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Abstract: It is difficult to accurately extract the health index of non-stationary signals of rolling
bearings under variable rotational speed, which also leads to greater prediction error for bearing
degradation models with fixed parameters. For this reason, an angular domain unscented particle
filter model with time-varying degradation parameters is proposed to deal with the remaining useful
life (RUL) prediction of rolling bearings. Order analysis is first performed to transform the variable-
speed signal from time domain to angular domain for extracting the health index in the angular
domain representation. To track the bearing degradation state, a real-time finite element model is
established to guide the parameters updating the procedure of the performance degradation model.
Finally, the bearing degradation state is estimated by the unscented particle filter (UPF), and then the
remaining useful life of the bearing is predicted. In this way, the time-varying degradation model
is developed by considering both non-stationary feature extraction and dynamic state tracking for
rolling bearings. The proposed method is verified by both benchmarks: bearing experimental data,
and a bearing accelerated life experiment. Compared with state-of-the-art prognostic methods, the
present model can predict the bearing remaining useful life (RUL) more accurately under variable
rotational speed.

Keywords: remaining useful life prediction; rolling bearing; variable rotational speed; time-varying
degradation model; unscented particle filter

1. Introduction

As one of the important parts of rotating machinery, rolling bearings need to con-
sume a lot of manpower and material resources for maintenance in the case of failure [1–3].
Generally, the working conditions of the bearing are complex, and the working environment
is harsh. The performance and health of the bearing will inevitably degrade during the
production process [4–6]. If real-time monitoring of rolling bearing operating status and
remaining useful life (RUL) prediction can be performed, early fault warning changes post-
maintenance into condition-based maintenance. This can effectively reduce maintenance
costs and avoid major safety accidents [7–9].

RUL prediction methods include physical model-based and data-driven ones [10,11].
The data-driven method combines historical data and condition monitoring data with
machine learning technology, such as artificial neural networks [12], support vector ma-
chines (SVMs) [13], and Gaussian process regression [14]. It establishes a prediction model
to predict RUL. The advantage of data-driven methods is that they can directly under-
stand the potential degradation trend of bearings from the available sensor data. As such,
users do not need to know the exact failure mechanism of bearings. Soualhi et al. [15]
used the Hilbert–Huang transform to extract fault features. The obtained characteristic
frequency was used to construct prediction index that was fed into SVMs for RUL predic-
tion. Shivani et al. [16] used an overall empirical mode decomposition strategy to calculate
time domain features, and constructed a support vector regression model to predict the
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health status of rolling bearings. Ali et al. [17] developed a prediction method based on
an artificial neural network for bearing RUL prediction. However, the above data-driven
method mainly establishes the relationship between the degradation state and the system
through a large amount of historical data. The prediction accuracy depends not only on
the quantity of historical data, but also on the quality of historical data. In the process of
RUL prediction, it is assumed that the decline process of the system follows certain rules
without any mutation. Therefore, it is not suitable for RUL prediction of rolling bearings
under varying working conditions and other uncertain factors.

On the other hand, the model-based method depends on a physical model to describe
the overall decline trend of the bearing through the failure mechanism, and then uses
statistical estimation techniques, such as the Kalman filter (KF) [18], particle filter (PF) [18],
and the unscented particle filter (UPF) [19] to update and estimate the bearing state and
predict the bearing RUL. Lei et al. [20] used the maximum likelihood algorithm to initial-
ize the parameters of the Paris–Erdogan model, where the PF model was employed to
recursively predict the bearing state. Yan et al. [21] used the multipored autoregressive
model to establish the bearing degradation model, and combined this with enhanced PF
for bearing RUL prediction. Kan et al. [22] constructed a nonlinear state space model, and
used the unscented Kalman filter (UKF) algorithm to update and estimate the state, which
realized the bearing performance evaluation and RUL prediction. The main advantage
of the model-based method is that the prediction results are more intuitive, and the full
combination of expert knowledge and real-time information from the machine can effec-
tively carry out the bearing RUL prediction. However, the above methods mainly aim for
the RUL prognostics of bearings under constant conditions, and they are not involved in
varying working scenarios, such as variable rotational speed.

