,
global ranking is used. After that, local ranking is used. However, forming communities
is challenging in those routing protocols since a node must have all the information on
all other nodes. In [22–24], relay selection was based on centrality metrics. Specifically,
packets were routed to nodes with a greater centrality value. Nevertheless, forwarding
a large number of messages to central nodes results in congested traffic and long delays
around those nodes. To address these problems, the HLPRP chooses nodes with a high
probability of meeting the destination and a close relationship with the destination, rather
than choosing a node with a high probability of interacting with all other nodes in the
network. In other words, the HLPRP selects specific relays for each destination. Based on
that, traffic congestion and delays can be avoided.

Based on nodes’ encounter histories, a number of routing protocols were
proposed [12,13,27–30]. In [13,27], delivery predictability was proposed based on encounter
history. This value indicates how likely a node will be able to send a message to the desti-
nation. If a node encounters another node with a higher value for delivery predictability to
the destination, the node replicates the message. Under [12,28–30], delivery predictability
was also used for relay selection. Furthermore, those protocols control and limit the number
of replications to reduce the DC. The community-based opportunistic routing protocol
(CORP) [14] considers both delivery predictability and network communities. First, net-
work communities are discovered, and then a communication probability value between
two communities is defined. In particular, if nodes in one community often encounter
nodes from another community, the two communities have a high community probability
with each other. Then, a node with high delivery predictability is preferred as a relay
node if the destination community and the source community are the same; otherwise, it
chooses nodes in the community of the destination and nodes in communities with a greater
community probability with the destination community. These routing protocols’ metrics
(e.g., delivery predictability and community probability) could represent how frequently
two nodes have interacted in the recent past. However, they cannot estimate when the two
nodes will encounter each other in the future. Two nodes may interact frequently in the
present, but their next contact may happen in the distant future. For example, two students
frequently meet each other in the morning when they attend the same class but do not
meet again until the next morning. Therefore, the delivery predictability and community
probability might be high at present, but the two nodes might not meet in the near future.
As a result, optimal relay nodes might not be selected, and the routing protocols are unable
to achieve high performance.

In [15], a day was divided into time slots, and then, based on nodes’ encounter
histories, the meeting probability between nodes was estimated for each time slot. If two
nodes have met frequently in a time slot in the past, they will have a high probability of
meeting again in that time slot in the future. The estimated value of the meeting probability
between two nodes in a time slot only depends on the statistics of their previous encounters
in that time slot. Nevertheless, in the real world, the meeting probability in a time slot can
be influenced by encountering information from other time slots during the day. Therefore,
using statistics on node encounters may not be the best method for estimating meeting
probability. As a result, high network performance might not be obtained when using
only meeting probability for relay selection. Our proposed routing protocol can overcome
this problem by developing and using human location prediction-based relay selection
based on a RNN and LSTM cells. The prediction model takes the information of mobile
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users in current and previous time slots (e.g., mobile users’ identity, mobile users’ positions,
the time slot of the day, the day of the week) as input, and outputs the location of mobile
nodes for the next several time slots. Based on the predicted information, we can estimate
whether a node will meet or not meet the destination in the future. Then, optimal relay
nodes can be selected. Our routing protocol achieves better network performance with a
low DC, a low PDL, and a high PDR.

3. Network Model and Problem Definition

In this section, first, the network model is described. Then, the problem definition is
presented.

Figure 1 shows the network model that consists of four entities as follows:

• Mobile nodes (mobile users): Mobile nodes collect data, such as temperature, images
of traffic conditions, and videos of accidents, using the sensors embedded in their
smart devices (e.g., camera, microphone, positioning sensor, temperature sensor),
and send to edge nodes. They can walk or be in a vehicle to move around the area.
When mobile users are in contact with other people or sensors, they can exchange
data between them and transmit data to the destination.

• Sensors: Sensors are deployed in specific locations to collect data, such as air quality,
radioactivity, noise levels, and humidity levels. When sensors and destinations (edge
nodes) are not directly connected, the sensors must relay packets to mobile users to
transfer them to the destinations.

