Effects of Time and Temperature on Stability of Bioactive Molecules, Color and Volatile Compounds during Storage of Grape Pomace Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Raw Material and Sample Preparation
2.3. GPF Polyphenol Extraction and HPLC Analysis
2.4. High Performance Liquid Chromatography (HPLC) Characterization of Anthocyanins
2.5. Total Polyphenols Content
2.6. TEAC Antioxidant Capacity Determination
2.7. GPF Fatty Acids Extraction and GC Analysis
2.8. Analysis of Volatile Compounds
2.9. Color and Moisture Evaluation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Stability of Polyphenols in Negroamaro Pomace Flour Extracts during Storage
3.2. Assessment of Total Phenols and Antioxidant Activity of GPF during Storage at Different Temperatures
3.3. Effect of Storage on Fatty Acids and Volatile Composition of Negroamaro GPF
3.4. Color Profile and Moisture Percentage of Negroamaro Flour Pomace after Six Months of Storage at Different Temperatures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Berbegal, C.; Spano, G.; Tristezza, M.; Grieco, F.; Capozzi, V. Microbial Resources and Innovation in the Wine Production Sector. S. Afr. J. Enol. Vitic. 2017, 38, 156–166. [Google Scholar] [CrossRef]
- Ahmad, B.; Yadav, V.; Yadav, A.; Rahman, M.U.; Yuan, W.Z.; Li, Z.; Wang, X. Integrated Biorefinery Approach to Valorize Winery Waste: A Review from Waste to Energy Perspectives. Sci. Total Environ. 2020, 719, 137315. [Google Scholar] [CrossRef] [PubMed]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.B.B.; Speroni, C.S.; Salvador, P.R.; Loureiro, B.B.; Lovatto, N.M.; Goulart, F.R.; Lovatto, M.T.; Miranda, M.Z.; Silva, L.P.; Penna, N.G. Grape Pomace Skins and the Effects of Its Inclusion in the Technological Properties of Muffins. J. Culin. Sci. Technol. 2017, 15, 143–157. [Google Scholar] [CrossRef]
- Gaita, C.; Alexa, E.; Moigradean, D.; Conforti, F.; Poiana, M.-A. Designing of High Value-Added Pasta Formulas by Incorporation of Grape Pomace Skins. Rom. Biotechnol. Lett. 2020, 25, 1607–1614. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Use of Grape Peels by-Product for Wheat Pasta Manufacturing. Plants 2021, 10, 926. [Google Scholar] [CrossRef]
- Tolve, R.; Pasini, G.; Vignale, F.; Favati, F.; Simonato, B. Effect of Grape Pomace Addition on the Technological, Sensory, and Nutritional Properties of Durum Wheat Pasta. Foods 2020, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Ungureanu-Iuga, M.; Dimian, M.; Mironeasa, S. Development and Quality Evaluation of Gluten-Free Pasta with Grape Peels and Whey Powders. LWT 2020, 130, 109714. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Effect of Different Drying Methods and Storage Time on the Retention of Bioactive Compounds and Antibacterial Activity of Wine Grape Pomace (Pinot Noir and Merlot). J. Food Sci. 2012, 77, H192–H201. [Google Scholar] [CrossRef]
