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Abstract: Left ventricular hypertrophy is an independent predictor of coronary artery disease, stroke,
and heart failure. Our aim was to detect LVH cardiac magnetic resonance (CMR) scans with automatic
methods. We developed an ensemble model based on a three-dimensional version of ResNet. The
input of the network included short-axis and long-axis images. We also introduced a standardization
methodology to unify the input images for noise reduction. The output of the network is the decision
whether the patient has hypertrophy or not. We included 428 patients (mean age: 49 ± 18 years,
262 males) with LVH (346 hypertrophic cardiomyopathy, 45 cardiac amyloidosis, 11 Anderson–Fabry
disease, 16 endomyocardial fibrosis, 10 aortic stenosis). Our control group consisted of 234 healthy
subjects (mean age: 35 ± 15 years; 126 males) without any known cardiovascular diseases. The
developed machine-learning-based model achieved a 92% F1-score and 97% recall on the hold-out
dataset, which is comparable to the medical experts. Experiments showed that the standardization
method was able to significantly boost the performance of the algorithm. The algorithm could
improve the diagnostic accuracy, and it could open a new door to AI applications in CMR.

Keywords: classification; left ventricular hypertrophy; CMR; machine learning

1. Introduction

Cardiovascular diseases are the leading cause of death in developed countries [1,2].
Cardiovascular magnetic resonance (CMR) provides functional and morphological informa-
tion of the heart for the evaluation, management, and diagnosis of patients with suspected
or established cardiovascular disease. CMR is a multi-parametric, non-invasive imaging
modality, which is considered the gold standard for the assessment of global and regional
function and is able to evaluate myocardial perfusion and viability, tissue characterization,
and coronary artery anatomy [3]. Left ventricular hypertrophy (LVH) is present in 15% to
20% of the population. It is more common in Afro-Americans and in patients with hyper-
tension and obesity [4]. LVH is an independent predictor of future cardiovascular events,
including coronary heart disease, heart failure, and stroke, regardless of its etiology [5,6].
The definition of LVH is an increase in left ventricular mass either due to an increase in
wall thickness, an increase in cavity size, or both. In clinical practice, LVH is a common
condition, which can be caused by diverse physiological and pathological mechanisms such
as athlete’s heart, hypertension, aortic stenosis, hypertrophic cardiomyopathy, infiltrative
heart muscle disease, storage, and metabolic disorders (amyloidosis, Anderson–Fabry
disease, etc.). LVH can develop silently over several years without symptoms, and it can
be difficult to diagnose. The electrocardiogram (ECG) is a useful, but less sensitive tool
for detecting LVH. The utility of the ECG lies in its relative inexpensiveness and wide
availability. Its limitations stem from its moderate sensitivity or specificity, depending
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on which of the various diagnostic criteria are applied [7,8]. In the Multi-Ethnic Study of
Atherosclerosis patients who underwent MRI and ECG, it was found that various ECG
criteria had low sensitivity for the detection of LVH [9]. As a result of these limitations of
ECG, LVH is most reliably identified on imaging with echocardiography or CMR. Prior
studies primarily used ECG [10] or M-Mode and two-dimensional (2D) echocardiography
to identify LVH.

Conventional 2D echocardiography is the first-line imaging modality, which is used
to evaluate the patterns, extent, and distribution of LVH and other anatomic and func-
tional parameters and ventricular function. Nonetheless, echocardiography is limited
by intra-observer and inter-observer variability, acoustic windows, and the lack of tissue
characterization. Echocardiography-based LVH evaluation varies among the different
definitions by ultrasound technicians and laboratories around the world, leading to in-
consistency among epidemiological studies, and therefore, this could limit its clinical
application [11]. CMR provides a comprehensive evaluation of myocardial hypertrophy
regarding the extent and distribution of LVH and tissue characterization. Accurate mea-
surements of wall thickness, the phenotype of hypertrophy, chamber size, and ventricular
function can be obtained without any limiting factors such as imaging windows and body
habitus. Importantly, CMR has a myocardial tissue characterization property that allows
phenotypic determination of the LVH and careful evaluation of the precise etiology of
LVH, which is a challenging clinical problem [12]. Hypertrophic cardiomyopathy (HCM) is
the most common inherited cardiac disease, which often leads to sudden death in young
people with an estimated prevalence of about 1:500 [13]. LVH is characterized by sudden
cardiac death, stroke, and heart failure, but also decreased life expectancy [14,15]. The
different LVH morphologic pattern can be precisely assessed by CMR and able to identify
segmental hypertrophy, which can be difficult for echocardiography (i.e., apical HCM).