• Edge nodes: Edge nodes are located in particular locations to gather and preprocess
collected data from sensors and mobile users. Then, edge nodes send processed data
to the server center.

• The server center: The server center receives data from edge nodes and uses the
received data for urban-sensing applications.

Figure 1. The network model.

Messages in this network can be of different data types, such as text, images, and video.
This model could be used in various applications, such as environmental monitoring [4,5],
smart traffic light systems [6], and waste management [31]. For example, in monitoring
environmental conditions [4,5], the data from sensors, such as air quality, noise, and
radiation sensors, and the data from sensors embedded in smart devices for temperature
measurement, are collected and sent to edge nodes. Then, edge nodes preprocess the
collected data and send it to the server center.

In this system, edge nodes connect with the server center via an infrastructure network,
whereas edge nodes, sensors, and mobile nodes exchange messages with each other using
wireless communications such as Bluetooth 5.0. Therefore, this work addresses the problem
of how to effectively route data from sensors and mobile nodes to edge nodes. Data
collection at edge nodes in this system relies on mobile nodes that move around the city.
The selection of nodes for forwarding messages is an important issue. Our work considers
network performance in terms of DC, PDL, and PDR. The DC is calculated by dividing
the total number of replications by the total number of messages generated. The PDL
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is the time it takes for messages to be delivered from sources to destinations. The PDR
measures the number of messages delivered to their intended destinations divided by the
total number of messages.

We assume that the movement histories of a number of mobile nodes are observed, and
each node knows its encounter history with other nodes. The information from observed
movement history is denoted as M. Let SNB

u denote the set of neighboring nodes of node u.
The information on the encounter history of nodes in SNB

u is denoted E. Node u wants to
send a message to edge node v. The objective is to choose relay nodes in SNB

u to maximize
the PDR and minimize the PDL and the DC, given the information on movement history
M and information on encounter history E.

4. The Proposed Routing Algorithm

In this section, the proposed human location prediction model is described in detail.
Then, we discuss how to determine packet delivery predictability using the estimated
information from the human location prediction model. The social strength of nodes is
also calculated using their encounter histories. Finally, a forwarding algorithm is proposed
based on those metrics. The routing process of the HLPRP is shown in Figure 2.

Figure 2. The HLPRP routing process.

4.1. Human Location Prediction (HLP) Model

We propose a human location prediction model based on a RNN and LSTM cells [16]
for estimating mobile users’ next positions, using information from their previous move-
ments. In particular, the proposed model takes movement information of mobile users
in current and previous time slots as input and outputs estimated locations for the next k
time slots.

The information that will be used as input for the prediction model is discussed next.
First, to distinguish mobile users, each one is assigned a unique ID. Then, a one-hot vector

is used to represent the user ID. Let
−→
aI

u denote the one-hot vector that indicates the ID of
user u. Second, a time slot index is also used as an input feature. The one-hot vector that

represents time slot h is denoted
−→
aT

h . Third, the day of the week is considered. Let
−→
aD

h be
the one-hot vector that indicates the day of the week of time slot h. Fourth, the locations of
mobile users are taken into account. The one-hot vector that indicates the location of user u



Appl. Sci. 2022, 12, 3898 7 of 17

in time slot h is
−→
aL

u,h. Finally, let t denote the current time slot. From time slot t, the human
location prediction model will predict the location of mobile user u in the next time slot, q
(e.g., with k = 4, q could be time slot t + 1, time slot t + 2, time slot t + 3, or time slot t + 4).

To determine time slot q, a one-hot vector is used. Let
−→
aPT denote the time slot in which we

want to predict the location of user u.
−→
aPT is considered an input feature as well. One-hot

encoding is used for all input features because those features are nominal and not ordinal.
The input will be information from time slot (t−m + 1) to current time slot t. Let us define
−→xu,h as the input vector of user u in time slot h, specifically, −→xu,h = {

−→
aPT ,
−→
aI

u ,
−→
aD

h ,
−→
aT

h ,
−→
aL

u,h}.
This model is based on a RNN with LSTM cells. After the last hidden state of the LSTM

cell, a fully connected layer with ReLU activation and a fully connected layer with a softmax
activation function is used for the output layer. Let ŷu,q denote the output vector that shows
the probability that mobile user u will visit locations in time slot q (e.g., q = t + 1). For
example, ŷu,q = [0.1, 0.05, 0.01, . . . , 0.3] means that in time slot q, the probability of visiting
the first location is 0.1; the probability of visiting the second location is 0.05, and so on. The
notations used in the human location prediction model are shown in Table 1.

