Orthopedics-Related Applications of Ultrafast Laser and Its Recent Advances
Abstract
:1. Introduction
2. Background
3. Ultrafast Laser in Orthopedic Surgery
3.1. Ablation Parameters
3.2. Thermal Effect
3.3. Surface Morphology
4. Surface Modifications of Bone Implants
5. Future Direction and Conclusions
5.1. Applications
5.2. Technical Challenges
5.3. Future Directions
5.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunaratne, G.D.R.; Khan, R.; Fick, D.; Robertson, B.; Dahotre, N.; Ironside, C. A review of the physiological and histological effects of laser osteotomy. J. Med. Eng. Technol. 2017, 41, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sotsuka, Y.; Nishimoto, S.; Tsumano, T.; Kawai, K.; Ishise, H.; Kakibuchi, M.; Shimokita, R.; Yamauchi, T.; Okihara, S.-I. The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser. Lasers Med. Sci. 2014, 29, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- Stübinger, S.; Ghanaati, S.; Saldamli, B.; Kirkpatrick, C.J.; Sader, R. Er:YAG Laser Osteotomy: Preliminary Clinical and Histological Results of a New Technique for Contact-Free Bone Surgery. Eur. Surg. Res. 2009, 42, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Asnaashari, M.; Zadsirjan, S. Application of Laser in Oral Surgery. J. Lasers Med. Sci. 2014, 5, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.; Cronshaw, M.; Anagnostaki, E.; Mylona, V.; Lynch, E.; Grootveld, M. Current Concepts of Laser–Oral Tissue Interaction. Dent. J. 2020, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Davoudi, A.; Amrolahi, M.; Khaki, H. Effects of laser therapy on patients who underwent rapid maxillary expansion; a systematic review. Lasers Med. Sci. 2018, 33, 1387–1395. [Google Scholar] [CrossRef]
- Radcliff, K.; Vaccaro, A.R.; Hilibrand, A.; Schroeder, G.D. Lasers in Spine Surgery. J. Am. Acad. Orthop. Surg. 2019, 27, 621–632. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, U. Use of lasers in minimally invasive spine surgery. Expert Rev. Med. Devices 2018, 15, 423–433. [Google Scholar] [CrossRef]
- Kong, X.; Wakida, N.M.; Yokomori, K. Application of Laser Microirradiation in the Investigations of Cellular Responses to DNA Damage. Front. Phys. 2021, 8, 628. [Google Scholar] [CrossRef]
- Miller, P.R.; Aggarwal, R.; Doraiswamy, A.; Lin, Y.J.; Lee, Y.-S.; Narayan, R.J. Laser micromachining for biomedical applications. JOM 2009, 61, 35–40. [Google Scholar] [CrossRef]
- Krueger, A. Ultrafast lasers in biophotonics. In Multiphoton Microscopy and Fluorescence Lifetime Imaging; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2018; ISBN 9783110429985. [Google Scholar]
- Tzanakakis, E.-G.C.; Skoulas, E.; Pepelassi, E.; Koidis, P.; Tzoutzas, I.G. The Use of Lasers in Dental Materials: A Review. Materials 2021, 14, 3370. [Google Scholar] [CrossRef] [PubMed]
- Petrov, T.; Pecheva, E.; Walmsley, A.D.; Dimov, S. Femtosecond laser ablation of dentin and enamel for fast and more precise dental cavity preparation. Mater. Sci. Eng. C 2018, 90, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Luengo, M.C.L.; Portillo, M.; Sánchez, J.M.; Peix, M.; Moreno, P.; García, A.; Montero, J.; Albaladejo, A. Evaluation of micromorphological changes in tooth enamel after mechanical and ultrafast laser preparation of surface cavities. Lasers Med. Sci. 2013, 28, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, H.; Sun, Y.C.; Wang, Y.; Lü, P.F. Femtosecond laser for cavity preparation in enamel and dentin: Ablation efficiency related factors. Sci. Rep. 2016, 6, 20950. [Google Scholar] [CrossRef]