- Gerardi, C.; D’amico, L.; Migoni, D.; Santino, A.; Salomone, A.; Carluccio, M.A.; Giovinazzo, G. Strategies for Reuse of Skins Separated from Grape Pomace as Ingredient of Functional Beverages. Front. Bioeng. Biotechnol. 2020, 8, 645. [Google Scholar] [CrossRef]
- Planinić, M. Influence of Temperature and Drying Time on Extraction Yield of Phenolic Compounds from Grape Pomace Variety “Portogizac”. Chem. Biochem. Eng. Q. 2015, 29, 343–350. [Google Scholar] [CrossRef]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.; Garcia-Viguera, C. Natural Bioactive Compounds from Winery by-Products as Health Promoters: A Review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovinazzo, G.; Gerardi, C.; Uberti-Foppa, C.; Lopalco, L. Can Natural Polyphenols Help in Reducing Cytokine Storm in COVID-19 Patients? Molecules 2020, 25, 5888. [Google Scholar] [CrossRef] [PubMed]
- Iuga, M.; Mironeasa, S. Potential of Grape Byproducts as Functional Ingredients in Baked Goods and Pasta. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2473–2505. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.A.; Salvador, A.A.; Smânia, A.; Smânia, E.F.A.; Maraschin, M.; Ferreira, S.R.S. Antimicrobial Activity and Composition Profile of Grape (Vitis vinifera) Pomace Extracts Obtained by Supercritical Fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef]
- Gerardi, C.; Pinto, L.; Baruzzi, F.; Giovinazzo, G. Comparison of Antibacterial and Antioxidant Properties of Red (Cv. Negramaro) and White (Cv. Fiano) Skin Pomace Extracts. Molecules 2021, 26, 5918. [Google Scholar] [CrossRef]
- Gerardi, C.; Tommasi, N.; Albano, C.; Blando, F.; Rescio, L.; Pinthus, E.; Mita, G.; Prunus Mahaleb, L. Fruit Extracts: A Novel Source for Natural Food Pigments. Eur. Food Res. Technol. 2015, 241, 683–695. [Google Scholar] [CrossRef]
- Durante, M.; Lenucci, M.S.; Marrese, P.P.; Rizzi, V.; De Caroli, M.; Piro, G.; Fini, P.; Russo, G.L.; Mita, G. α-Cyclodextrin Encapsulation of Supercritical CO2 Extracted Oleoresins from Different Plant Matrices: A Stability Study. Food Chem. 2016, 199, 684–693. [Google Scholar] [CrossRef]
- Tufariello, M.; Pati, S.; D’Amico, L.; Bleve, G.; Losito, I.; Grieco, F. Quantitative Issues Related to the Headspace-SPME-GC/MS Analysis of Volatile Compounds in Wines: The Case of Maresco Sparkling Wine. LWT 2019, 108, 268–276. [Google Scholar] [CrossRef]
- Gatto, P.; Vrhovsek, U.; Muth, J.; Segala, C.; Romualdi, C.; Fontana, P.; Pruefer, D.; Stefanini, M.; Moser, C.; Mattivi, F.; et al. Ripening and Genotype Control Stilbene Accumulation in Healthy Grapes. J. Agric. Food Chem. 2008, 56, 11773–11785. [Google Scholar] [CrossRef]