The Kalman filter (KF) [18] is an optimal recursive data Processing algorithm, which
can optimally estimate the future state of dynamic system. However, KF is more effective
for a linear system, and is not suitable for dealing with serious nonlinear signals. KF
assumes a linear system dynamic model with Gaussian noise in measurement, which
is not always realistic in practical application. The extended Kalman filter (EKF) [23]
is an extension of the Kalman filter to nonlinear system dynamics. EKF linearizes the
nonlinear equation locally through the Taylor series expansion formula, so as to adapt to
the nonlinear system. However, EKF must solve the Jacobi matrix of nonlinear function,
which is complex and error prone. For systems with strong nonlinearity, the stability is
relatively poor, which is easy to lead to the decline of filtering results, and can only meet
the requirements of some weak nonlinear environments. The unscented Kalman filter
(UKF) [22] is a combination of the unscented transform and the standard Kalman filter
system. It uses the linear regression of sigma points to linearize the nonlinear function
of variables, avoid the operation of derivatives, and make it more suitable for real strong
nonlinear systems. However, in numerical calculations, UKF encounters some problems,
such as rounding error, and negative definite covariance matrix, which leads to filter
divergence. The derivative-free nonlinear Kalman filter [24] is a QR decomposition of
the state variance matrix in the unscented Kalman filtering process, which can ensure the
positive definiteness of the covariance matrix and overcome the divergence problem caused
by the accumulation of calculation errors in the filtering processing No matter how the KF
is improved, it still estimates the system under the linear and Gaussian assumptions. When
the linearity of the system is very poor, the effect of the Kalman filter will be greatly reduced.
Different from the Kalman filter method, particle filter (PF) [18] uses a group of particles
with specific weights to approximate the state estimation. This method is not limited to
Gaussian hypothesis and can approximate any system state distribution. It is especially
suitable for nonlinear and non-Gaussian application scenarios, and has been widely used in
residual life prediction. The standard PF algorithm uses the prior distribution of the system
as the importance sampling distribution. After a certain number of iterative steps, the
weight of many particles becomes minimal, resulting in particle degradation and further
affecting the accuracy of residual life prediction. The unscented particle filter (UPF) [19]
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combines the advantages of the particle filter and the unscented Kalman filter, uses the
UKF algorithm to obtain an appropriate importance sampling probability distribution,
and makes full use of the latest observations, which can effectively solve the problem of
particle degradation.

In practical engineering applications, the environmental conditions of the bearing
may change in real time, and its own operating conditions may also change, i.e., variable
working conditions. Affected by environmental conditions, operating conditions and other
uncertain factors, a variety of failure modes may occur during bearing operation, resulting
in non-stationary vibration signals. When using the time-frequency analysis method to
analyze non-stationary signals, there are some problems, such as low time-frequency
resolution and false component interference, which make it difficult to extract and identify
fault features. Under the condition of time-varying speed, the vibration impact interval and
impact amplitude of the bearing are time-varying, resulting in the distortion of the vibration
signal envelope spectrum obtained by the conventional envelope demodulation method,
which makes it difficult to identify the fault characteristics. Order analysis [25], generalized
demodulation (GD) [26], time frequency representation and phase-space dissimilarity
measure [27] are common methods for vibration signal analysis under variable working
conditions, which can accurately extract the degradation characteristics of the bearing
life cycle, and are suitable for predicting the remaining useful life of rolling bearings
under variable working conditions. However, the existing research mostly focuses on RUL
prediction under single working condition, ignoring the consideration of environmental
conditions and operating conditions to a certain extent. Therefore, it lacks generalization in
practical engineering application, which affects the effectiveness of prediction.

To sum up, it is difficult to accurately extract features containing bearing degradation
information from non-stationary vibration signals in a time domain. In addition, the estab-
lishment of the degradation model usually requires clear prior knowledge and extensive
empirical data. The degradation model is not updated in real time according to the actual
degradation state of the bearing, which has a large error with the actual degradation trend
of the bearing and affects the RUL prediction accuracy.

To solve the above problems, this paper proposes a RUL prediction method dealing
with rolling bearings under variable rotational speed, based on angular domain transforma-
tion and time-varying degradation model parameters. Firstly, the angle domain transform
is used to process the original time domain signal and extract the real-time degradation
features of bearings. Secondly, a finite element method (FEM)-based time-varying pa-
rameter degradation model consistent with the bearing performance degradation state is
established. The unscented particle filter algorithm (UPF) is used to estimate the bearing
degradation state for predicting its RUL. This method not only alleviates the limitations of
RUL prediction methods based on data-driven and physical models, but also predicts the
future degradation trend of bearings more accurately.

