Time-Varying Degradation Model for Remaining Useful Life Prediction of Rolling Bearings under Variable Rotational Speed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Angular Domain Transform
2.2. Unscented Particle Filter
2.3. Time-Varying Parameters of the Degradation Model
2.4. The Present RUL Prediction Method
3. Results
3.1. Experimental Study of a Benchmark Bearing
3.1.1. Benchmark Dataset
3.1.2. Results Analysis
3.1.3. Discussion and Comparison
3.2. Run-to-Failure Bearing Experiments
3.2.1. Experimental Set-Up
3.2.2. Experimental Set-Up
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, L.; Sun, Y.; Wang, X.; Wang, H. Spectrum-based, Full-band pre-processing, and two-dimensional separation of bearing and gear compound faults diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 3513216. [Google Scholar] [CrossRef]
- Wu, S.; Russhard, P.; Yan, R.; Tian, S.; Wang, S.; Zhao, Z.; Chen, X. An adaptive online blade health monitoring method: From raw data to parameters identification. IEEE Trans. Instrum. Meas. 2021, 69, 2581–2592. [Google Scholar] [CrossRef]
- Wang, B.; Liu, D.; Peng, Y.; Peng, X. Multivariate regression-based fault detection and recovery of UAV flight data. IEEE Trans. Instrum. Meas. 2020, 69, 3527–3537. [Google Scholar] [CrossRef]
- Cerrada, R.V.M.; Sanchez, C.; Li, C.; Pacheco, F.; Cabrera, D.; de Oliveira, J.V.; Vásquez, R.E. A review on data-driven fault severity assessment in rolling bearings. Mech. Syst. Signal Process. 2018, 99, 169–196. [Google Scholar] [CrossRef]
- Ma, M.; Sun, C.; Chen, X.; Zhang, X.; Yan, R. A deep coupled network for health state assessment of cutting tools based on fusion of multisensory signals. IEEE Trans. Ind. Inform. 2019, 15, 6415–6424. [Google Scholar] [CrossRef]
- Qian, Y.; Yan, R.; Gao, R. A multi-time scale approach to remaining useful life prediction in rolling bearing. Mech. Syst. Signal Process. 2017, 83, 549–567. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Cheng, X.; Wang, X.; Cui, J.; Zhang, L. Multi-scale dense gate recurrent unit networks for bearing remaining useful life prediction. Future Gener. Comput. Syst. 2019, 99, 601–609. [Google Scholar] [CrossRef]
- Shao, S.; Yan, R.; Lu, Y.; Wang, P.; Gao, R. DCNN-based multi-signal induction motor fault diagnosis. IEEE Trans. Instrum. Meas. 2020, 69, 2658–2669. [Google Scholar] [CrossRef]
- Qin, C.; Shi, G.; Tao, J.; Yu, H.; Jin, Y.; Xiao, D.; Zhang, Z.; Liu, C. An adaptive hierarchical decomposition-based method for multi-step cutterhead torque forecast of shield machine. Mech. Syst. Signal Process. 2022, 109148. [Google Scholar]
- Zhu, J.; Chen, N.; Shen, C. A new data-driven transferable remaining useful life prediction approach for bearing under different working conditions. Mech. Syst. Signal Process. 2020, 139, 106602. [Google Scholar] [CrossRef]
- Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [Google Scholar] [CrossRef]
- Qin, C.; Shi, G.; Tao, J.; Yu, H.; Jin, Y.; Lei, J.; Liu, C. Precise cutter head torque prediction for shield tunneling machines using a novel hybrid deep neural network. Mech. Syst. Signal Process. 2021, 151, 107386. [Google Scholar] [CrossRef]
- Loutas, T.H.; Roulias, D.; Georgoulas, G. Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic E-support vectors regression. IEEE Trans. Reliab. 2013, 62, 821–832. [Google Scholar] [CrossRef]
- Aye, S.A.; Heyns, P.S. An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission. Mech. Syst. Signal Process. 2017, 84, 485–498. [Google Scholar] [CrossRef]