Table 1. Notations used in the human location prediction model.

Notation Meaning
−→xu,h Input vector of user u in time slot h
−→
aPT One-hot vector: the next time slot for prediction of the user’s location
−→
aI

u One-hot vector: the ID of mobile user u
−→
aD

h One-hot vector: the day of the week of time slot h
−→
aT

h One-hot vector: presents time slot h
−→
aL

u,h One-hot vector: the location of user u in time slot h
ŷu,q Output vector

4.2. Packet Delivery Predictability

In the network model, edge nodes are deployed at certain locations. Suppose that
edge node v is located at a certain location in the area. The probability that a mobile user
visits edge node v from time slot t + 1 to time slot t + k is obtained by using the human
location prediction model. Let p(u, v)t+j denote the probability that mobile user u visits
edge node v at time slot t + j. Based on the visit probability, packet delivery predictability
(the possibility that a node will deliver a packet to its destination) can be calculated. Let
DP(u, v)t denote the packet delivery predictability of mobile user u to edge node v in time
slot t. DP(u, v)t is calculated as follows:

DP(u, v)t =
k

∑
j=1

(p(u, v)t+j)
α×j (1)

where a tunable parameter, α ∈ (0, 1), is used to adjust the effect of probabilities based on
time. Specifically, with (α× j), the probability for a time slot in the distant future has less
effect on the value of DP(u, v)t than the probability for a time slot in the near future (e.g.,
p(u, v)t+2 affects DP(u, v)t less than p(u, v)t+1). In other words, a node with a high visit
probability in the near future has higher packet delivery predictability than a node with a
high visit probability in the distant future. A high DP(u, v)t value indicates that a message
can be delivered from mobile user u to edge node v with high probability and low latency.
Therefore, a relay node with high packet delivery predictability is preferable.
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4.3. Social Strength

Social strength is used to represent the social relationships between nodes in the
network. To measure the social strength between nodes, connection characteristics such
as encounter frequency [32] and contact duration [33,34] can be used. In this work, social
strength is determined based on contact duration between nodes. During the observation
time, nodes that have been in touch for a longer period have a higher social strength.
Contacts between nodes are assumed to be collected over a time period, TC. Let η represent
the number of contacts between node u and node v. The duration of the ith contact between
node u and node v is defined as CTi

u,v. Let s(u, v) denote the social strength between node
u and node v. Then, s(u, v) is calculated as:

s(u, v) =
∑

η
i=1 CTi

u,v

TC
(2)

From Equation (2), we see that the social strength of two nodes is the total contact
duration between them over the time period of collecting contacts between nodes. A
high value for s(u, v) implies that they have a close relationship and usually encounter
each other.

4.4. Forwarding Algorithm

The proposed forwarding algorithm, based on packet delivery predictability and social
strength, is presented in Algorithm 1. The notations used in the algorithm are defined in
Table 2.

Table 2. Notations used in the proposed forwarding algorithm.

Notation Meaning

DP(u, v)t The packet delivery predictability between node u and node v in time slot t
s(u, v) The social strength between node u and node v

Du The degree centrality of node u
cp

u The forwarding token of node u for packet p
SNB

u The set of neighboring nodes of node u

Algorithm 1 The forwarding algorithm

1: Node u has packet p to send to edge node v
Input: SNB

u , DP(u, v)t, s(u, v), α, Du, cp
u

2: for each i ∈ SNB
u do

3: if cp
u > 1 then

4: Node u selects node i as a relay node and forwards a copy of packet p to i
5: cp

i = min(max(cp
u × Di

Di+Du+ε , 1), cp
u − 1)