There are three main contributions of this paper. (i) Aiming at the difficulty in ex-
tracting features of non-stationary signals under variable operating conditions, this paper
proposes an angular domain unscented particle filter (UPF) RUL prediction method. The
angle domain transform is used to process the signals, which can accurately extract the fea-
tures containing important information, and combined with the UPF algorithm to update
and estimate the bearing state, thereby improving the accuracy of the remaining useful
life prediction of the bearing. (ii) In the process of establishing the bearing degradation
model based on the Paris–Erdogan theorem, the parameters of the model are not selected
according to empirical formulas, but by establishing a finite element model consistent with
the bearing degradation model to update model parameters in real time, to make it more
in line with the real degradation trend of the bearing. (iii) The effectiveness of the pro-
posed method is verified by two bearing experiments. Compared with the state-of-the-art
methods, the developed method obtained a superior performance.

The rest of this paper is arranged as follows. Section 2 introduces the basic theory
of angular domain transformation, the unscented particle filter, and the time-varying
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parameter degradation model. Effectiveness of the proposed method is verified by a
benchmark dataset experiment and an accelerated life prognosis experiment as presented
in Section 3, respectively. Conclusions are obtained in Section 4.

2. Materials and Methods
2.1. Angular Domain Transform

Signals collected by the accelerometer and the tachometer are employed as the input
of the angular domain transform. Numerical integration is then performed to convert
the rotational speed pulse signal into a turning angle signal, which is then converted by
equal-angle resampling [28]. A non-stationary signal in the time domain can be converted
into a stationary one in the angular domain. Then the characteristic indexes (kurtosis, root
mean square, etc.) are extracted from the angle domain signal. The time interval of equal
angle sampling is determined by the rotation angle of the reference axis. Therefore, the
time domain non-stationary signal is converted into the angular domain stationary signal
by using the sampling method of computed order tracking and equal angle incremental
resampling [29]. In a short time, the rotation axis accelerates uniformly at an angle, and the
relationship between the rotation angle and time is given by [30].

θ(t) = a0 + a1t + a2t2 (1)

where a0, a1 and a2 are polynomial coefficients. θ(t1)
θ(t2)
θ(t3)

 =

 1 t1 t1
2

1 t2 t2
2

1 t3 t3
2

 a0
a1
a2

 (2)

Supposing the angular interval between two adjacent key phase pulses be a fixed
value 2π, according to Equation (2), the undetermined coefficients can be obtained. By
substituting Equation (2) into Equation (1), the time corresponding to the rotation angle
change can be obtained as

t(θ) =
1

2a2

[√
4a2(θ − a0) + a1

2 − a1

]
(3)

The rotation angle is discretized according to the equal angle sampling interval. The
above equation is therefore recast as

Tn =
1

2a2

[√
4a2(n∆θ − a0) + a1

2 − a1

]
(4)

where the time of equiangular sampling point is Tn and ∆θ is the sampling interval.
According to the equal angular sampling time, the Lagrange interpolation operation

is performed on the signal y(t), and then the resampled angular domain signal is obtained.

2.2. Unscented Particle Filter

The degradation law of dynamic system state can be described by a set of dynamic
models including a state equation and observation equation expressed by [19].

xt = ft(xt−1, wt) (5)

yt = ht(xt, vt) (6)

where ft is the state transfer function from the previous time to the current time, xt and wt
are the state value of the system and the system noise at the current time, ht is the functional
relationship between the current state and the observed value, yt is the observed value of
the current system state, and vt is the observation noise at the current time.
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RUL prediction is to estimate the state value of the next moment from the current
state value and the observed value of the rolling bearing. According to Bayesian theory,
all information of the system state estimation is included in the posterior probability
distribution, given by:

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (7)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(8)

where p(x1:t|y1:t) is the posterior probability and p(xt|y1:t−1) is the prior probability of
the state, which describes the prior knowledge of the state before the observation value
is obtained.

The traditional PF algorithm is based on Bayesian theory. It estimates the probability
density function (PDF) of the system state through the observation data, and uses the
sequential importance sampling (SIS) algorithm to replace PDF with a priori probability
approximation. However, the PF algorithm easily falls into the problem of particle degra-
dation, which leads to the divergence of estimation results. The unscented particle filter
algorithm (UPF) uses UKF to construct the importance sampling distribution of the particle
filter. It integrates the latest observation information into the importance distribution
function. It strengthens the tracking ability of particles, improves the accuracy of target
tracking, and effectively solves the problem of particle degradation.