- Soualhi, A.; Medjaher, K.; Zerhouni, N. Bearing health monitoring based on Hilbert-Huang Transform, support vector machine and regression. IEEE Trans. Instrum. Meas. 2014, 64, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.; Yadav, P.; Tiwari, P.; Upadhyay, S.H.; Mishra, N. Performance prediction of rolling element bearing with utilization of support vector regression. Reliab. Saf. Hazard Assess. Risk-Based Technol. 2019, 8, 535–543. [Google Scholar]
- Ali, J.B.; Chebel-Morello, B.; Saidi, L.; Malinowski, S.; Fnaiech, F. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mech. Syst. Signal Process. 2015, 56–57, 150–172. [Google Scholar]
- Wang, J.; Gao, R.X.; Yuan, Z.; Fan, Z.; Zhang, L. A joint particle filter and expectation maximization approach to machine condition prognosis. J. Intell. Manuf. 2019, 30, 605–621. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, E.; Zhang, B.; Miao, Q. RUL prediction and uncertainty management for multisensory system using an integrated data-level fusion and UPF approach. IEEE Trans. Instrum. Meas. 2021, 17, 4692–4701. [Google Scholar]
- Li, N.; Lei, Y.; Lin, J.; Ding, S.X. An improved exponential model for predicting remaining useful life of rolling element bearings. IEEE Trans. Ind. Electron. 2015, 62, 7762–7773. [Google Scholar] [CrossRef]
- Qian, Y.; Yan, R. Remaining useful life prediction of rolling bearings using an enhanced particle filter. IEEE Trans. Instrum. Meas. 2015, 64, 1781–1790. [Google Scholar] [CrossRef]
- Kan, Z.; Jin, X.; Sun, Y. Remaining useful life prediction for bearings with the unscented Kalman filter-based approach. Chin. J. Sci. Instrum. 2016, 37, 2036–2043. [Google Scholar]
- Shen, F.; Xu, J.; Shun, C.; Chen, X.; Yan, R. Transfer between multiple working conditions: A new TCCHC-based exponential semi-deterministic extended Kalman filter for bearing remaining useful life prediction. Measurement 2019, 142, 148–162. [Google Scholar] [CrossRef]
- Rigatos, G.; Siano, P. Control of Quadrotors with the Use of the Derivative-Free Nonlinear Kalman Filter. Intell. Ind. Syst. 2015, 1, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Hou, B.; Wang, Y.; Tang, B.; Qin, Y.; Chen, Y. A tacholess order tracking method for wind turbine planetary gearbox fault detection. Measurement 2019, 138, 266–277. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, T.; Gao, R.X.; Chu, F. Signal optimization based generalized demodulation transform for rolling bearing nonstationary fault characteristic extraction. Mech. Syst. Signal Process. 2019, 134, 106297. [Google Scholar] [CrossRef]
- Wahyu, C.; Tegoeh, T. A Review of Feature Extraction Methods in Vibration-Based Condition Monitoring and Its Application for Degradation Trend Estimation of Low-Speed Slew Bearing. Machines 2017, 5, 1–28. [Google Scholar]
- Wahyu, C.; Kosasih, B.; Tieu, A.K.; Moodie, C.A. Circular domain features based condition monitoring for low speed slewing bearing. Mech. Syst. Signal Process. 2014, 45, 114–138. [Google Scholar]
- Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J.B.; Rémond, D. Natural roller bearing fault detection by angular measurement of true instantaneous angular speed. Mech. Syst. Signal Process. 2010, 24, 1998–2011. [Google Scholar] [CrossRef] [Green Version]
- Fyfe, K.R.; Muncke, D.S. Analysis of computed order tracking. Mech. Syst. Signal Process. 1997, 11, 187–205. [Google Scholar] [CrossRef]
- Paris, P.C.; Erdogan, F. A critical analysis of crack propagation laws. J. Basic Eng. 1963, 13, 291–301. [Google Scholar] [CrossRef]
- Meng, Z.; Shi, G.; Wang, F. Vibration response and fault characteristics analysis of gear based on time-varying mesh stiffness. Mech. Mach. Theory 2020, 148, 103786. [Google Scholar] [CrossRef]