- Pantawane, M.V.; Dahotre, N.B. Challenges and Advances in Osteotomy. Ann. Bone Jt. Surg. 2019, 2, 1–4. [Google Scholar] [CrossRef]
- Troedhan, A.; Mahmoud, Z.T.; Wainwright, M.M.; Khamis, M. Cutting bone with drills, burs, lasers and piezotomes: A comprehensive systematic review and recommendations for the clinician. Int. J. Oral Craniofacial Sci. 2017, 3, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Azadgoli, B.; Baker, R.Y. Laser applications in surgery. Ann. Transl. Med. 2016, 4, 452. [Google Scholar] [CrossRef] [Green Version]
- Khalkhal, E.; Rezaei-Tavirani, M.; Zali, M.R.; Akbari, Z. The Evaluation of Laser Application in Surgery: A Review Article. J. Lasers Med. Sci. 2019, 10, S104–S111. [Google Scholar] [CrossRef] [Green Version]
- Hoy, C.L.; Ferhanoglu, O.; Yildirim, M.; Kim, K.H.; Karajanagi, S.S.; Chan, K.M.C.; Kobler, J.B.; Zeitels, S.M.; Ben-Yakar, A. Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 710081. [Google Scholar] [CrossRef]
- Bernal, L.M.B.; Canbaz, F.; Droneau, A.; Friederich, N.F.; Cattin, P.C.; Zam, A. Optimizing deep bone ablation by means of a microsecond Er:YAG laser and a novel water microjet irrigation system. Biomed. Opt. Express 2020, 11, 7253–7272. [Google Scholar] [CrossRef]
- Nuss, R.C.; Fabian, R.L.; Sarkar, R.; Puliafito, C.A. Infrared laser bone ablation. Lasers Surg. Med. 1988, 8, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.L.; Roberts, C.; Litsky, A.S. Laser Ablation of Dyed Acrylic Bone Cement. Lasers Surg. Med. 1997, 20, 280–289. [Google Scholar] [CrossRef]
- Ivanenko, M.; Werner, M.; Afilal, S.; Klasing, M.; Hering, P. Ablation of hard bone tissue with pulsed CO2 lasers. Med. Laser Appl. 2005, 20, 13–23. [Google Scholar] [CrossRef]
- Carr, C.W.; Radousky, H.B.; Demos, S.G. Wavelength Dependence of Laser-Induced Damage: Determining the Damage Initiation Mechanisms. Phys. Rev. Lett. 2003, 91, 127402. [Google Scholar] [CrossRef] [PubMed]
- Kohli, V.; Elezzabi, A.Y.; Acker, J.P. Cell nanosurgery using ultrashort (femtosecond) laser pulses: Applications to membrane surgery and cell isolation. Lasers Surg. Med. 2005, 37, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Ii, J.E.M.; Kim, B.-M. Medical applications of ultrashort-pulse lasers. In Commercial and Biomedical Applications of Ultrafast Lasers; SPIE: Bellingham, WA, USA, 1999; pp. 42–50. [Google Scholar] [CrossRef] [Green Version]
- Vogel, A.; Venugopalan, V. Mechanisms of Pulsed Laser Ablation of Biological Tissues. Chem. Rev. 2003, 103, 577–644. [Google Scholar] [CrossRef] [Green Version]
- Sheetz, K.E.; Squier, J. Ultrafast optics: Imaging and manipulating biological systems. J. Appl. Phys. 2009, 105, 051101. [Google Scholar] [CrossRef]
- Cangueiro, L.T.; Le Quang, T.; Vilar, R. Laser surface modification of biological hard tissues. In Laser Surface Modification of Biomaterials: Techniques and Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 221–251. ISBN 9780081009420. [Google Scholar]
- Isobe, K.; Watanabe, W.; Itoh, K. Ultrafast Laser Surgery. In Functional Imaging by Controlled Nonlinear Optical Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 660–688. ISBN 9781626239777. [Google Scholar]
- Jeong, D.C.; Tsai, P.S.; Kleinfeld, D. Prospect for feedback guided surgery with ultra-short pulsed laser light. Curr. Opin. Neurobiol. 2012, 22, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Vogel, A.; Noack, J.; Hüttman, G.; Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 2005, 81, 1015–1047. [Google Scholar] [CrossRef]