The first step is the initialization. Setting t = 0, sample N particles from the initial distri-
bution to generate the original particle set xi

0 = p(x0). The weight coefficient corresponding
to each particle is

wi
0 = 1/N, i = 1, 2, N (9)

For each particle, UKF algorithm is used to estimate the state of each particle. The

particle xi is obtained according to the Gaussian distribution N(
−
xi

t,
∧
pi

t) as

−
xi

t =
N

∑
i=1

wi
tx

i
t (10)

∧
pi

t =
N

∑
i=1

wi
t

(
xi

k −
−
xi

k

)(
xi

k −
−
xi

k

)T

(11)

The weight of each particle is updated according to the measured value at the current
time. The weight is normalized as

wi
t = wi

t−1
p
(
yt
∣∣xi

t
)

p
(
xi

t
∣∣xi

t−1
)

q
(
xi

t
∣∣xi

0:t−1, y1:t
) (12)

wi
t =

wi
t−1

N
∑

i=1
wi

t

, i = 1, 2, N. (13)

Neff = 1/
N

∑
i=1

(wi
t)

2
, i = 1, 2, N. (14)

where Neff ≤ Nthr (Nthr represents the threshold). This means that the particles have been
severely degraded and need to be resampled according to the importance weight, and the



Appl. Sci. 2022, 12, 4044 6 of 17

particles are mapped into N particles of equal weight. In this way, the updated particle and
its weight can be used to estimate the state at the current time as

xt =
1
N

N

∑
i=1

Wi
t xi

t, i = 1, 2, N. (15)

2.3. Time-Varying Parameters of the Degradation Model

When the initial fault appears in a bearing, according to the Paris–Erdogan theorem,
the relationship between crack propagation and the number of stress cycles can be derived
as [31]

dx
dL

= C(∆K)m (16)

where x is the crack length, L is the number of stress cycles (fatigue life), C and m are
constants related to materials, and ∆K is the amplitude of stress intensity factor, which
changes with the propagation of bearing cracks.

To obtain the relationship between the stress intensity factor and the crack length in
the actual degradation process of bearing, a finite element method (FEM) is used to analyze
the crack of rolling bearing, as shown in Figure 1.
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Figure 1. Time-varying parameter degradation model of bearings.

Firstly, an experimental bearing FEM is established, in which the crack length and
depth information are set to simulate the fatigue crack propagation. Constraints and loads
are imposed according to experimental conditions. Because the shape function of ordinary
element cannot represent the singularity of stress and strain at the crack front, a 12-node
singular element is used for the tetrahedral mesh. A singular element is a kind of quadratic
element whose nodes are located at the quarter, with its shape function given by

u = 2
(√

v/
√

l
)
[(1− η)u2 + 0.5u3] (17)

∂u
∂v

=
1√
v
∗ 1

l
[−2ηu2 + (0.5 + η)u3] (18)

where u and v are the node coordinate, u2 and u3 are the corresponding node coordinate, η
is a constant, and l is the unit side length.

The finite element analysis is used to simulate the crack propagation, and a set of
stress intensity factors varying with the crack length are obtained by J-integral analysis
to simulate the fatigue crack propagation. The mathematical relationship of ∆K with
the square root of the crack length is obtained by numerical interpolation fitting. The
time-varying physical parameters obtained from the Paris-Erdogan theorem and FEM are
transferred to the degradation model of the bearing. The stress intensity factor is taken as
the time-varying physical parameter in the bearing degradation model.
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2.4. The Present RUL Prediction Method

As shown in Figure 2, the addressed time-varying degradation model for bearing RUL
prediction can be divided into the following eight steps.
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Step 1: The original non-stationary time domain signal is transformed into the angular
domain stationary signal by equal angle resampling.

Step 2: The bearing life data are transformed into the angular domain under variable
speed conditions towards a complete angular dataset. The stable angular domain signal of
the bearing is extracted at each time, and the degradation characteristic index (kurtosis,
root mean square, etc.) of the rolling bearing can be obtained.

Step 3: Kurtosis is used to monitor the occurrence of bearing faults. The starting point
of bearing RUL prediction is determined. The specific process is as follows. Firstly, the mean
value µ and standard deviation σk of kurtosis under the normal working condition of the
bearing are calculated. Then, the kurtosis interval [µ− 3σk, µ + 3σk] is defined as the normal
working interval of the bearing. When the kurtosis of the bearing at a certain time exceeds
the defined normal interval, it is judged that the bearing enters the degradation stage. This
time is regarded as the starting point for the bearing RUL prediction is then started.

Step 4: The envelope analysis of the vibration signal at the starting point of the predic-
tion of the RUL of the bearing is carried out to obtain the fault characteristic. According
to the results of envelope analysis, the fault frequency is obtained, and the bearing fault
location is determined by calculation. Finally, the initial crack at the bearing fault location
is set in the finite element model.