- Calabriso, N.; Massaro, M.; Scoditti, E.; Pellegrino, M.; Ingrosso, I.; Giovinazzo, G.; Carluccio, M. Red Grapes Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases. Molecules 2016, 21, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabriso, N.; Scoditti, E.; Massaro, M.; Pellegrino, M.; Storelli, C.; Ingrosso, I.; Giovinazzo, G.; Carluccio, M.A. Multiple Anti-Inflammatory and Anti-Atherosclerotic Properties of Red Wine Polyphenolic Extracts: Differential Role of Hydroxycinnamic Acids, Flavonols and Stilbenes on Endothelial Inflammatory Gene Expression. Eur. J. Nutr. 2016, 55, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Flamini, R.; Mattivi, F.; Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef] [PubMed]
- Giovinazzo, G.; Grieco, F. Functional Properties of Grape and Wine Polyphenols. Plant Foods Hum. Nutr. 2015, 70, 454–462. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and Anti-Inflammatory Activities of Quercetin and Its Derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Bolling, B.W.; Blumberg, J.B.; Oliver Chen, C.-Y. The Influence of Roasting, Pasteurisation, and Storage on the Polyphenol Content and Antioxidant Capacity of California Almond Skins. Food Chem. 2010, 123, 1040–1047. [Google Scholar] [CrossRef] [Green Version]
- Kapcum, C.; Uriyapongson, J. Effects of Storage Conditions on Phytochemical and Stability of Purple Corn Cob Extract Powder. Food Sci. Technol. 2018, 38, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Difonzo, G.; Troilo, M.; Squeo, G.; Pasqualone, A.; Caponio, F. Functional Compounds from Olive Pomace to Obtain High-added Value Foods—A Review. J. Sci. Food Agric. 2021, 101, 15–26. [Google Scholar] [CrossRef]
- Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.H.; Shimizu, T.; Spener, F.; van Meer, G.; Wakelam, M.J.O.; Dennis, E.A. Update of the LIPID MAPS Comprehensive Classification System for Lipids. J. Lipid Res. 2009, 50, S9–S14. [Google Scholar] [CrossRef] [Green Version]
- Radzikowska, U.; Rinaldi, A.O.; Çelebi Sözener, Z.; Karaguzel, D.; Wojcik, M.; Cypryk, K.; Akdis, M.; Akdis, C.A.; Sokolowska, M. The Influence of Dietary Fatty Acids on Lmmune Responses. Nutrients 2019, 11, 2990. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Chiriboga, D.; Olendzki, B.; Xie, B.; Li, Y.; McGonigal, L.; Maldonado-Contreras, A.; Ma, Y. Substantial Increase in Compliance with Saturated Fatty Acid Intake Recommendations after One Year Following the American Heart Association Diet. Nutrients 2018, 10, 1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tufariello, M.; Fragasso, M.; Pico, J.; Panighel, A.; Castellarin, S.D.; Flamini, R.; Grieco, F. Influence of Non-Saccharomyces on Wine Chemistry: A Focus on Aroma-Related Compounds. Molecules 2021, 26, 644. [Google Scholar] [CrossRef] [PubMed]
- Coletta, A.; Toci, A.T.; Pati, S.; Ferrara, G.; Grieco, F.; Tufariello, M.; Crupi, P. Effect of Soil Management and Training System on Negroamaro Wine Aroma. Foods 2021, 10, 454. [Google Scholar] [CrossRef] [PubMed]