- Domke, M.; Wick, S.; Laible, M.; Rapp, S.; Huber, H.P.; Sroka, R. Ultrafast dynamics of hard tissue ablation using femtosecond-lasers. J. Biophotonics 2018, 11, e201700373. [Google Scholar] [CrossRef]
- Wieger, V.; Zoppel, S.; Wintner, E. Ultrashort pulse laser osteotomy. Laser Phys. 2007, 17, 438–442. [Google Scholar] [CrossRef]
- Armstrong, W.B.; Neev, J.A.; Da Silva, L.B.; Rubenchik, A.M.; Stuart, B.C. Ultrashort pulse laser ossicular ablation and stapedotomy in cadaveric bone. Lasers Surg. Med. 2002, 30, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Strassl, M.; Wieger, V.; Brodoceanu, D.; Beer, F.; Moritz, A.; Wintner, E. Ultra-Short Pulse Laser Ablation of Biological Hard Tissue and Biocompatibles. J. Laser Micro/Nanoeng. 2008, 3, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Niemz, M. Ablation of femural bone with femtosecond laser pulses—A feasibility study. Lasers Med. Sci. 2007, 22, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Girard, B.; Yu, D.; Armstrong, M.R.; Wilson, B.C.; Clokie, C.M.L.; Miller, R.J.D. Effects of femtosecond laser irradiation on osseous tissues. Lasers Surg. Med. 2007, 39, 273–285. [Google Scholar] [CrossRef] [PubMed]
- McCaughey, R.G.; Sun, H.; Rothholtz, V.S.; Juhasz, T.; Wong, B.J.-F. Femtosecond laser ablation of the stapes. J. Biomed. Opt. 2009, 14, 024040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, K.; Andrus, L.; Pawlowski, M.; Wang, Y.; Tkaczyk, T.; Ben-Yakar, A. Ultrafast laser surgery probe with a calciumfluoride miniaturized objective for bone ablation. Biomed. Opt. Express 2021, 12, 4779. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, K.; Zhang, Z.; Guan, Y. In vitro evaluation of ultrafast laser drilling large-size holes on sheepshank bone. Opt. Express 2020, 28, 25528. [Google Scholar] [CrossRef]
- An, R.; Khadar, G.W.; Wilk, E.I.; Emigh, B.; Haugen, H.K.; Wohl, G.R.; Dunlop, B.; Anvari, M.; Hayward, J.E.; Fang, Q. Ultrafast laser ablation and machining large-size structures on porcine bone. J. Biomed. Opt. 2013, 18, 070504. [Google Scholar] [CrossRef] [Green Version]
- Gemini, L.; Al-Bourgol, S.; Machinet, G.; Bakkali, A.; Faucon, M.; Kling, R. Ablation of Bone Tissue by Femtosecond Laser: A Path to High-Resolution Bone Surgery. Materials 2021, 14, 2429. [Google Scholar] [CrossRef]
- Fisher, C.; Harty, J.; Yee, A.; Li, C.L.; Komolibus, K.; Grygoryev, K.; Lu, H.; Burke, R.; Wilson, B.C.; Andersson-Engels, S. Perspective on the integration of optical sensing into orthopedic surgical devices. J. Biomed. Opt. 2022, 27, 010601. [Google Scholar] [CrossRef] [PubMed]
- Plötz, C.; Schelle, F.; Bourauel, C.; Frentzen, M.; Meister, J. Ablation of porcine bone tissue with an ultrashort pulsed laser (USPL) system. Lasers Med. Sci. 2014, 30, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Kramer, T.; Remund, S.; Jäggi, B.; Schmid, M.; Neuenschwander, B. Ablation dynamics—From absorption to heat accumulation/ultra-fast laser matter interaction. Adv. Opt. Technol. 2018, 7, 129–144. [Google Scholar] [CrossRef]
- Aljekhedab, F.; Zhang, W.; Haugen, H.K.; Wohl, G.R.; El-Desouki, M.M.; Fang, Q. Influence of environmental conditions in bovine bone ablation by ultrafast laser. J. Biophotonics 2019, 12, e201800293. [Google Scholar] [CrossRef] [PubMed]
- Ashforth, S.A.; Oosterbeek, R.N.; Bodley, O.L.C.; Mohr, C.; Aguergaray, C.; Simpson, M.C. Femtosecond lasers for high-precision orthopedic surgery. Lasers Med. Sci. 2020, 35, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Emigh, B.; An, R.; Hsu, E.M.; Crawford, T.H.R.; Haugen, H.K.; Wohl, G.R.; Hayward, J.E.; Fang, Q. Porcine cortical bone ablation by ultrashort pulsed laser irradiation. J. Biomed. Opt. 2012, 17, 0280011–0280016. [Google Scholar] [CrossRef]