Step 5: The relative root mean square value (RRMS) is employed as the input of
the degradation model to predict the bearing RUL. The specific definition of RRMS is
expressed by

XRRMS(t) =
XRMS(t)− XRMS(T)

XRMS(T)
(19)

where XRRMS(t) is the RRMS value of the signal at time t, XRMS(t) is the RMS value of the
signal at time t, and XRMS(T) is the RMS value of the signal at RUL starting time T.

Step 6: The real-time finite element model of the bearing is used to obtain the numeri-
cal relationship between physical parameters ∆K and the crack length x.

∆K = ∆σ
√

x (20)

Through integrating L above both sides of Equation (16), the function can be obtained by

xt−xt−1
Lt−Lt−1

= αxt−1
β

xt = xt−1 + αxt−1
β∆L

(21)

where α = C(∆σ)m, β = 3m/2, C and m are constants related to the material, ∆σ is a
constant, x is the crack length, and L is stress cycles.
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The relationship between stress cycles L and the running time t of the bearing is
linear, and the coefficient is simplified to 1. According to references [32–34], under ideal
conditions, the characteristic index of vibration signal has a linear relationship with the
crack length. In order to simplify, the coefficient is set to 1. Combining Equations (5), (6)
and (21) leads to the state transition equation and observation equation in the bearing
degradation process as

xt = xt−1 + αxβ
k−1∆t + wt

yt = xt + vt
(22)

where wt, vt are the system random noise, ∆t is the time interval, xt is state value, and yt is
the measured value.

Step 7: The degradation index (RRMS) is brought into the degradation model by using
the steps of the UPF algorithm, and the model parameters are updated by the measured
values to estimate the degradation index value at the current time. The degradation
model is used to transfer the existing distribution and predict the degradation index at the
next time.

Step 8: The predicted value of the degradation index RRMS and its time to reach the
failure threshold are further mapped to the RUL of the rolling bearing.

3. Results
3.1. Experimental Study of a Benchmark Bearing
3.1.1. Benchmark Dataset

The bearing dataset [35] is a benchmark provided by the Xi’an Jiao tong University
(XJTU) and the Sum young Technology Co., Ltd. (SY) (Sum young, Huzhou, China), it is
defined as XJTU-SY. As shown in Figure 3, the bearing testbed is composed of an alternating
current (AC) induction motor, a motor speed controller, a support shaft, two support
bearings (heavy duty roller bearings), a hydraulic loading system and so on. This testbed
was designed to conduct the accelerated degradation tests of rolling element bearings under
different operating conditions (i.e., different radial force and rotational speed). The radial
force was generated by the hydraulic loading system and applied to the housing of tested
bearings. The rotational speed was set by the speed controller of the AC induction motor.
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The type of tested bearings is LDK UER204, and the detailed parameters are given
in Table 1. A total of three different operating conditions were set in the accelerated
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degradation experiments. Under each operating condition, five bearings were tested. The
operating conditions include: 2100 rpm (35 Hz) and 12 kN; 2250 rpm (37.5 Hz) and 11 kN;
2400 rpm (40 Hz) and 10 kN. The dataset contains complete run-to-failure data of 15 rolling
element bearings acquired by conducting many accelerated degradation experiments. The
sampling frequency is 25.6 kHz, a total of 32,768 data points (i.e., 1.28 s) are recorded for
each sampling, and the sampling period is equal to 1 min. Five bearings in condition 1 are
selected for verification. Table 2 lists the detailed information of each test bearing, including
the number of CSV files, bearing life and fault elements.

Table 1. Parameters of the tested bearings.

Parameter Value Parameter Value

Outer race diameter 39.80 mm Inner race diameter 29.30 mm
Bearing mean diameter 34.55 mm Ball diameter 7.92

Number of balls 8 Contact angle 0 rad
Load rating (static) 6.65 kN Load rating (dynamic) 12.82 kN

Table 2. XJTU-SY bearing dataset.

Operating
Condition Bearing Dataset Number

of Files
Bearing
Lifespan

Fault
Element

Condition1
(37.5 Hz/

11 kN)

Bearing1_1 123 2 h 3 min Outer race
Bearing1_2 161 2 h 41 min Outer race
Bearing1_3 158 2 h 38 min Outer race
Bearing1_4 122 2 h 2 min Cage
Bearing1_5 52 52 min Inner and outer race

3.1.2. Results Analysis

As shown in Figure 4, health indicators including root mean square and kurtosis of
five bearings are used to monitor the degradation starting time. The relative root mean
square (RRMS) of the moment is taken as the failure threshold of the bearing. Bearing
1_1 begins to degrade from the 78th minute, bearing 1_2 begins to degrade from the
126th minute, bearing 1_3 begins to degrade from the 110th minute, bearing 1_4 begins to
degrade from the 80th minute, and bearing 1_5 begins to degrade from the 39th minute.
They are taken as the starting points of RUL prediction, respectively. The degradation
characteristic index RRMS is introduced into the time-varying parameter degradation
model. The prediction results are shown in Figure 5, which are further mapped to the
rolling bearing RUL through RRMS.