6: cp
u = cp

u − cp
i

7: else if cp
u = 1 then

8: if DP(i, v)t > DP(u, v)t then
9: Node i is chosen as a relay node for packet p

10: else if DP(i, v)t = DP(u, v)t and s(i, v) > s(u, v) then
11: Node i is chosen as a relay node for packet p
12: end if
13: if Node i is chosen as a relay node for packet p then
14: Node u forwards packet p to node i and deletes packet p from buffer
15: cp

i = 1
16: end if
17: end if
18: end for
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Assume that node u wants to send packet p to edge node v. First, the neighboring
nodes of node u are checked. If the destination is listed in the neighboring nodes, the packet
is delivered to the destination. Otherwise, the forwarding process is executed following
Algorithm 1.

In the forwarding algorithm, a forwarding token for packets is used to limit the number
of copies of packets in the network similarly in [11,15]. Specifically, when a node generates
a packet, it also assigns a forwarding token to the packet. The forwarding token’s initial
value is C. Let cp

u represent the forwarding token for packet p of node u. The forwarding
algorithm is processed in two phases based on the value of cp

u. In phase 1, i.e., when cp
u > 1,

packets are quickly spread in the network, and degree centrality is used to update the
forwarding token’s value. In phase 2, when cp

u = 1, relay nodes are selected based on
packet delivery predictability and social strength.

Specifically, in phase 1 when cp
u > 1, node u selects node i in SNB

u as a relay node and
forwards a copy of packet p to node i without consideration of any other condition in line
4. Based on the social strength between nodes, a social graph is constructed. In the social
graph, vertices are nodes, and there is a link between two nodes if their social strength is
greater than zero. The degree centrality of a node is defined as the number of links between
itself and other nodes in the social graph. To update the forwarding token’s value, degree
centrality is used. Let Du and Di represent the degree centrality of node u and the degree
centrality of node i, respectively. The forwarding token’s value assigned to the copy of
packet p at node i is denoted as cp

i , which is calculated as follows:

cp
i = min(max(cp

u ×
Di

Di + Du + ε
, 1), cp

u − 1) (3)

where a very small value, ε, is added to avoid the denominator being zero. According
to Equation (3), cp

i is limited to values between [1, cp
u − 1], and a node with a larger value

for the degree centrality will be assigned a greater forwarding token’s value. In the real
context, a node with a high degree of centrality has a greater likelihood of connecting with
other nodes. If it has a large value for the forwarding token, copies of the packet will
quickly spread throughout the network. That supports minimizing PDL and enhances the
possibility of delivering the packet to its destination. In Algorithm 1, cp

i is calculated in
line 5, and cp

u is updated in line 6 (i.e., cp
u = cp

u − cp
i ).

In phase 2, when cp
u = 1, the packet delivery predictabilities are compared in line 8.

If node i has a greater packet delivery predictability with edge node v than node u (i.e.,
DP(i, v)t > DP(u, v)t), node i is chosen as a relay node for packet p in line 9. Other-
wise, if DP(i, v)t = DP(u, v)t, social strengths are compared in line 10. Specifically, if
DP(i, v)t = DP(u, v)t and s(i, v) > s(u, v), node i is selected as a relay node for packet p
in line 11. Finally, if node i is chosen as the relay node for packet p, node u will forward
packet p to node i and delete packet p from its buffer (line 14). The forwarding token’s
value for packet p at node i, cp

i , is set to 1 (line 15).

5. Evaluation Results

In this section, first, a Wi-Fi scan dataset is presented. Then, the simulation setup
is discussed. The results of the proposed HLP model are presented and compared with
the results of the Markov model [35]. The performance of the proposed routing protocol
is evaluated in terms of DL, PDL, and DC. The proposed routing is compared with the
spray-and-wait routing protocol [11], epidemic routing [9], CORP [14], PRoPHET [13], and
BUBBLE Rap [26]. The opportunistic networking environment (ONE) simulation tool [36]
is used for simulation.