- Sina, J.; Daneshmehr, A. Statistical Analysis of Nonlinear Response of Rectangular Cracked Plate Subjected to Chaotic Interrogation. Int. J. Appl. Mech. 2018, 10, 1850033. [Google Scholar]
- Cui, L.; Zhang, Y.; Zhang, F.; Zhang, J.; Lee, S. Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis. J. Sound Vib. 2016, 364, 67–76. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.; Li, N.; Li, N. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings. IEEE Trans. Reliab. 2018, 69, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, B. Online capacity estimation of lithium-ion batteries based on novel feature extraction and adaptive multi-kernel relevance vector machine. Energies 2015, 8, 12439–12457. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Lin, X. Discovering prognostic features using genetic programming in remaining useful life prediction. IEEE Trans. Ind. Electron. 2014, 62, 2464–2472. [Google Scholar] [CrossRef]
- Singleton, R.K.; Strangas, E.G.; Aviyente, S. Extended Kalman filtering for remaining-useful-life estimation of bearings. IEEE Trans. Ind. Electron. 2015, 62, 1781–1790. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Outer race diameter | 39.80 mm | Inner race diameter | 29.30 mm |
Bearing mean diameter | 34.55 mm | Ball diameter | 7.92 |
Number of balls | 8 | Contact angle | 0 rad |
Load rating (static) | 6.65 kN | Load rating (dynamic) | 12.82 kN |
Operating Condition | Bearing Dataset | Number of Files | Bearing Lifespan | Fault Element |
---|---|---|---|---|
Condition1 (37.5 Hz/ 11 kN) | Bearing1_1 | 123 | 2 h 3 min | Outer race |
Bearing1_2 | 161 | 2 h 41 min | Outer race | |
Bearing1_3 | 158 | 2 h 38 min | Outer race | |
Bearing1_4 | 122 | 2 h 2 min | Cage | |
Bearing1_5 | 52 | 52 min | Inner and outer race |
Dataset | RVM | PF | EKF | PHPA | This Model |
---|---|---|---|---|---|
Bearing1_1 | 0.5741 | 0.6107 | 0.6209 | 0.9047 | 0.9186 |
Bearing1_2 | 0.1815 | 0.7256 | 0.3500 | 0.8546 | 0.8992 |
Bearing1_3 | 0.6245 | 0.4850 | 0.8010 | 0.8482 | 0.8663 |
Bearing1_4 | 0.3722 | 0.2305 | 0.6839 | 0.7240 | 0.7976 |
Bearing1_5 | 0.6122 | 0.4311 | 0.5042 | 0.7878 | 0.8293 |
Type | Pitch Diameter | Ball Diameter | Contact Angle | Rated Dynamic Load | Numbers of Rollers |
---|---|---|---|---|---|
ERK16 | D (mm) | d (mm) | (rad) | Cr (kN) | Z |
39.04 | 7.94 | 0 | 14 | 9 |
Angle Domain Fixed Model | Developed Model | Time Domain Fixed Model | Time Domain Time-Varying Model | |
---|---|---|---|---|
Actual RUL | 1450 min | 1450 min | 1450 min | 1450 min |
Predicted RUL | 1425 min | 1462 min | 1414 min | 1423 min |
Error | 25 min | 12 min | 36 min | 27 min |
CRA | 0.9824 | 0.9917 | 0.9751 | 0.9813 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, W.; Hou, X.; Wang, H. Time-Varying Degradation Model for Remaining Useful Life Prediction of Rolling Bearings under Variable Rotational Speed. Appl. Sci. 2022, 12, 4044. https://doi.org/10.3390/app12084044
Du W, Hou X, Wang H. Time-Varying Degradation Model for Remaining Useful Life Prediction of Rolling Bearings under Variable Rotational Speed. Applied Sciences. 2022; 12(8):4044. https://doi.org/10.3390/app12084044
Chicago/Turabian StyleDu, Wenliao, Xukun Hou, and Hongchao Wang. 2022. "Time-Varying Degradation Model for Remaining Useful Life Prediction of Rolling Bearings under Variable Rotational Speed" Applied Sciences 12, no. 8: 4044. https://doi.org/10.3390/app12084044
APA StyleDu, W., Hou, X., & Wang, H. (2022). Time-Varying Degradation Model for Remaining Useful Life Prediction of Rolling Bearings under Variable Rotational Speed. Applied Sciences, 12(8), 4044. https://doi.org/10.3390/app12084044