3.1.3. Discussion and Comparison

To show the superiority of the developed bearing degradation model in this paper,
it is compared with the fixed degradation model established by the traditional empirical
formula. The degradation characteristic index RRMS is used as the input of the model
to calculate the state prediction values of five bearings, respectively. In order to quantita-
tively evaluate the performance of the proposed method, the prediction error is designed
and calculated, which can be evaluated by the root-mean-square error (RMSE) using the
following equation:

RMSE =

√√√√ 1
M

M

∑
i=1

(
xp(i)− xr(i)

)2 (23)

where xp is the predicted data point, xr is the real data point, and M is the number of
predicted data points.
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The standard deviation of the state estimation error (RMSE) of the five bearings
is calculated as shown in Figure 6. Taking the result of bearing1_1 as an example, the
RMSE of the degradation model based on time-varying parameters is 0.7123, while that
of the fixed degradation model based on empirical formula is 0.8323. This shows that the
performance of the degradation model based on time-varying parameters is better. The
state prediction results of the two models are mapped to the RUL of the bearing as shown
in Figure 7. The RUL prediction result of bearing1_1 is also taken as an example to illustrate.
The RUL prediction error of the degradation model based on time-varying parameters is
10 min, while that of the fixed degradation model based on empirical formula is 16 min.
Therefore, the prediction results of the proposed model are more convergent than those of
the traditional empirical model. The accuracy is higher and is closer to the actual RUL.
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Figure 7. (a) Comparison of RUL prediction of two models for bearing1_1; (b) Comparison of
RUL prediction of two models for bearing1_2; (c) Comparison of RUL prediction of two models for
bearing1_3; (d) Comparison of RUL prediction of two models for bearing1_4; (e) Comparison of RUL
prediction of two models for bearing1_5.

To illustrate the advantages of the proposed time-varying model compared with the
data-driven method and the fixed-model based method, the same dataset was compared
with four advanced methods published in the literature, including the mixed prediction
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method based on RVM and the random degradation model [35], the method based on
RVM [36], the method based on PF [37], and the method based on EKF [38]. To quantita-
tively evaluate the prediction performance of these five forecasting methods, a widely-used
evaluation index, namely cumulative relative accuracy (CRA), is used in this paper. CRA is
able to comprehensively evaluate the accuracy of the prediction method by summarizing
the relative prediction accuracy of all forecast times. It is calculated as

CRA(TK) = 1− |ActRUL(Tk)− RUL(Tk)|
ActRUL(Tk)

(24)

where ActRUL(Tk) is the actual life in the test process, and RUL(Tk) is the predicted
life. The closer the CRA value is to 1, the more accurate the RUL estimation result of the
prediction method is.

Table 3 shows the prediction results of the five methods. Taking Bearing1_1 as an
example, CRA obtained by the proposed method is 0.9186, while that obtained by the
method based on RVM is 0.5741, that obtained by the method based on PF is 0.6107,
that obtained by the method based on EKF is 0.6209, and that obtained by the method
based on PHPA is 0.9186. Compared with other four state-of-the-art methods, the proposed
prediction model in this paper has the best performance and the highest prediction accuracy.

Table 3. CRA comparisons between five methods.

Dataset RVM PF EKF PHPA This Model

Bearing1_1 0.5741 0.6107 0.6209 0.9047 0.9186
Bearing1_2 0.1815 0.7256 0.3500 0.8546 0.8992
Bearing1_3 0.6245 0.4850 0.8010 0.8482 0.8663
Bearing1_4 0.3722 0.2305 0.6839 0.7240 0.7976
Bearing1_5 0.6122 0.4311 0.5042 0.7878 0.8293

3.2. Run-to-Failure Bearing Experiments
3.2.1. Experimental Set-Up

To illustrate the effectiveness of the method proposed in this paper, the vibration data
of a run-to-failure experiment of a rolling element bearing were collected by a test bench,
as shown in Figure 8.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18 
 

 

Figure 8. Accelerated life test bench of the rolling bearing. 