The application of machine learning methods on CMR images has boomed in the past
5–6 years. A huge body of work is available on automatic processing of MRI images, such
as the segmentation of the ventricles [16–18], left ventricular quantification [19], pediatric
cardiomyopathy classification [20], left ventricle wall motion classification [21], and car-
diovascular event prediction for dilated cardiomyopathy [22]. These research endeavors
also resulted in new architectures, developed for this field specifically, e.g., U-net [23] for
myocardium segmentation, ν-net for cardiac vascular segmentation [24], and Ω-net for
multiview CMR detection, orientation, and segmentation [25]. Besides the algorithmic
improvement, the increasing availability of public datasets fuels the breakthroughs in the
healthcare domain [26,27]. For LVH, the lack of publicly available benchmarks is reflected
in the lower number of papers on the subject [28]. However, for echocardiography, there are
promising works out there [29–31]. For instance, in paper [32], the echocardiography-based
hypertrophy detection calculates the wall thickness, then the decision is made. This method
automates the wall thickness measurements with thresholding, then the wall thickness is
calculated from the adjusted contours. The accuracy of echocardiography-based diagnosis
tends to be lower than that of CMR-based examinations [33,34]. This further motivates the
application of CMR for hypertrophy detection. In the work of [35], the disease classification
was based on a multi-stage process. First, it segments the heart, then it calculates the
volumetric data. The volumetric data are used as features in a random forest to obtain the
classification. The classes are different from ours, but there are HCM and normal heart
cases, while the input images are CMR images. In paper [36], the authors developed an
automatic wall thickness measurement on CMR images. The measurement was based
on endocardial and epicardial segmentations. Another method relies on the clinical as-
sessment of normal ranges for different morphological characteristics [37]. To the best of
our knowledge, this is the first paper discussing an automatic method for left ventricular
hypertrophy classification from CMR images.

If the algorithm can detect suspicious features of hypertrophy during a regular CMR
examination, this indicates that the applied CMR protocol should be changed by adding
necessary measurements and sequences on-site for a more detailed evaluation without the
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need for additional examinations. During the post-process evaluation, it could improve
the diagnostic accuracy by recognizing a milder, incipient form of LVH, which can be
challenging for the less-experienced readers. The early detection of LVH and appropriate
therapy will decrease cardiovascular morbidity and mortality [38]. In this paper, steps
toward this ambition were made by developing an algorithm that considers more views
of the heart and classifies the patient’s hearts as normal or exhibiting hypertrophy. The
algorithm we developed achieved results comparable to the human readers. Its high
recall and sufficient precision allow for its use in an on-site setting, potentially causing
the operators to change the CMR protocol (e.g., to administer the contrast agent, acquire
late enhancement images, etc.) if hypertrophy is suspected. During the CMR examination,
usually, the long-axis cine images are acquired first, then the short-axis cine images, then
the late enhancement images if needed. We found that if the algorithm is restricted to
only use long-axis cine images, it is still sufficient to alert the operator in order to select
an appropriate CMR protocol, but might be limited in some selected cases. The rest of the
paper is structured the following way: In Section 2, we introduce the dataset we utilized
during our research, then we describe how our method works. In Section 3, we report the
experimental results on a hold-out dataset and we make a comparison to the human-level
performance. Section 4 describes our concluding thoughts.