5.1. Dataset

The UB/phonelab-wifi logs were gathered over a five-month period from the smart-
phones of 284 faculty members, staff, and students at the University at Buffalo [17]. We
specifically use the sub-dataset named WifiScanResult, which includes the Wi-Fi scan
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records of 274 anonymous mobile users and about 1.1 million access point (AP) scans.
When a phone scans for and finds a nearby AP, it records information, such as the times-
tamp, device ID, basic service set identifier (BSSID), and signal strength. Most people carry
their phones, and indoor Wi-Fi APs often have short transmission ranges of tens of meters.
Thus, the human movement could be represented as a sequence of scanned APs identifiable
by their BSSIDs [37]. A smartphone can scan and detect several APs at one time. The
scanned AP with the highest signal strength is chosen to reflect mobile users’ positions.

We focus on data collected over 90 days from 1 January to 31 March 2015. During this
period, the most Wi-Fi activities for all selected mobile users, as well as their interactions,
can be observed. Then, the 50 most active users and 1243 of the most visited APs are
chosen as input data for building our proposed human location prediction model. An extra
dummy AP is added for a time slot in which there are no scanned APs. The proposed
model estimates mobile users’ locations from 9 a.m. to 6 p.m. (the most active period
of the day). Therefore, to train the model, human movement from 8 a.m. to 6 p.m. is
extracted. Specifically, the time period from 8 a.m. to 6 p.m. is divided into 41 time slots
of 15 minutes (including the last time slot from 6 p.m. to 6:15 p.m.), and then, each data
sample’s timestamp is mapped to one of the predefined 41 time slots. During a time slot,
the latest position of the user is considered the user’s position for that whole time slot.

Because the UB dataset is sparse, there are a lot of dummy labels. To prevent the
model from predicting the dummy location as the next location, all training and validation
samples containing dummy labels are removed. Note that only dummy locations from
the label are removed, allowing for the possibility of dummy locations in input samples.
Following the data extraction procedures mentioned above, we derive a new dataset from
which to build the proposed human location prediction model.

5.2. Simulation Setup

The data for 13 February 2015, is used to simulate the proposed routing protocol.
The remaing 89 days are used to train and test the human location prediction model. The
simulation’s duration is set to nine hours (i.e., from 9 a.m. to 6 p.m.). The number of edge
nodes and the number of sensors are set to 5 and 50, respectively. These nodes are randomly
placed at locations of frequently scanned APs. Specifically, from 20 access points (APs)
that have the highest number of scanned times by mobile users, five APs are randomly
selected as locations to deploy five edge nodes. From 150 APs that have the highest number
of scanned times by mobile users, 50 APs are randomly selected as locations to deploy
sensors. Using this method, the edge nodes and the sensor nodes are deployed to locations
that are frequently visited by mobile nodes. In other words, they are deployed at locations
with a high density of mobile users. Note that in order to reflect a more realistic scenario
in this work, a scenario in which some of the users have predictable mobility and the
rest have unpredictable mobility is considered. Therefore, the 50 most active users were
selected from the UB dataset and were considered users with predictable mobility. The
human location prediction model is trained and tested using the movement history of
those people. Thus, their future locations can be predicted using the model. Moreover,
we also select 100 additional mobile users from the UB dataset and assume that they have
no movement history. The locations of those nodes are unpredictable. Therefore, their
packet delivery predictability is set to zero. However, in the network model, it is also
supposed that each node knows its encounter history with other nodes. Therefore, the
social strength of those 100 mobile users can still be determined. Finally, the total number
of mobile nodes is 150 (i.e., 50 mobile users with movement history and 100 mobile users
without movement history).