- Kim, B.; Feit, M.D.; Rubenchik, A.M.; Joslin, E.J.; Eichler, J.; Stoller, P.C.; Da Silva, L.B. Effects of high repetition rate and beam size on hard tissue damage due to subpicosecond laser pulses. Appl. Phys. Lett. 2000, 76, 4001–4003. [Google Scholar] [CrossRef]
- Tulea, C.; Caron, J.; Gehlich, N.; Lenenbach, A.; Noll, R.; Loosen, P. Laser cutting of bone tissue under bulk water with a pulsed ps-laser at 532 nm. J. Biomed. Opt. 2015, 20, 105004. [Google Scholar] [CrossRef]
- Su, E.; Sun, H.; Juhasz, T.; Wong, B.J.F. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery. J. Biomed. Opt. 2014, 19, 098001. [Google Scholar] [CrossRef] [Green Version]
- Mannion, P.T.; Magee, J.; Coyne, E.; O’Connor, G.M.; Glynn, T.J. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl. Surf. Sci. 2004, 233, 275–287. [Google Scholar] [CrossRef]
- Ben-Yakar, A.; Byer, R.L. Femtosecond laser ablation properties of borosilicate glass. J. Appl. Phys. 2004, 96, 5316–5323. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Cangueiro, L.T.; Vilar, R.; do Rego, A.M.B.; Muralha, V.S.F. Femtosecond laser ablation of bovine cortical bone. J. Biomed. Opt. 2012, 17, 125005. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, L.J.; Alt, C.; Turcotte, R.; Masek, M.; Liu, T.-M.; Côté, D.C.; Xu, C.; Intini, G.; Lin, C.P. Femtosecond laser bone ablation with a high repetition rate fiber laser source. Biomed. Opt. Express 2015, 6, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Lo, D.D.; Mackanos, M.A.; Chung, M.T.; Hyun, J.S.; Montoro, D.T.; Grova, M.; Liu, C.; Wang, J.; Palanker, D.; Connolly, A.J.; et al. Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone. Lasers Surg. Med. 2012, 44, 805–814. [Google Scholar] [CrossRef]
- Nicolodelli, G.; Lizarelli, R.D.F.Z.; Bagnato, V.S. Influence of effective number of pulses on the morphological structure of teeth and bovine femur after femtosecond laser ablation. J. Biomed. Opt. 2012, 17, 048001. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, J.; Ferdman, J.; Zhao, M.; Huland, D.; Saqqa, S.; Ma, J.; Nishimura, N.; Schwartz, T.H.; Schaffer, C.B. Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses. Lasers Surg. Med. 2011, 43, 382–391. [Google Scholar] [CrossRef]
- Jee, Y.; Becker, M.F.; Walser, R.M. Laser-induced damage on single-crystal metal surfaces. J. Opt. Soc. Am. B 1988, 5, 648–659. [Google Scholar] [CrossRef]
- Lim, Y.C.; Altman, K.J.; Farson, D.F.; Flores, K.M. Micropillar fabrication on bovine cortical bone by direct-write femtosecond laser ablation. J. Biomed. Opt. 2009, 14, 064021. [Google Scholar] [CrossRef]
- Marjoribanks, R.S.; Dille, C.; Schoenly, J.E.; McKinney, L.; Mordovanakis, A.; Kaifosh, P.; Forrester, P.; Qian, Z.; Covarrubias, A.; Feng, Y.; et al. Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts. Photon. Lasers Med. 2012, 1, 155–169. [Google Scholar] [CrossRef]
- Rosenfeld, A.; Lorenz, M.; Stoian, R.; Ashkenasi, D. Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation. Appl. Phys. A 1999, 69, S373–S376. [Google Scholar] [CrossRef]