- Gasiński, A.; Kawa-Rygielska, J.; Mikulski, D.; Kłosowski, G.; Głowacki, A. Application of White Grape Pomace in the Brewing Technology and Its Impact on the Concentration of Esters and Alcohols, Physicochemical Parameteres and Antioxidative Properties of the Beer. Food Chem. 2022, 367, 130646. [Google Scholar] [CrossRef]
- Wang, D.; Javed, H.U.; Shi, Y.; Naz, S.; Ali, S.; Duan, C.-Q. Impact of Drying Method on the Evaluation of Fatty Acids and Their Derived Volatile Compounds in ‘Thompson Seedless’ Raisins. Molecules 2020, 25, 608. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, F.B.; Mottram, D.S. Volatiles from Interactions of Maillard Reactions and Lipids. Crit. Rev. Food Sci. Nutr. 1992, 31, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Cirlini, M.; Dall’Asta, C.; Silvanini, A.; Beghè, D.; Fabbri, A.; Galaverna, G.; Ganino, T. Volatile Fingerprinting of Chestnut Flours from Traditional Emilia Romagna (Italy) Cultivars. Food Chem. 2012, 134, 662–668. [Google Scholar] [CrossRef]
- Fritsch, C.W.; Gale, J.A. Hexanal as a Measure of Rancidity in Low Fat Foods. J. Am. Oil Chem. Soc. 1977, 54, 225–228. [Google Scholar] [CrossRef]
- Chai, D.; Li, C.; Zhang, X.; Yang, J.; Liu, L.; Xu, X.; Du, M.; Wang, Y.; Chen, Y.; Dong, L. Analysis of Volatile Compounds from Wheat Flour in the Heating Process. Int. J. Food Eng. 2019, 15, 1–13. [Google Scholar] [CrossRef]
- Cramer, A.-C.J.; Mattinson, D.S.; Fellman, J.K.; Baik, B.-K. Analysis of Volatile Compounds from Various Types of Barley Cultivars. J. Agric. Food Chem. 2005, 53, 7526–7531. [Google Scholar] [CrossRef]
- Galmarini, M.V.; Maury, C.; Mehinagic, E.; Sanchez, V.; Baeza, R.I.; Mignot, S.; Zamora, M.C.; Chirife, J. Stability of Individual Phenolic Compounds and Antioxidant Activity during Storage of a Red Wine Powder. Food Bioprocess Technol. 2013, 6, 3585–3595. [Google Scholar] [CrossRef] [Green Version]
- Tolun, A.; Artik, N.; Altintas, Z. Effect of Different Microencapsulating Materials and Relative Humidities on Storage Stability of Microencapsulated Grape Pomace Extract. Food Chem. 2020, 302, 125347. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Chiriatti, M.A.; Grieco, F.; Perrotta, C.; Capone, S.; Rampino, P.; Tristezza, M.; Mita, G.; Grieco, F. Influence of Autochthonous Saccharomyces Cerevisiae Strains on Volatile Profile of Negroamaro Wines. LWT—Food Sci. Technol. 2014, 58, 35–48. [Google Scholar] [CrossRef]
- Augustine, S.; Kudachikar, V.B.; Vanajakshi, V.; Ravi, R. Effect of Combined Preservation Techniques on the Stability and Microbial Quality and Retention of Anthocyanins in Grape Pomace Stored at Low Temperature. J. Food Sci. Technol. 2013, 50, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Ayed, N.; Yu, H.-L.; Lacroix, M. Improvement of Anthocyanin Yield and Shelf-Life Extension of Grape Pomace by Gamma Irradiation. Food Res. Int. 1999, 32, 539–543. [Google Scholar] [CrossRef]