The media access control (MAC) layer of Bluetooth 5.0 with a transmission rate of
2 Mbps is used. Bluetooth 5.0 is designed for very low power operation. That reduces
power usage and extends battery life for nodes. The UB dataset provides the Wi-Fi scan
records of mobile devices. Indoor Wi-Fi APs often have short transmission ranges of tens
of meters. There is no physical location information for APs and mobile users in the UB
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dataset. The real distance between nodes cannot be obtained. Therefore, we assume that a
mobile user communicates with another mobile user if they scan and detect at least one
common AP. In addition, a mobile user communicates with a sensor or an edge node if
the user scans and detects the AP where the sensor or the edge node is placed. Packets
are generated with a size of 500 bytes (e.g., the size of sensing data or a text message),
and the generation interval is randomly set at between 25 s and 30 s. We consider the
network model that allows messages with a long expiration time. Therefore, the time to live
(TTL) for packets was set to four hours. Each node has a buffer that can store 150 packets.
The first-in-first-out (FIFO) buffer is used. The initial value of forwarding token C is set
to 64. In addition, the proposed protocol is also compared with other routing protocols.
Common parameters, such as the number of nodes and the MAC layer are the same in all
routing protocols. The forwarding token under spray-and-wait is set at the same value
in the HLPRP. Under PRoPHET, first, the initialization constant of delivery predictability,
Pinit, was set to 0.75. Then, the scaling constant, β, and aging constant, γ, were set to 0.25
and 0.98, respectively. For CORP, the threshold of minimum probability and the threshold
of maximum probability are set to 0.45 and 0.88, respectively. The K value for K-clique in
BUBBLE Rap is set to three. Table 3 shows the details for the simulation parameters.

Table 3. Simulation parameters.

Parameter Value

Simulation duration 9 h
Number of edge nodes 5

Number of sensors 50
Number of mobile users with movement history 50

Number of mobile users without movement history 100
Transmission rate 2 Mbps

Packet generation interval 25–30 s
Buffer size 150 packets
Packet TTL 4 h
Packet size 500 bytes

Initial value of forwarding token (C) 64

5.3. The Results of the Proposed Human Location Prediction Model

Table 4 presents the top-1 accuracy of the prediction models when predicting users’
locations in various future time slots (i.e., t + 1, t + 2, t + 3, t + 4). In general, our proposed
model obtains higher accuracy than the Markov model. Top-1 accuracy achieves the highest
value when predicting the users’ locations in the next time slot, t + 1, and then decreases
slightly at time slots in the further future. This indicates that the movement history of
mobile users has a greater impact on their locations in the near future than on their locations
in the further future. The average accuracy from the proposed HLP model is 0.5831. This
indicates that the proposed model can work well. Using the predicted information, the
values of packet delivery predictability are obtained for the routing algorithm.

Table 4. Top-1 accuracy from the prediction models.

Prediction Model
Time
Slot
t + 1

Time
Slot
t + 2

Time
Slot
t + 3

Time
Slot
t + 4

Average

The proposed HLP model 0.6102 0.5907 0.5735 0.5555 0.5831
The Markov model 0.6030 0.5636 0.5338 0.5097 0.5535
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5.4. Effects of α on the Performance of the Proposed Routing Protocol

In this subsection, the effects of α on the performance of the HLPRP are discussed.
Recall that when calculating packet delivery predictability, we can adjust the effect on
packet delivery predictability of the predicted information for the near future and the
distant future by using tunable parameter α. Figure 3 shows the network performance
for various values of α and TTL. The PDR is shown in Figure 3a. In general, the PDR is
higher with a longer TTL. For the same value of TTL, the PDR does not change much. For
example, with TTL = 4 h, it reduces slightly when α increases from 0.1 to 0.3, and then it
slightly increases from 0.7506 to 0.7521 when α increases from 0.6 to 0.7. Figure 3b displays
the PDL. The PDL increases when the TTL increases. For low values of α, latency is high.
Then, it decreases when α increases. For example, with the TTL = 4 h, the PDL is 3269 s
when α = 0.1 and 3225 s when α = 0.7. The DC is presented in Figure 3c. The DC is larger
with a longer TTL. The value of α does not affect the DC much. It is similar for the various
values of α. For example, the DC is 37.4 when the TTL = 1 h for all different values of α.
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Figure 3. The network performance for various values of α. (a) PDR. (b) PDL. (c) DC.

From the obtained results in Figure 3, the value of α was set to 0.7 in the proposed
routing protocol.