2. Materials and Methods

The goal of this research is to develop an algorithm for hypertrophy classification from
CMR scans. The scans contain more views: short-axis, long-axis. Our dataset was collected
from the database of the The Heart and Vascular Center of Semmelweis University. Our
method is based on the raw image scans with all available views, and the classification
result is the direct output; we did not calculate intermediate features such as wall thickness.

2.1. Dataset

After the exclusion of patients with poor image quality, we investigated 428 patients
(mean age: 49 ± 18 years, 262 males) with left ventricular hypertrophy in whom CMR
examination was clinically indicated and 234 healthy subjects (mean age: 35 ± 15 years;
126 males) without any known cardiovascular diseases as a control group. The patients
underwent CMR examination in our tertiary referral center between January 2009 and
February 2019. Out of the 428 LVH patients, 346 had HCM (age: 46.9 ± 18.2 144 males),
45 patients had cardiac amyloidosis (age: 63.9 ± 9.7 years, 26 males), 11 patients had
Anderson–Fabry disease (age: 48.3 ± 12.9 years, 7 males), 16 patients had endomyocar-
dial fibrosis (age: 46.4 ± 14.3, years 9 males), and 10 patients had aortic stenosis (age:
63.4 ± 17.5 years, 5 males). Appendix C shows example images. CMR examinations were
performed on a 1.5 T magnetic resonance (MR) scanner (Achieva, Philips Medical Systems)
using a cardiac coil. ECG gated balanced steady-state free precession (bSSFP) cine images
were acquired in the three standard long-axis views: 2-chamber, 4-chamber, and LV outflow
tract views. The protocol used for cine images in the present study was described in detail
in a previous publication [39]. Short-axis (SA) images were also acquired with the full
coverage of the left ventricle.

2.2. Model Architecture

The algorithm decides whether the patient has hypertrophy. The input to the algorithm
is created from CMR scans of 4 views (axis). We used multi-view data because hypertrophy
classification is challenging and different views provide different information. It is possible
to see a pattern on a short-axis image that cannot be seen on the long-axis images or the
other way around. The input images were collected from 4 views:

• Short-axis images from the apex to the base at different stages of the cardiac cycle;
• Long-axis, two-chamber images at different stages of the cardiac cycle (heart beat);
• Long-axis, three-chamber images at different stages of the cardiac cycle;
• Long-axis, four-chamber images at different stages of the cardiac cycle.
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The usage of all the images from the short-axis scan has difficulties. The input would
be too big, and the number of images were not the same for all patients. Therefore, for the
short-axis view, we took three images in each second phase of the cardiac cycle. At each
chosen cardiac cycle, we used one image from the basal, one from the mid, and one from the
apical region, resulting in 36 images; see Figures 1 and 2. In the case of the long-axis views,
we took each second image from the cardiac cycle, resulting in 12 images; see Figure 3.

Figure 1. The illustration of how the short-axis images are created. The systole is the phase where
the heart volume is the lowest, while in the diastole, it is the highest. A heart beat (cardiac cycle) is
divided into 25 phases. In each phase, several slices are scanned. See the parallel lines. There are
three major regions for the heart: basal, mid, apical.

Figure 2. A short-axis CMR scan produces around 400 images for a heart. There are 12–16 slices
visited by the scanner at each phase (time point). During one heart beat (cardiac cycle), 25 images
are created for a slice. There are three main regions: apical, mid, basal. See also Figure 1. To create a
fixed-size input for the model, we picked three images from each second phase; see the gray boxes.
Overall, this results in 36 images. Black squares show example images, how the real image looks at a
given slice and phase.