- Stuart, B.C.; Feit, M.D.; Rubenchik, A.M.; Shore, B.W.; Perry, M.D. Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses. Phys. Rev. Lett. 1995, 74, 2248–2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.M.; Tu, R.Y.; Chiang, A.C.; Huang, Y.C. Average-power mediated ultrafast laser osteotomy using a mode-locked Nd:YVO[sub 4] laser oscillator. J. Biomed. Opt. 2007, 12, 060505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daskalova, A.; Bashir, S.; Husinsky, W. Morphology of ablation craters generated by ultra-short laser pulses in dentin surfaces: AFM and ESEM evaluation. Appl. Surf. Sci. 2010, 257, 1119–1124. [Google Scholar] [CrossRef]
- Kim, B.; Feit, M.D.; Rubenchik, A.M.; Joslin, E.J.; Celliers, P.; Eichler, J.; Da Silva, L.B. Influence of pulse duration on ultrashort laser pulse ablation of biological tissues. J. Biomed. Opt. 2001, 6, 332–338. [Google Scholar] [CrossRef]
- Friedrich, R.E.; Quade, M.; Jowett, N.; Kroetz, P.; Amling, M.; Kohlrusch, F.K.; Zustin, J.; Gosau, M.; Schlüter, H.; Miller, R.J.D. Ablation Precision and Thermal Effects of a Picosecond Infrared Laser (PIRL) on Roots of Human Teeth: A Pilot Study Ex Vivo. In Vivo 2020, 34, 2325–2336. [Google Scholar] [CrossRef]
- Canteli, D.; Muñoz-García, C.; Morales, M.; Márquez, A.; Lauzurica, S.; Arregui, J.; Lazkoz, A.; Molpeceres, C. Thermal Effects in the Ablation of Bovine Cortical Bone with Pulsed Laser Sources. Materials 2019, 12, 2916. [Google Scholar] [CrossRef] [Green Version]
- Gill, R.K.; Smith, Z.J.; Lee, C.; Wachsmann-Hogiu, S. The effects of laser repetition rate on femtosecond laser ablation of dry bone: A thermal and LIBS study. J. Biophotonics 2016, 9, 171–180. [Google Scholar] [CrossRef]
- Stich, T.; Alagboso, F.; Křenek, T.; Kovářík, T.; Alt, V.; Docheva, D. Implant-bone-interface: Reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioeng. Transl. Med. 2022, 7, e10239. [Google Scholar] [CrossRef]
- Cunha, W.; Carvalho, O.; Henriques, B.; Silva, F.S.; Özcan, M.; Souza, J.C.M. Surface modification of zirconia dental implants by laser texturing. Lasers Med. Sci. 2022, 37, 77–93. [Google Scholar] [CrossRef]
- Jones, J.R. Observing cell response to biomaterials. Mater. Today 2006, 9, 34–43. [Google Scholar] [CrossRef]
- Shah, F.A.; Thomsen, P.; Palmquist, A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019, 84, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Faucheux, N.; Beauvais, S.; Drevelle, O.; Jann, J.; Lauzon, M.-A.; Foruzanmehr, M.; Grenier, G.; Roux, S. Interactions between bone cells and biomaterials: An update. Front. Biosci. 2016, 8, 227–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calciolari, E.; Hamlet, S.; Ivanovski, S.; Donos, N. Pro-osteogenic properties of hydrophilic and hydrophobic titanium surfaces: Crosstalk between signalling pathways in in vivo models. J. Periodontal Res. 2018, 53, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Caetano, G.; Ambler, W.S.; Blaker, J.J.; Frade, M.A.; Mandal, P.; Diver, C.; Bártolo, P. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering. Materials 2016, 9, 992. [Google Scholar] [CrossRef]
- Wei, S.; Deng, Y.; Liu, X.; Xu, A.; Wang, L.; Luo, Z.; Zheng, Y.; Deng, F.; Tang, Z.; Wei, J. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite composite. Int. J. Nanomed. 2015, 10, 1425–1447. [Google Scholar] [CrossRef] [Green Version]
- Simões, I.G.; dos Reis, A.C.; da Costa Valente, M.L. Analysis of the influence of surface treatment by high-power laser irradiation on the surface properties of titanium dental implants: A systematic review. J. Prosthet. Dent. 2021, 1–8, in press. [Google Scholar] [CrossRef]
- Han, J.; Zhang, F.; Van Meerbeek, B.; Vleugels, J.; Braem, A.; Castagne, S. Laser surface texturing of zirconia-based ceramics for dental applications: A review. Mater. Sci. Eng. C 2021, 123, 112034. [Google Scholar] [CrossRef]