5.5. Effects of Packet TTL on Routing Protocol Performance

Figure 4 shows the network performance for various TTL values. First, the results for
the PDR are presented in Figure 4a. Overall, the figure shows that increasing the lifetime of
packets increases the PDR to a certain point, and then it stabilizes under the HLPRP, CORP,
BUBBLE Rap, and spray-and-wait routing protocols but decreases under epidemic routing
and PRoPHET. CORP tries to forward the packet to the community of the destination. In a
sparse network, nodes belonging to two distinct communities rarely communicate with
one another. Hence, there are very few nodes that can be selected as relay nodes. As a
result, CORP obtained the lowest values for the PDR. In BUBBLE Rap, by using global
rank (i.e., betweenness centrality), a message has a better chance of being forwarded to the
destination’s community. Therefore, the PDR from BUBBLE Rap is higher than CORP. The
number of packet copies was not limited in PRoPHET and epidemic routing. Thus, the
buffer quickly filled when the TTL increased, and a large number of packets were dropped,
resulting in a low value for the PDR. For example, the PDR of PRoPHET reduces from
0.6874 to 0.5363 when the TTL increases from 3 h to 6 h. In the spray-and-wait routing
protocol, buffer overflow was reduced by the limited number of replications. Therefore,
the PDR of the spray-and-wait is greater than that of PRoPHET and epidemic routing.
By limiting the number of copies of packets, the HLPRP can also reduce buffer overflow.
Moreover, relay selection is based on packet delivery predictability and social relationships.
Optimal relay nodes can be found, and hence, the PDR under the HLPRP is improved and
is higher than those of the other protocols. For example, when the TTL is 6 h, the PDR of
the HLPRP, spray-and-wait routing, PRoPHET, BUBBLE Rap, CORP, and epidemic routing
are 0.7645, 0.7450, 0.5363, 0.5335, 0.4371, and 0.4074, respectively.
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Figure 4. The network performance for various values of packet time to live. (a) PDR. (b) PDL.
(c) DC.

Latency from various values for the packet TTL is illustrated in Figure 4b. In general,
a larger value for TTL means packets can be stored in the buffer for longer, which leads
to an increased PDL, as shown in the figure. Under CORP and PRoPHET, a packet is
slowly spread due to the absence of a rapid packet-spreading mechanism. This results in a
significant increase in the PDL. Based on the flooding strategy, the PDL under epidemic
routing is low. In the HLPRP, packets are quickly spread during phase 1, and nodes with
a higher probability of meeting the destination in a short period of time are preferred as
relay nodes during phase 2. Therefore, the HLPRP also achieves a short delay, comparable
to that of epidemic routing, and shorter than the other protocols. For example, when the
TTL is 5 h, the PDL of the HLPRP and epidemic routing are 3476 s and 3470 s, whereas
spray-and-wait routing, PRoPHET, BUBBLE Rap, and CORP are 3626 s, 3862 s, 3516 s, and
3667 s, respectively.

Figure 4c shows the results for the DC. Under PRoPHET and epidemic routing, the
number of packet copies is not limited. As a result, the DC is extremely high. When the
TTL increases, the buffer overflows, and a large number of packets are dropped. That leads
to a quickly increasing DC under those protocols. In CORP, by finding the node in the
destination’s community before finding the destination, the DC is reduced. BUBBLE Rap
uses betweenness centrality to select relay nodes until meeting nodes in the destination’s
community. Therefore, the number of transmissions of messages is higher than in CORP.
As a result, the DC under BUBBLE Rap is higher than that under CORP. By limiting the
number of replications with the spray-and-wait routing protocol, a low value of the DC
can be obtained. Under the HLPRP, the number of copies of a packet in the network is also
limited. The DC from the HLPRP is also reduced and is lower than that from PRoPHET,
CORP, and epidemic routing. For example, when the packet TTL is 2 h, the DC from
the HLPRP, the spray-and-wait routing protocol, CORP, and BUBBLE Rap are 51.6, 22.4,
96.6, and 406.8, respectively, whereas PRoPHET and epidemic routing reach 709.6 and
1636.2, respectively. The HLPRP’s DC is greater than the spray-and-wait routing protocol’s
because when the forwarding token value is equal to 1, the HLPRP continues to forward
the packet if a better relay node is found, whereas the spray-and-wait routing protocol
waits until it reaches the destination.