The model is an ensemble of the extractors of the separate views. Images from each
view are fed into a separate network to extract features. The features are concatenated,
then the ensemble classifier is applied to obtain the prediction (normal or exhibiting
hypertrophy); see Figure 4. The architecture of the extractor for the best-performing model
can be seen in Figure 4, left side. We used the same extractor for each view. The extractors
were trained separately; therefore, a temporary layer was applied to create a temporary
classifier. The architecture of the temporary layer can be seen in Table 1. After the extractors
are trained, an ensemble model is created with an ensemble classifier; see Figure 4, right
side, under the classifier block. The models were built from residual blocks, with each block
containing 3-dimensional convolutions and batch normalizations; see Figure 4, bottom part.



Appl. Sci. 2022, 12, 4151 5 of 16

The reason for the 3D convolution is the positive effect of considering the time dimension
of the input (how the heart moves). For further elaboration on the performance and the
choices we made, see the details in Section 3.3.

Figure 3. Long-axis CMR scan has three view: 2-chamber, 4-chamber, and 3-chamber views. For each
view, 25 images are produced. The images are created from the same slice of the heart, but at different
time points of the cardiac cycle. To create a fixed-size input, we picked an image from every second
phase; see the gray boxes. Overall, this results in 12 images for each view (LA2, LA4, LA3).

Figure 4. The schematic architecture of the model. Each view has an extractor and the output features
from the extractors aggregated by concatenating the features along the channel dimension. This
is the ensemble of the views. The extractor and the classifier are built from 3D residual blocks.
The architecture of the 3D ResNet blocks can be seen in the middle of the image. The ResidualBlock
and the ResBlockPooling differ in the strides. For the pooling block, the first convolution and the
convolution on the skip branch have stride 2; otherwise, it is 1. The activations are ReLUs, which
were applied after the batch normalization layers. In the ResidualBlock version, we applied padding
in each convolution, while in pooling, we applied padding in the last convolution of the straight
branch. Padding was: (k − 1)/2 for each dimension. The kernel sizes were chosen as odd values in
each case.
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Table 1. The architecture of the temporary classifier. After the pooling layer, the tensors are reshaped
to (batch, L) size. The value of L is different for the long-axis and short-axis views.

Block Block Name Cin Cout Kernel Size

TC1 ResBlockPooling 6 3 (3, 3, 1)
TC2 Linear L 2 -

2.3. Preprocessing and Data Augmentation

Before the images are fed into the model, two main steps are executed: (1) preprocess-
ing and (2) augmentation. The augmentation is the same for each of the views, but prepro-
cessing contains an additional step for the long-axis views. Preprocessing always applies
noise reduction by cropping the intensity values between the 1st and 99th percentiles. Then,
the images are normalized into a 0–1 interval. For the long-axis views, the images are
standardized because their orientation shows high variance. Standardization is achieved
by a superposition to a reference frame calculated for each view separately. The reference
frame is given as the normal vector of a typical image for a given view. The superposition
applies mirroring and a rotation around the center point of the image to be preprocessed.
Appendix A gives further insight into the details of the standardization. In Section 3.3,
further details are shown about the effect of the standardization on performance. The
augmentation contains a random rotation and Gaussian noise.

2.4. Training Scheme

We trained the model in two stages. This training process falls into the supervised
learning paradigm, because we have the ground truth pathologies for each scan. The
dataset was unbalanced; therefore, we sampled the normal group with higher probability
to equalize the occurrences of hypertrophic and normal samples in the training batches; see
Section 2.1 for the ratio. The dataset was split into three parts: training (70%), validation
(15%), and testing (15%). The test set was created only once, and we kept it until the
final test with the best model chosen on the validation test. We repeated the training
with each parameter setting three times to understand the stability of the results. In each
repetition, the training and validation parts were resampled. First, the feature extractors
were trained separately to predict whether the patient had hypertrophy. For this part, we
used a temporary layer at the end of each extractor to create a classifier. Then, the temporary
layer was removed, and the ensemble model was built. For combining the outputs of the
feature extractors, we concatenated (the long-axis was padded in the depth dimension) the
features, then fed them into the classifier; see Figure 4. The whole ensemble was trained,
but the feature extractors’ weights were frozen. The training was applied on different
combinations of the possible views. The combinations were based on realistic scenarios,
because the earlier we can detect the condition of hypertrophy, the faster the operators can
react during the scanning procedure. In a clinical setting, the examination process mostly
follows similar orders among the views. During the CMR examination, the typical order
was long-axis views, then short-axis view. It is important to test only using the long-axis
view, the short-axis view, and then, their combination. The parameters of the best model
can be seen in Table A1.