- Cunha, A.; Oliveira, V.; Vilar, R. Ultrafast Laser Surface Texturing of Titanium Alloys; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081009420. [Google Scholar]
- Capellato, P.; Riedel, N.A.; Williams, J.D.; Machado, J.P.B.; Popat, K.C.; Claro, A.P.R.A. Surface Modification on Ti-30Ta Alloy for Biomedical Application. Engineering 2013, 5, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Wang, L.; Xiao, Z.; Zhu, X.; Fan, Y.; Wang, K.; Zhang, X. Application of femtosecond laser microfabrication in the preparation of advanced bioactive titanium surfaces. J. Mater. Chem. B 2021, 9, 3912–3924. [Google Scholar] [CrossRef]
- Muck, M.; Wolfsjäger, B.; Seibert, K.; Maier, C.; Lone, S.A.; Hassel, A.W.; Baumgartner, W.; Heitz, J. Femtosecond Laser-Processing of Pre-Anodized Ti-Based Bone Implants for Cell-Repellent Functionalization. Nanomaterials 2021, 11, 1342. [Google Scholar] [CrossRef] [PubMed]
- Klos, A.; Sedao, X.; Itina, T.E.; Helfenstein-Didier, C.; Donnet, C.; Peyroche, S.; Vico, L.; Guignandon, A.; Dumas, V. Ultrafast Laser Processing of Nanostructured Patterns for the Control of Cell Adhesion and Migration on Titanium Alloy. Nanomaterials 2020, 10, 864. [Google Scholar] [CrossRef] [PubMed]
- Bush, J.R.; Nayak, B.K.; Nair, L.S.; Gupta, M.C.; Laurencin, C.T. Improved bio-implant using ultrafast laser induced self-assembled nanotexture in titanium. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 97B, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Rui, Z.; Cheng, W.; Song, L.; Xu, Y.; Li, R.; Zhang, X. Characterization and evaluation of a femtosecond laser-induced osseointegration and an anti-inflammatory structure generated on a titanium alloy. Regen. Biomater. 2021, 8, rbab006. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, C.; Wang, R.; Tang, H.; Mu, M.; Li, H.; Guo, Y.; Yang, L.; Tang, K. Femtosecond laser-induced periodic grooves and nanopore clusters make a synergistic effect on osteogenic differentiation. Colloids Surf. B Biointerfaces 2021, 208, 112021. [Google Scholar] [CrossRef]
- Xie, D.; Xu, C.; Ye, C.; Mei, S.; Wang, L.; Zhu, Q.; Chen, Q.; Zhao, Q.; Xu, Z.; Wei, J.; et al. Fabrication of Submicro-Nano Structures on Polyetheretherketone Surface by Femtosecond Laser for Exciting Cellular Responses of MC3T3-E1 Cells/Gingival Epithelial Cells. Int. J. Nanomed. 2021, 16, 3201–3216. [Google Scholar] [CrossRef]
- Daskalova, A.; Lasgorceix, M.; Bliznakova, I.; Angelova, L.; Hocquet, S.; Leriche, A.; Trifonov, A.; Buchvarov, I. Ultra-fast laser surface texturing of β-tricalcium phosphate (β-TCP) ceramics for bone-tissue engineering applications. J. Phys. Conf. Ser. 2020, 1492, 012059. [Google Scholar] [CrossRef]
- Lasgorceix, M.; Ott, C.; Boilet, L.; Hocquet, S.; Leriche, A.; Asadian, M.; De Geyter, N.; Declercq, H.; Lardot, V.; Cambier, F. Micropatterning of beta tricalcium phosphate bioceramic surfaces, by femtosecond laser, for bone marrow stem cells behavior assessment. Mater. Sci. Eng. C 2019, 95, 371–380. [Google Scholar] [CrossRef]
- Aivazi, M.; Fathi, M.H.; Nejatidanesh, F.; Mortazavi, V.; HashemiBeni, B.; Matinlinna, J.P.; Savabi, O. The evaluation of prepared microgroove pattern by femtosecond laser on alumina-zirconia nano-composite for endosseous dental implant application. Lasers Med. Sci. 2016, 31, 1837–1843. [Google Scholar] [CrossRef]
- Sriramoju, V.; Alfano, R.R. In vivostudies of ultrafast near-infrared laser tissue bonding and wound healing. J. Biomed. Opt. 2015, 20, 108001. [Google Scholar] [CrossRef] [Green Version]