- Zhang, Y.; Truzzi, F.; D’Amen, E.; Dinelli, G. Effect of Storage Conditions and Time on the Polyphenol Content of Wheat Flours. Processes 2021, 9, 248. [Google Scholar] [CrossRef]
Time (Months) | Anthocyanins | Oenin | Caffeic Acid | Caftaric Acid | Cutaric Acid | Gallic Acid | Trans-Resveratrol | Catechin | Epicatechin | Quercetin | Querc. 3-Gluc. | Rutin |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(μgOE/g) | μg/g | |||||||||||
Temperature of storage 4 °C | ||||||||||||
T0 | 790 ± 10 | 220 ± 20 | 0.77 ± 0.57 | 21.63 ± 4.58 | 2.95 ± 0.80 | 41.00 ± 0.72 | 8.81 ± 1.71 | 460 ± 30 | 800 ± 70 | 57.61 ± 0.50 | 28.12 ± 0.41 | 530 ± 7 |
T1 | 840 ± 30 | 240 ± 40 | 0.73 ± 0.084 | 22.45 ± 3.86 | 2.71 ± 0.54 | 38.40 ± 2.87 | 13.43 ± 0.23 * | 460 ± 30 | 700 ± 20 | 59.72 ± 2.01 | 33.04 ± 5.18 | 580 ± 3 * |
T2 | 970 ± 70 * | 270 ± 50 | 1.35 ± 0.33 | 23.41 ± 2.34 | 3.08 ± 0.38 | 46.77 ± 1.55 * | 12.85 ± 2.57 * | 480 ± 80 | 680 ± 60 | 62.69 ± 0.22 * | 42.18 ± 12.1 | 740 ± 10 * |
T3 | 780 ± 1 | 220 ± 20 | 0.70 ± 0.35 | 21.59 ± 3.95 | 2.71 ± 0.82 | 41.60 ± 3.50 | 12.45 ± 1.12 * | 470 ± 40 | 610 ± 60 | 58.67 ± 1.75 | 27.55 ± 0.30 | 540 ± 7 |
T4 | 850 ± 60 | 250 ± 50 | 1.38 ± 0.13 | 23.22 ± 2.28 | 3.29 ± 0.54 | 38.80 ± 0.66 * | 8.95 ± 1.68 | 540 ± 70 | 720 ± 130 | 59.71 ± 3.16 | 36.98 ± 14.1 | 640 ± 5 * |
T5 | 850 ± 10 * | 250 ± 10 | 1.89 ± 0.78 | 22.29 ± 4.41 | 3.24 ± 0.90 | 49.35 ± 5.50 | 17.88 ± 4.01 * | 520 ± 30 | 720 ± 120 | 66.04 ± 2.98 * | 35.22 ± 4.98 | 680 ± 1 * |
T6 | 820 ± 50 | 240 ± 30 | 1.46 ± 0.45 | 23.26 ± 4.11 | 3.41 ± 0.97 | 41.54 ± 6.07 | 17.53 ± 3.88 * | 510 ± 40 | 660 ± 10 | 62.04 ± 1.19 * | 34.45 ± 8.23 | 660 ± 6 * |
Temperature of storage 25 °C | ||||||||||||
T1 | 760 ± 10 * | 220 ± 20 | 0. 94 ± 0.07 | 22.13 ± 4.49 | 2.97 ± 0.80 | 46.25 ± 3.41 | 9.80 ± 1.17 | 450 ± 10 | 710 ± 30 | 59.19 ± 0.92 | 27.89 ± 0.65 | 560 ± 6 * |
T2 | 810 ± 40 | 240 ± 10 | 2.31 ± 0.89 * | 23.77 ± 6.15 | 2.82 ± 0.95 | 51.16 ± 7.87 | 16.44 ± 4.45 | 490 ± 50 | 770 ± 110 | 64.78 ± 6.08 | 32.30 ± 4.56 | 640 ± 15 * |
T3 | 740 ± 40 | 220 ± 30 | 2.39 ± 0.12 * | 22.79 ± 3.37 | 2.76 ± 0.61 | 45.82 ± 1.25 * | 8.94 ± 1.08 | 450 ± 20 | 740 ± 10 | 60.26 ± 2.52 | 29.79 ± 1.70 | 510 ± 4 |
T4 | 790 ± 40 | 210 ± 30 | 2.61 ± 0.16 * | 22.21 ± 3.00 | 3.06 ± 0.66 | 44.10 ± 0.16 * | 7.90 ± 2.09 | 410 ± 40 | 650 ± 10 * | 60.44 ± 0.94 * | 27.24 ± 3.57 | 560 ± 2 * |
T5 | 850 ± 80 | 260 ± 50 | 2.09 ± 0.03 * | 21.37 ± 3.23 | 2.99 ± 0.98 | 58.92 ± 12.9 | 6.51 ± 1.84 | 470 ± 40 | 710 ± 50 | 67.14 ± 10.9 | 36.50 ± 8.84 | 560 ± 6 * |
T6 | 790 ± 40 | 230 ± 30 | 4.03 ± 0.09 * | 23.89 ± 2.97 | 4.31 ± 0.16 | 55.04 ± 7.96 * | 14.86 ± 0.32 * | 430 ± 50 | 550 ± 80 * | 64.90 ± 0.05 * | 37.63 ± 11.1 | 690 ± 9 * |
Time Storage (Months) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
% of Total Fatty Acids Identified | ||||||||||||||
Fatty Acids | 4 °C | 25 °C | ||||||||||||