2.5. Human Evaluation

The performance of the algorithm was also compared to human experts (hearafter
readers). The design of the evaluation simulated a realistic setup for an everyday examina-
tion procedure. The readers were asked to read CMR scans of 117 subjects, but they were
not told the real purpose of the study. About each subject, a very brief patient history was
provided (without giving clear reference to the real disease) along with the images of a full
MRI scan. This included the short-axis and long-axis images. For the analysis, we included
CMR scans from the normal group as well and the following pathologies: acute or chronic
myocardial infarction, dilated cardiomyopathy, Takotsubo cardiomyopathy, and acute
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myocarditis. The list contained the most frequent pathologies encountered during regular
assessments. We also included different cardiac pathologies that could cause LVH (HCM,
Anderson–Fabry disease, amyloidosis, aortic stenosis, and endomyocardial fibrosis). The
reason for pathologies outside of hypertrophy was to avoid bias during the evaluation.
Overall, six experts finished the experiment. Two of them were senior colleagues (25 and
10 years of experience) and three of them at the mid-senior level (4–7 years of experience),
and one of them was a junior (2 years of experience).

3. Results

We experimentally proved that the algorithm described in Section 2 can achieve
comparable performance to human experts.

3.1. Results of Human-Evaluation

The human evaluation established a baseline to raise expectation against the algorithm.
Table 2 shows the results. Overall means the accuracy of the diagnosis of each expert for all
117 subjects. This includes all the pathologies. In the Hyp-Norm row, the pathologies are
grouped into two groups, normal and hypertrophy, which includes all the LVH etiologies
considered earlier in this paper. The prediction of a reader was considered as valid if
the predicted pathology fell into the hypertrophy group, but the etiology did not have
to be accurate. In the HCM row, we measured the accuracy of differentiating between
the patients with HCM and other cardiac disorders, which usually represents LVH. In
the last three rows, precision, recall, and F1-score were calculated for the Hyp-Norm case.
Hypertrophy was considered as a positive event in the confusion matrix. If we compare the
consistency among the experts in terms of three groups: normal, hypertrophy, and the rest,
we found 83 %, 71 %, and 91 % consistency values, respectively. Consistency is defined
as an agreement among at least five radiologists. The high value of recall and the lower
value of consistency for the normal group indicates that radiologists tend to classify healthy
patients as those having a condition. This is understandable, as a false positive can easily
prove to be negative after some further examinations. On the contrary, false negatives can
lead to delayed and inappropriate patient care.

Table 2. The scores of the human evaluation. The scores are consistent across the readers; the variance
is small.

Scores R1 R2 R3 R4 R5 R6 Mean

Overall 89.7 91.5 91.5 88.0 89.7 90.6 90.0
Hyp-Norm 92.8 95.7 91.3 94.2 89.9 94.2 93.0

HCM 85.4 89.6 91.7 85.4 93.8 85.4 88.6
Precision 97.8 97.9 88.9 92.3 87.3 95.8 93.3

Recall 93.6 95.8 100 100 100 97.9 97.9
F1 95.7 96.8 94.1 96.0 93.2 96.8 95.4

3.2. Performance of the Algorithm

The performance of the best model can be seen in Table 3. The table shows that only
using the LA views was enough to achieve comparable results to humans by considering
the standard deviations as well (3–4%). This is important, because the contrast agent can be
injected after the long-axis measurements (if the algorithm indicates it and the experts accept
it), then the short-axis cine images can be acquired, since the late enhancement images
could be acquired at least 10 min after contrast material administration. This approach can
save significant amounts of time and can also warn the on-site medical staff that the MRI
protocol should be changed in order to avoid further, unnecessary examinations.
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Table 3. The performance of the best model on the test sets. The last row shows the result on the
validation set when the long-axis views were combined with the short-axis views.