- Amini-Nik, S.; Kraemer, D.; Cowan, M.L.; Gunaratne, K.; Nadesan, P.; Alman, B.A.; Miller, R.J.D. Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery. PLoS ONE 2010, 5, e13053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melvin, J.S.; Karthikeyan, T.; Cope, R.; Fehring, T.K. Early Failures in Total Hip Arthroplasty—A Changing Paradigm. J. Arthroplast. 2014, 29, 1285–1288. [Google Scholar] [CrossRef] [PubMed]
- Dobzyniak, M.; Fehring, T.K.; Odum, S. Early Failure in Total Hip Arthroplasty. Clin. Orthop. Relat. Res. 2006, 447, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Pflüger, M.J.; Frömel, D.E.; Meurer, A. Total Hip Arthroplasty Revision Surgery: Impact of Morbidity on Perioperative Outcomes. J. Arthroplast. 2020, 36, 676–681. [Google Scholar] [CrossRef]
- Hooper, J.; Schwarzkopf, R.; Fernandez, E.; Buckland, A.; Werner, J.; Einhorn, T.; Walker, P.S. Feasibility of single-use 3D-printed instruments for total knee arthroplasty. Bone Jt. J. 2010, 101-B, 115–120. [Google Scholar] [CrossRef]
- Hasan, S.; van Hamersveld, K.T.; Marang-van de Mheen, P.J.; Kaptein, B.L.; Nelissen, R.G.H.H.; Toksvig-Larsen, S. Migration of a novel 3D-printed cementless versus a cemented total knee arthroplasty: Two-year results of a randomized controlled trial using radiostereometric analysis. Bone Jt. J. 2020, 102-B, 1016–1024. [Google Scholar] [CrossRef]
- Mortini, P.; Boari, N.; Spina, A.; Bailo, M.; Franzin, A.; Gagliardi, F. The Suprameatal Dural Flap for Superior Petrosal Vein Protection during the Retrosigmoid Intradural Suprameatal Approach. J. Neurol. Surg. Part A Cent. Eur. Neurosurg. 2014, 75, 53–57. [Google Scholar] [CrossRef]
- Neev, J.; Da Silva, L.B.; Feit, M.D.; Perry, M.D.; Rubenchik, A.M.; Stuart, B.C. Ultrashort pulse lasers for hard tissue ablation. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 790–800. [Google Scholar] [CrossRef] [Green Version]
- Ringer, A.J.; Bhamidipaty, S.V. Percutaneous Access to the Vertebral Bodies: A Video and Fluoroscopic Overview of Access Techniques for Trans-, Extra-, and Infrapedicular Approaches. World Neurosurg. 2013, 80, 428–435. [Google Scholar] [CrossRef]
- Liu, X. A Novel Biportal Full Endoscopy Technique for Lumbar Lateral Recess Stenosis: Technical Report. Clin. Spine Surg. 2018, 32, 51–56. [Google Scholar] [CrossRef]
- Kawamata, T.; Kamikawa, S.; Iseki, H.; Hori, T. Flexible Endoscope-Assisted Endonasal Transsphenoidal Surgery for Pituitary Tumors. Min-Minim. Invasive Neurosurg. 2002, 45, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Welcome, B.M.; Gilmer, B.B.; Lang, S.D.; Levitt, M.; Karch, M.M. Comparison of manual hand drill versus an electric dual-motor drill for bedside craniotomy. Interdiscip. Neurosurg. Adv. Tech. Case Manag. 2021, 23, 100928. [Google Scholar] [CrossRef]
- Shin, B.J.; James, A.R.; Njoku, I.U.; Härtl, R. Pedicle screw navigation: A systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J. Neurosurg. Spine 2012, 17, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yu, G.; Jiang, S.; Hu, L.; Li, W. Robot-assisted laminectomy in spinal surgery: A systematic review. Ann. Transl. Med. 2021, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
Laser | Wavelength (nm) | Absorption Chromophore | Typical Laser Power (W) |
---|---|---|---|
Er:YAG | 2940 | Water | 100–2250 [21] |
Nd:YAG | 1064 | Pigment, proteins | 43–86 [22] |
Argon | 514 | Pigment, hemoglobin | 1.5–3 [23] |
CO2 | 10,600 | Water | 5–40 [24] |