5.6. Effects of Buffer Size on Routing Protocol Performance

Figure 5 shows the network performance for various buffer sizes. First, the PDR is
presented in Figure 5a. A larger buffer means that it can forward and store more packets.
Thus, as shown in Figure 5a, the PDR increases as the buffer size increases. By using the
predicted information and the social strength between nodes, our routing protocol can
achieve a greater PDR than others when the buffer size is between 10 and 250 packets.
When the buffer size is very large, buffer overflow is reduced in the flooding strategy.
Specifically, epidemic routing obtains high values for the PDR when the buffer capacity is
larger than 300 packets. However, the flooding strategy also consumes a significant amount
of network resources.
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Figure 5. The network performance for various buffer sizes. (a) PDR. (b) PDL. (c) DC.

PDL results are in Figure 5b. A small buffer (e.g., 10 packets) will quickly overflow.
As a result, it removes packets with long delays to make room for the new ones coming.
Therefore, the buffer contains only packets with short delays. This results in low PDL.
When the buffer size increases, it can contain more packets with longer delays, which
increases latency. The shortest latency is obtained by the HLPRP when the buffer capacity
is between 10 and 100 packets. In epidemic routing, a large buffer can store more packets.
Packets are quickly sent to their destinations without being dropped. Hence, epidemic
routing with a large buffer (e.g., 300 packets) has a short PDL.

Figure 5c shows the results for the DC. When the buffer is small, numerous packets
are lost and retransmitted due to buffer overflow under epidemic routing and PRoPHET.
That creates a huge DC. The DC from the HLPRP is lower than that from PRoPHET, CORP,
BUBBLE Rap, and epidemic routing.

5.7. Effects of the Packet Generation Interval on Routing Protocol Performance

In Figure 6, network performance for various packet generation intervals is shown.
The results for the PDR are illustrated in Figure 6a. In general, increasing the packet gener-
ation interval will reduce network traffic. Thus, the PDR tends to increase as the packet
generation interval increases. By rapidly spreading packets and selecting optimal relay
nodes based on the predicted information and social relationships, the HLPRP achieves a
better PDR than the others when the packet generation interval is between 25 s and 45 s.
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Figure 6. The network performance for various values of the packet generation interval. (a) PDR.
(b) PDL. (c) DC.

Figure 6b shows the results of the PDL. The latency from the HLPRP is lower than from
other routing protocols when the packet generation interval varies between 5 s and 25 s.
When network traffic is light (i.e., the packet generation interval is between 35 s and 45 s),
using the flooding strategy, epidemic routing obtains the shorter delivery latency. However,
the DC from epidemic routing is huge, as shown in Figure 6c. Figure 6c also indicates that
the HLPRP has a lower DC than CORP, PRoPHET, BUBBLE Rap, and epidemic routing.
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6. Conclusions

In this paper, we proposed a novel routing protocol for mobile crowdsensing-based ur-
ban sensor networks based on human location prediction. Specifically, a RNN-based model
using LSTM cells was built for estimating the locations of mobile nodes. Useful information,
such as nodes’ identities, time slots in the day, the day of the week, and node location
is extracted from the dataset. That information is used to train and test the prediction
model. Packet delivery predictability is proposed by using the probabilities obtained from
the prediction model. From the encounter histories of the nodes, social strength between
them is also determined and considered in the proposed routing algorithm. Specifically,
the HLPRP is processed in two phases. In the first phase, the degree centrality is used to
determine the forwarding token value of relay nodes. That helps to quickly spread the
packets throughout the network. In the second phase, packet delivery predictability and
social strength are used to select optimal relay nodes. The network performance under
the HLPRP was evaluated by comparing it with that of other routing protocols in terms
of PDR, PDL, and DC. The obtained results showed that the HLPRP can outperform
the other routing protocols. In future work, the effect of social aspects (e.g., information
about nodes that have strong social relationships) will be considered to predict the human
location. Additionally, we plan to study a routing protocol based on reinforcement learning
in which the agent’s action is to select relay nodes based on current state information such
as social strength, packet delivery predictability, and spatial information.
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