Palmitic acid (C16:0) | 11.55 | 12.46 | 12.72 | 12.81 | 13.09 | 14.37 | 14.72 * | 11.55 | 12.71 | 12.57 | 12.77 | 13.10 | 13.66 | 15.28 |
Palmitoleic acid (C16:1) | 0.71 | 1.01 | 0.95 | 0.96 | 0.78 | 0.76 | 0.91 * | 0.71 | 0.95 * | 0.99 * | 0.92 * | 1.20 * | 0.93 * | 1.07 * |
Stearic acid (C18:0) | 6.81 | 7.43 | 7.04 | 7.22 | 7.19 | 9.49 * | 9.52 * | 6.81 | 7.23 * | 7.03 * | 7.94 * | 7.63 * | 9.12 * | 9.96 * |
Oleic acid (C18:1 n9) | 23.57 | 23.64 | 23.09 | 23.50 | 23.76 | 21.50 | 21.09 | 23.57 | 23.17 | 23.31 | 23.82 | 23.67 | 22.02 | 20.97 |
Linoleic acid (C18:2 n6) | 53.85 | 52.39 | 53.40 | 52.88 | 52.35 | 51.27 | 51.16 | 53.85 | 52.96 | 53.20 | 51.58 | 51.58 | 51.69 | 50.17 |
Linolenic acid (C18:3 n3) | 2.97 | 2.47 | 2.29 | 2.14 * | 2.12 * | 1.99 * | 2.08 * | 2.97 | 2.44 | 2.40 | 2.26 * | 2.20 * | 2.06 * | 2.00 * |
Arachidic acid (C20:0) | 0.54 | 0.60 | 0.51 | 0.49 | 0.71 * | 0.62 * | 0.52 | 0.54 | 0.54 | 0.50 | 0.71 * | 0.62 | 0.52 | 0.55 |
SFA | 18.90 | 20.49 | 20.27 | 20.52 | 20.99 | 24.48 * | 24.66 * | 18.90 | 20.48 | 20.10 | 21.42 * | 21.35 * | 23.30 * | 25.79 * |
MUFA | 24.28 | 24.65 | 24.04 | 24.46 | 24.54 | 22.36 | 22.10 | 24.28 | 24.12 | 24.30 | 24.74 | 24.87 | 22.95 | 22.04 |
PUFA | 56.82 | 54.86 | 55.69 | 55.02 | 54.47 | 53.16 | 53.24 | 56.82 | 55.40 | 55.60 | 53.84 | 53.78 | 53.75 | 52.17 |
Time (Months) | Color Parameter | Moisture | ||
---|---|---|---|---|
L * | a * | b * | % | |
T0 | 44.23 ± 0.08 | 6.13 ± 0.06 | 4.89 ± 0.06 | 7.56 ± 0.06 |
Temperature of storage 4 °C | ||||
T6 | 44.48 ± 0.38 | 6.38 ± 0.20 | 5.07 ± 0.20 | 7.69 ± 0.08 |
Temperature of storage 25 °C | ||||
T6 | 45.61 ± 0.19 * | 6.83 ± 0.13 * | 5.59 ± 0.09 * | 7.9 ± 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerardi, C.; Durante, M.; Tufariello, M.; Grieco, F.; Giovinazzo, G. Effects of Time and Temperature on Stability of Bioactive Molecules, Color and Volatile Compounds during Storage of Grape Pomace Flour. Appl. Sci. 2022, 12, 3956. https://doi.org/10.3390/app12083956
Gerardi C, Durante M, Tufariello M, Grieco F, Giovinazzo G. Effects of Time and Temperature on Stability of Bioactive Molecules, Color and Volatile Compounds during Storage of Grape Pomace Flour. Applied Sciences. 2022; 12(8):3956. https://doi.org/10.3390/app12083956
Chicago/Turabian StyleGerardi, Carmela, Miriana Durante, Maria Tufariello, Francesco Grieco, and Giovanna Giovinazzo. 2022. "Effects of Time and Temperature on Stability of Bioactive Molecules, Color and Volatile Compounds during Storage of Grape Pomace Flour" Applied Sciences 12, no. 8: 3956. https://doi.org/10.3390/app12083956
APA StyleGerardi, C., Durante, M., Tufariello, M., Grieco, F., & Giovinazzo, G. (2022). Effects of Time and Temperature on Stability of Bioactive Molecules, Color and Volatile Compounds during Storage of Grape Pomace Flour. Applied Sciences, 12(8), 3956. https://doi.org/10.3390/app12083956