Author/Year | Bone Type | Ablation Rate (mm3/s) | Laser System Parameters | Potential Application |
---|---|---|---|---|
Subramanian et al., 2021 [41] | Bovine rib (fresh) | >1.7 × 10−2 | A CaF2 objective; Er-doped fiber; 1552 nm, 600 fs, 303 kHz | A miniaturized surgical probe for robotic microsurgery such as spine |
Gemini et al., 2021 [44] | Porcine femurs (defrost and dried) | 0.66 | A Tangerine industrial femtosecond laser, Amplitude Laser; 517 nm, 350 fs, 250 kHz | Clinical automated high-resolution orthopedic surgery |
Ashforth et al., 2020 [49] | Bovine and ovine cortical bone (fresh) | 0.90 µm/pulse * | A Ti:Sapphire femtosecond pulsed laser; 800 nm, 140 fs, 1 kHz | Handheld or robotic high-precision orthopedic surgery procedures |
Zhang et al., 2020 [42] | Sheepshank bone (fresh) | 0.99 | A Yb:KGW femtosecond laser; 1030 nm, 230 fs, 200 kHz | Large-size hole drilling with real-time monitoring |
Aljekhedab et al., 2019 [48] | Bovine cortical bone (fresh) | 0.60 × 10−3 | A Ti:Sapphire femtosecond laser; 800 nm, 210 fs, 1 kHz | High-precision bone cutting surgery |
Tulea et al., 2015 [52] | Cow femur cortical bone (fresh, dried or fixed) | 0.19 | A Nd:YVO4 picosecond laser; 532 nm, 25 ps, 20 kHz | Bone surgery |
Plötz et al., 2014 [46] | Porcine rib (fresh) | 8.7 × 10−2 | A Nd:YVO4 laser; 1064 nm, 8 ps, 500 kHz | Dental surgery |
Su et al., 2014 [53] | Bovine femoral condyle (fresh) | 0.80 × 10−4 | A Ti:Sapphire femtosecond laser combined with an optical parametric amplifier; 1700 nm, pulse duration N.R., 5 kHz | Microfracture surgery for articular cartilage injury in the knee |
Author/Year | Bone Type | Ablation Threshold (J/cm2) | Pulse Duration (fs) | Wavelength (nm) |
---|---|---|---|---|
Subramanian et al., 2021 [41] | Bovine cortical bone (fresh; unaltered) | 1.38 ± 0.18 (N = 25.83 *; multi-pulse threshold) | 600 | 1552 |
Ashforth et al., 2020 [49] | Bovine and ovine cortical bone (fresh; unaltered) | 0.92 (bovine) 0.97 (ovine) (N = 1000) | 140 | 800 |
Plötz et al., 2014 [46] | Porcine cortical bone (fresh; unaltered) | 1.5 (N = Not Reported) | 8 × 103 | 1064 |
Cangueiro et al., 2012 [57] | Bovine cortical bone (fresh; polished) | 0.32 ± 0.04 (N = 100) | 500 | 1030 |
Nicolodelli et al., 2012 [60] | Bovine cortical bone (fresh; polished) | 0.23 (N = 1000) | 70 | 801 |
Emigh et al., 2012 [50] | Porcine cortical bone (fresh; unaltered) | 1.75 ± 0.55 (N = 1000) | 170 | 800 |
Lim et al., 2009 [63] | Bovine cortical bone (fresh; polished) | 1.22 ± 0.29 (strong) 0.79 ± 0.18 (gentle) (N = 1000) | 150 | 775 |
Girard et al., 2007 [39] | Porcine cortical bone (fresh; polished) | 0.69 ± 0.08 (N = 1000) | 200 | 775 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.L.; Fisher, C.J.; Burke, R.; Andersson-Engels, S. Orthopedics-Related Applications of Ultrafast Laser and Its Recent Advances. Appl. Sci. 2022, 12, 3957. https://doi.org/10.3390/app12083957
Li CL, Fisher CJ, Burke R, Andersson-Engels S. Orthopedics-Related Applications of Ultrafast Laser and Its Recent Advances. Applied Sciences. 2022; 12(8):3957. https://doi.org/10.3390/app12083957
Chicago/Turabian StyleLi, Celina L., Carl J. Fisher, Ray Burke, and Stefan Andersson-Engels. 2022. "Orthopedics-Related Applications of Ultrafast Laser and Its Recent Advances" Applied Sciences 12, no. 8: 3957. https://doi.org/10.3390/app12083957
APA StyleLi, C. L., Fisher, C. J., Burke, R., & Andersson-Engels, S. (2022). Orthopedics-Related Applications of Ultrafast Laser and Its Recent Advances. Applied Sciences, 12(8), 3957. https://doi.org/10.3390/app12083957