Cases F1 Precision Recall

only LA2 90 86 92
only LA4 86 81 90
only LA3 91 86 92
only SA 86 90 83
all LAs 89 84 90
LA+SA 91 88 96

v. LA+SA 93 91 94

The box plots in Figures 5 and 6 were calculated by repeating the test evaluation on
20 randomly sampled subsets of the test data, and in each sample, we used 70% of the
test data. This method is similar to bootstrapping. Both images show the same relative
performance. The algorithm using only the LA views had lower performance, but when
short-axis and long-axis views were combined, the human level and the algorithm scores
became close to each other, especially in the case of the recall. The results showed lower
F1 and recall for the only short-axis case (see Table 3), which can be a result of the higher
complexity of the data. More samples for the SA case could scale up the performance.
Similarly, the algorithm (SA+LA) had lower performance than the experts, but we claim
that a larger dataset would reduce the gap.

Figure 5. Comparison of the human (expert) and algorithm (auto) performances. The p-value between
auto (LA) and auto (SA+LA) is lower than 0.001, which means using the short-axis images contributed
to a significantly better performance. Between the auto (SA+LA) and expert group, the p-value was
less than 0.001. For calculating the p-values, we used two-sample t-tests.
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Figure 6. Comparison of the human (expert) and algorithm (auto) performances. High recall
is beneficial because the algorithm can identify samples suspicious of hypertrophy with a high
probability. The false positives can be handled by the experts who supervise the examination. The p-
value is less than 0.001 between the auto (LA) and auto (SA+LA) groups. When comparing auto
(SA+LA) and the expert groups, we obtained a p-value = 0.3, indicating there was no statistically
significant difference between them. Therefore, the auto (SA+LA) was statistically identical to the
expert group in terms of the recall.

3.3. Ablation Study

We executed several experiments before we arrived at the final model, data processing,
and parameter choices. In this subsection, we briefly summarize our findings. We cover
the three main aspects of the algorithm:

1. Model selection;
2. Data preprocessing;
3. Hyper-parameter setting.

The above order does not represent the order of our experiments. It was established
in order to explain our experience in more logical fashion. We did not measure every
possible combination of choices; therefore, we can explain and showcase the tendencies of
the different choices.

Model selection. We tried three main architectures. The first architecture was a fully
convolutional model with 4–5 convolutional layers, assuming the ensemble model with
more views can achieve good results overall and we would not need strong learners per
view. Our results indicated that bigger networks would be required to achieve scores
(accuracy, F1-score, etc.) around 90 percent. The second architecture was similar to ResNet
with two-dimensional convolutions. The time dimension in the long-axis view was stacked
together to form a 12-channel image. The structure was similar to the ResNet described in
Section 2.2. We experienced significant performance growth (around 3–4 percent) as the
model size achieved 8 residual blocks, meaning 16 convolutional layers overall. Further
increasing the size did not affect performance significantly. One reason for that may be
the size of the dataset. During the data-preprocessing-related changes, we came to the
conclusion that taking into account the time dimension (basically the movement or dynamic
patterns of the heart) had a major effect on the results (over six percent in the case of the
short-axis views). Therefore, we created a 3D convolution-based ResNet model to properly
handle the time dimension. We formed a 3D image, as time became the depth dimension
of the image. This model performed better and more robustly (regarding the sensitivity for
the hyper-parameters). However, the drawback of the 3D ResNet lies in its slow training
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speed. As the performance on the short-axis view was worse, we tried to increase the
model size for this view only, but this did not cause relevant changes. Finally, we used the
same architecture for all the views.