The test bearing is a single-row deep groove ball bearing (ERK16) whose main geo-

metric parameters are shown in Table 4. According to different working conditions of the 

bearing, experiments were carried out under both constant speed and variable speed. This 

paper mainly discussed the RUL prediction of the rolling bearing under variable rota-

tional speed. Hence, the test conditions are as follows: radial load 8500 N rotational speed 

fluctuation range [1450, 1550] r/min, sampling frequency 12,800 Hz, sampling interval 5 

min, and sampling duration 4 s. 

Table 4. Main geometric parameters of rolling bearing ERK16. 

Type 
Pitch 

Diameter 

Ball 

Diameter 

Contact 

Angle 

Rated Dynamic 

Load 

Numbers of 

Rollers 

ERK16 
D (mm) d (mm) (rad) Cr (kN) Z 

39.04 7.94 0 14 9 

3.2.2. Experimental Set-Up 

The variable speed experimental data are transformed in the angular domain. The 

spectrum of the original non-stationary signal is shown in Figure 9a, and the stationary 

signal after angular domain transformation is shown in Figure 9b. 

  

(a) (b) 

Figure 9. (a) The spectrum of the original non-stationary signal; (b) the stationary signal after angu-

lar domain transformation. 
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The test bearing is a single-row deep groove ball bearing (ERK16) whose main geo-
metric parameters are shown in Table 4. According to different working conditions of the
bearing, experiments were carried out under both constant speed and variable speed. This
paper mainly discussed the RUL prediction of the rolling bearing under variable rotational
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speed. Hence, the test conditions are as follows: radial load 8500 N rotational speed fluctu-
ation range [1450, 1550] r/min, sampling frequency 12,800 Hz, sampling interval 5 min,
and sampling duration 4 s.

Table 4. Main geometric parameters of rolling bearing ERK16.

Type Pitch
Diameter

Ball
Diameter

Contact
Angle

Rated
Dynamic

Load

Numbers of
Rollers

ERK16
D (mm) d (mm) (rad) Cr (kN) Z

39.04 7.94 0 14 9

3.2.2. Experimental Set-Up

The variable speed experimental data are transformed in the angular domain. The
spectrum of the original non-stationary signal is shown in Figure 9a, and the stationary
signal after angular domain transformation is shown in Figure 9b.
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As shown in Figure 10a, the characteristic indexes (kurtosis, root mean square) are
extracted from the angle domain signal. The degradation start time of the bearing is
1150 min, and the failure time is 1450 min. The RRMS of each moment was calculated, and
the degradation characteristics of rolling bearings were predicted by the method presented
in this paper. It was further mapped to the bearing RUL, as shown in Figure 10b.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 18 
 

As shown in Figure 10a, the characteristic indexes (kurtosis, root mean square) are 

extracted from the angle domain signal. The degradation start time of the bearing is 1150 

min, and the failure time is 1450 min. The RRMS of each moment was calculated, and the 

degradation characteristics of rolling bearings were predicted by the method presented in 

this paper. It was further mapped to the bearing RUL, as shown in Figure 10b. 

  

(a) (b) 

Figure 10. (a) Degradation characteristics; (b) real RRMS and predicted RRMS. 

To explain the influence of different fault locations on the stress intensity factor of 

time-varying model parameters, a plane open crack with length of 1 mm and depth of 1 

mm was set in the inner race and outer race of the bearing in FEM. According to the ex-

perimental conditions, the inner race of the bearing was fixed, and a radial load of 8500 N 

was applied to the bearing. The relationship between the stress intensity factor and the 

square root of the crack length is shown in Figure 11. It can be seen that the crack location 

has little effect on the stress intensity factor. 5

1 5.675 10K x x   = =  for inner race, 

and 5

2 5.753 10K x x   = =  for outer race were set in the experiments.  

 

Figure 11. Relationship between K  and x  at different positions. 

To illustrate the superiority of the bearing degradation model based on time-varying 

parameters proposed in this paper, RRMS extracted directly from the original time do-

main was introduced into the bearing degradation model based on the traditional empir-

ical formula. RMSE of state estimation error is obtained as shown in Figure 12. RMSE 

obtained by directly extracting features from time domain is 0.8327, while the error ob-

tained by extracting features after angular domain transformation becomes 0.2596. There-

fore, it can be seen that angular domain transformation has better effect in processing non-

Figure 10. (a) Degradation characteristics; (b) real RRMS and predicted RRMS.



