Noise Characteristics Analysis of Medical Electric Leg Compression Machine Using Multibody Dynamic Simulation
Abstract
:1. Introduction
2. Gear and Motor Selection
2.1. Specifications of the Gears and Motor
2.2. Calculations for Selecting an Appropriate Motor
3. Multibody Dynamics Simulation
3.1. Simulation Model
3.2. Design Variables
3.3. Mesh Generation
3.4. Loading Condition
4. Noise Level Analysis Results
5. Conclusions
- The noise level increases due to axial assembly tolerance of the main shaft and bearing assembly tolerance that may be generated during processing and assembly processes. Therefore, it is necessary to strictly ensure the required tolerance levels of the main shaft and bearing are achieved when manufacturing a product.
- For the cover material, the noise level could be reduced by replacing the plastic with aluminum, which has higher sound-absorbing power than plastics, but this increases the weight of the structure. Plastic-driven gears significantly reduce the noise level. However, additional safety research is necessary due to the potential fatigue damage in gears.
- In general, a noise reduction effect is proportional to the weight of a given structural reinforcement. Although simulation results suggested that both the weight of the machine and the noise level could be reduced by decreasing the thickness of the gears, additional experimental validation studies are needed to investigate the effects of increased stress applied to the gears.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawson, W.E.; Hui, J.C.; Lang, G. Treatment Benefit in the Enhanced External Counter pulsation Consortium. Cardiology 2000, 94, 31–35. [Google Scholar] [CrossRef] [PubMed]
- William, E.; John, C.; Gregory, W.; Elizabeth, D.; Sheryl, F. Effectiveness of Enhanced External Counterpulsation in Patients with Left Main Disease and Angina. Clin. Cardiol. 2004, 27, 459–463. [Google Scholar]
- Isao, T.; Kenichi, K.; Tomoaki, K.; Ryuko, M.; Hideyo, K.; Masatoshi, N. Effects of Enhanced External Counterpulsation on Hemodynamics and Its Mechanism Relation to Neurohumoral Factors. Circ. J. 2004, 68, 1030–1034. [Google Scholar]
- Cohen, J.; Grossman, W.; Michaels, A.D. Portable Enhanced External Counterpulsation for Acute Coronary Syndrome and Cardiogenic Shock: A Pilot Study. Clin. Cardiol. 2007, 30, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Fariba, E.; Naser, A.; Babak, M.; Seyyed, K. Therapeutic of enhanced External Pulsation (EECP) on clinical symptoms, Echocardiographic Measurements, Perfusion Scan Parameters and Exercise tolerance Test in coronary Artery Disease Patients with Refractory angina. Int. J. Med. Sci. Public Health 2013, 2, 179–187. [Google Scholar]
- Soran, O.A. A new treatment modality in heart failure enhanced external counter pulsation (EECP). Cardiology 2004, 12, 15–20. [Google Scholar]
- Qin, X.; Deng, Y.; Wu, D.; Yu, L.; Huang, R. Does Enhanced Country, External Counter pulsation (EECP) Significantly Affect Myocardial Perfusion? A Systematic Review & Meta-Analysis. PLoS ONE 2016, 11, e0151822. [Google Scholar]
- Xu, L.; Chen, X.; Cui, M.; Ren, C.; Yu, H.; Gao, W.; Li, D.; Zhao, W. The improvement of the shear stress and oscillatory shear index of coronary arteries during Enhanced External Counter pulsation in patients with coronary heart disease. PLoS ONE 2020, 15, e0230144. [Google Scholar]
- Fujiwara, M.; Tamura, T.; Yoshida, K.; Nakagawa, K.; Nakao, M.; Yamanouchi, M.; Shikama, N.; Himi, T.; Masuda, Y. Coronary flow reserve in angiographically normal coronary arteries with one-vessel coronary artery disease without traditional risk factors. Eur. Heart J. 2001, 22, 479–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soran, O.; Crawford, L.E.; Schneider, V.M.; Feldman, A.M. Enhanced external counter pulsation in management of patients with cardiovascular disease. Clin. Cardiol. 1999, 22, 173–178. [Google Scholar] [CrossRef]
- DeMaria, A.N. A historical overview of enhanced external counter pulsation. Clin. Cardiol. 2002, 25 (Suppl. 2), 3–5. [Google Scholar] [CrossRef] [PubMed]
- Busch-Vishniac, I.J.; West, J.E.; Barnhill, C.; Hunter, T.; Orellana, D.; Chivukula, R. Noise levels in Johns Hopkins Hospital. J. Acoust. Soc. Am. 2005, 118, 3629–3645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falk, S.A.; Woods, N.F. Hospital noise—Levels and potential health hazards. N. Engl. J. Med. 1973, 289, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Soutar, R.L.; Wilson, J.A. Does hospital noise disturb patients? Br. Med. J. 1986, 292, 305. [Google Scholar] [CrossRef] [Green Version]