Appl. Sci. 2022, 12, 4044 14 of 17

To explain the influence of different fault locations on the stress intensity factor of
time-varying model parameters, a plane open crack with length of 1 mm and depth of
1 mm was set in the inner race and outer race of the bearing in FEM. According to the
experimental conditions, the inner race of the bearing was fixed, and a radial load of 8500 N
was applied to the bearing. The relationship between the stress intensity factor and the
square root of the crack length is shown in Figure 11. It can be seen that the crack location
has little effect on the stress intensity factor. ∆K = ∆σ1

√
x = 5.675× 105 ×

√
x for inner

race, and ∆K = ∆σ2
√

x = 5.753× 105 ×
√

x for outer race were set in the experiments.
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To illustrate the superiority of the bearing degradation model based on time-varying
parameters proposed in this paper, RRMS extracted directly from the original time domain
was introduced into the bearing degradation model based on the traditional empirical
formula. RMSE of state estimation error is obtained as shown in Figure 12. RMSE obtained
by directly extracting features from time domain is 0.8327, while the error obtained by
extracting features after angular domain transformation becomes 0.2596. Therefore, it can
be seen that angular domain transformation has better effect in Processing non-stationary
time domain signals with variable rotational speed. RMSE of the degradation model
based on the traditional empirical formula is 0.4708, while RMSE of the degradation model
based on the time-varying parameters is reduced to 0.2596. Therefore, the degradation
model based on the time-varying parameters proposed in this paper is closer to the actual
degradation state of the bearing with high prediction accuracy.
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We further verify the effectiveness of the developed method in bearing RUL prediction.
The predicted degradation characteristic RRMS is mapped to the RUL of the bearing. The
time when the bearing reaches the failure threshold is calculated, as shown in Table 5. The
prediction error of RUL based on time domain analysis and the traditional fixed model
is 36 min, while the prediction error of RUL is reduced to 27 min after angular domain
transformation. The prediction error of RUL based on angular domain transformation and
the empirical fixed degradation model is 25 min, while the prediction error of RUL based on
angular domain transformation and time-varying parameter degradation model is 12 min.
Therefore, the prediction accuracy of the bearing degradation model based on time-varying
parameters proposed in this paper is higher than that of the fixed degradation model
based on the traditional empirical formula. Figure 13a shows the life prediction results
of two different models under time domain analysis. It can be seen that the prediction
results of the degradation model based on time-varying parameters are closer to the real
life at each step, and the prediction results are more convergent. Figure 13b shows the
life prediction results of two different models after angular domain transformation. It can
also be seen that the prediction results of the degradation model based on time-varying
parameters are closer to the real life at each step. The prediction results are more convergent
than the degradation model based on the empirical formula. These experimental results
further verified that the degradation model based on angular domain transformation and
time-varying parameters is closer to the real degradation process of the bearing.

Table 5. Comparison of RUL prediction results of four methods.

Angle Domain
Fixed Model

Developed
Model

Time Domain
Fixed Model

Time Domain
Time-Varying

Model

Actual RUL 1450 min 1450 min 1450 min 1450 min
Predicted RUL 1425 min 1462 min 1414 min 1423 min

Error 25 min 12 min 36 min 27 min
CRA 0.9824 0.9917 0.9751 0.9813
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4. Conclusions

A time-varying degradation model has been reported in this paper for predicting RUL
of bearings under variable rotational speed. For non-stationary time-domain signals, it
remains challenging to extract the degradation features accurately. Bearing degradation
models established by theoretical knowledge have great error with the real degradation
processing For this reason, angular domain transformation and time-varying parameters
were integrated as the time-varying degradation model. The non-stationary temporal
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signal of bearing lifecycle under variable speed was transformed as stationary angular
domain representation. Real-time FEM of the bearing was established to track the bearing
performance degradation state. The parameters of the bearing performance degradation
model were updated according to the time-varying physical commitment calculated by
FEM. The degradation characteristic index is brought into the degradation model by using
the steps of the UPF algorithm, and the model parameters are updated by the measured
values to estimate the degradation characteristic value at the current time. The degradation
model is used to transfer the existing distribution and predict the degradation characteristic
at the next time. Finally, the remaining useful life of the bearing is predicted by calculating
the time when the predicted degradation eigenvalue reaches the failure threshold. For
the XJTU-SY experiment, compared with state-of-the-art prognostic method, the accuracy
of the present model is improved by 5.3%. For the BPS experiment, compared with the
traditional fixed model, the prediction accuracy of the present model is improved by 1.7%.
Therefore, the present model can predict the bearing remaining useful life (RUL) more
accurately under variable rotational speed.

However, the proposed method still has some limitations. The developed method is
only suitable for one-dimensional cracks. Regarding multi-dimensional cracks, which is a
crucial and important issue for RUL prognosis, this will be studied in the future.
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