- Casey, D.P.; Conti, C.R.; Nichols, W.W.; Choi, C.Y.; Khuddus, M.A.; Braith, R.W. Effect of enhanced external counter pulsation on inflammatory cytokines and adhesion molecules in patients with angina pectoris and angiographic coronary artery disease. Am. J. Cardiol. 2008, 101, 300–302. [Google Scholar] [CrossRef] [Green Version]
- Kaabi, A.A.; Traupe, T.; Stutz, M.; Buchs, N.; Heller, M. Cause or Effect of Arteriogenesis: Compositional Alterations of Microparticles from CAD Patients Undergoing External Counter Pulsation Therapy. PLoS ONE 2012, 7, e46822. [Google Scholar] [CrossRef] [Green Version]
- Li, T. Assessment of Radiated Noise from Transmission Using Multibody Dynamics Analysis in Time Domain. Master’ Thesis, HanYang University, Seoul, Korea, 2016. [Google Scholar]
- Błażejewski, A.; Kozioł, P.; Łuczak, M. Acoustical analysis of enclosure as initial approach to vehicle induced noise analysis comparatively using STFT and wavelets. Arch. Acoust. 2014, 39, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, N.; Yano, T.; Sakai, H. Noise and transmission efficiency under deformation of tooth form of nylon gear. Bull. JSME 1982, 25, 1465–1473. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Maruyama, H.; Mimura, H. Water lubrication characteristics of polyacetal gears filled with carbon fibers. JSME Int. J. 1993, 36, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.J.; Pyoun, Y.S.; Murakami, R. Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification. Appl. Surf. Sci. 2010, 256, 6297–6303. [Google Scholar] [CrossRef]
- Shariati, M.; Hatami, H.; Yarahmadi, H.; Eipakchi, H.R. An experimental study on the ratcheting and fatigue behavior of polyacetal under uniaxial cyclic loading. Appl. Surf. Sci. 2011, 34, 302–312. [Google Scholar] [CrossRef]
Gear 1: Driver Gear | Gear 2: Driven Gear | |
---|---|---|
Module | 1 | 1 |
Press angle [°] | 20 | 20 |
Helix angle [°] | 15 | 15 |
Number of teeth | 19 | 76 |
Face width [mm] | 8 | 8 |
Center distance [mm] | 49.175 |
Motor Specifications | |
---|---|
Power supply capacity [kVA] | 0.9 |
Rated output [W] | 400 |
Rated torque [N·m] | 1.3 |
Rated rotational velocity [RPM] | 3000 |
Maximum rotational velocity [RPM] | 5000 |
Bearing 1 | Bearing 2 | |
---|---|---|
Bore [mm] | 10 | 17 |
Outer diameter [mm] | 22 | 30 |
Width [mm] | 6 | 7 |
Designation number | 6900 | 6903 |
Part | Material | Young’s Modulus [GPa] | Poisson’s Ratio | Density [kg/m3] |
---|---|---|---|---|
External cover | Polycarbonate | 2.2 | 0.37 | 1210 |
Polyacetal | 3.3 | 0.35 | 1420 | |
Gear | S45C | 210 | 0.3 | 7865 |
Etc. | Al6061-T6 | 68.9 | 0.33 | 2698 |
ID | Maximum Noise [dB] | Compared with Reference [%] |
---|---|---|
Reference | 171.6 | - |
Case 1 | 173.9 | 1.3 |
Case 2 | 176.2 | 2.7 |
Case 3 | 157.6 | −8.2 |
Case 4 | 158.7 | −7.5 |
Case 5 | 151.4 | −11.8 |
Case 6 | 159.2 | −7.2 |
Case 7 | 159.2 | −7.2 |
Case 8 | 158.7 | −7.5 |
ID | Weight [kg] | Compared with Reference [%] |
---|---|---|
Reference | 2.82 | - |
Case 1 | 2.82 | - |
Case 2 | 2.82 | - |
Case 3 | 3.06 | 8.4 |
Case 4 | 2.58 | −8.5 |
Case 5 | 3.42 | 21.5 |
Case 6 | 2.87 | 1.9 |
Case 7 | 2.88 | 2.1 |
Case 8 | 2.74 | −2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Kim, H.; Kim, J.; Hwang, J.-M.; Lee, W.; Kim, J.; Ryu, H. Noise Characteristics Analysis of Medical Electric Leg Compression Machine Using Multibody Dynamic Simulation. Appl. Sci. 2022, 12, 3977. https://doi.org/10.3390/app12083977
Kang S, Kim H, Kim J, Hwang J-M, Lee W, Kim J, Ryu H. Noise Characteristics Analysis of Medical Electric Leg Compression Machine Using Multibody Dynamic Simulation. Applied Sciences. 2022; 12(8):3977. https://doi.org/10.3390/app12083977
Chicago/Turabian StyleKang, Sungwook, Hyunsoo Kim, Jaewoong Kim, Jong-Moon Hwang, Wonhee Lee, Jungtae Kim, and Hyunsu Ryu. 2022. "Noise Characteristics Analysis of Medical Electric Leg Compression Machine Using Multibody Dynamic Simulation" Applied Sciences 12, no. 8: 3977. https://doi.org/10.3390/app12083977
APA StyleKang, S., Kim, H., Kim, J., Hwang, J. -M., Lee, W., Kim, J., & Ryu, H. (2022). Noise Characteristics Analysis of Medical Electric Leg Compression Machine Using Multibody Dynamic Simulation. Applied Sciences, 12(8), 3977. https://doi.org/10.3390/app12083977