Data preprocessing. Data preprocessing and the input representation to the network
proved to be the most important factors. To speed up the training, we tried less input
data first. We used only two images from the long-axis views, one from the systole phase
and one from the diastole phases. We used six images from the short-axis view and three
images at the systole and the diastole phases, respectively. This input formation resulted in
fair accuracy values (around 84 percent), but it turned out that taking images from other
points of the cardiac cycle contributed to better results. Standardization (see Appendix A)
had a very important role in achieving the final results. We identified the long-axis views
to be noisy as a result of the different orientations of the images. This was not true for the
short-axis. One way to cope with this is to use random rotation for augmentation with
degrees between 0 and 180. We found this approach to be inefficient in helping the learning
process. The standardization method caused a significant performance growth. Therefore,
we used only a small eight-degree angle for rotation during augmentation. We also used
cropping and some noise during augmentation.

Hyper-parameter tuning. When a model and a data preprocessing method were
chosen, there were some hyper-parameters to optimize. These were batch size, number of
epochs, learning rate, optimization algorithm, loss function, regularization method and
their parameters, and the cropping size of the image. We chose batch size 16 because 8 was
too noisy for the training. Larger batch sizes require too much memory. The number of
epochs was chosen between 20 and 50, and we used early stopping to avoid overfitting. We
found that the AdamW [40] algorithm with learning rate 5 × 10−4 achieved better results
than Adam, SGD, and RMSProp. We used focal loss [41], because focal loss can distinguish
the easy samples from the difficult ones by applying a factor ((1 − p)γ), which reduces the
loss for the well-classified samples. Our intuition was that the samples contained some very
difficult cases (due to etiologies such as amyloidosis, which is difficult to diagnose), and
therefore, focal loss could help. In our experiments, we experienced L1 and L2 losses to be
harmful, and dropout with large values was disadvantageous. This can be explained by the
observation that batch normalization has some regularization effect, which can eliminate
the need for dropout [42], and our 3D ResNet contains batch normalization layers. The
final cropping size of the input image proved to be 150 × 150. Smaller (120 × 120) and
larger sizes (190 × 190) were worse. For the larger size, the image can contain too much
noise, while the smaller crop can miss some details with the heart not always being at the
center of the image.

4. Discussion and Conclusions

Cardiovascular diseases are the leading causes of death around the world [1,2,43]. LVH
is a well-recognized independent risk factor for several cardiovascular complications [5].
The diagnosis of LVH can be challenging. For this, there are some methods used in clinical
practice such as electrocardiography, echocardiography, and CMR. CMR is a non-invasive
tool for diagnosing myocardial pathologies. CMR-based hypertrophy detection can be
more efficient and reliable and may improve the diagnostic method in order to recognize
LVH in an earlier stage. We developed a deep-learning-based algorithm for identifying left
ventricular hypertrophy during a CMR examination (on-site) and for helping the diagnostic
process following the examination (off-site). The on-site application can save time, if the
algorithm indicates the presence of LVH right after the long-axis measurements; therefore,
some additional, necessary images could be acquired and contrast administration should
be applied. With the use of on-site application, the CMR protocol can be changed during
the scanning, in order to avoid the need to call back the patient for an additional CMR
examination to provide the correct diagnosis. Nevertheless, if the algorithm is used during
post-process evaluation, it can warn the reader that LVH is present, so the diagnostic
accuracy can be improved. This is important because the identification of the incipient
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or milder form of LVH is difficult for less-experienced readers, and early detection of
LVH and subsequent therapy are key factors in reducing cardiovascular morbidity and
mortality [38,44]. Our algorithm achieved a performance close to the medical experts’
(readers) scores. Our comparison was based on the F1-score, precision, and recall. The
model we implemented was an ensemble model. Each view had a separate extractor, and
the features extracted from the acquired images were concatenated. Then, an ensemble
classifier takes the concatenated features as the input and calculates the probability of
having LVH. The dataset was collected from the Heart and Vascular Center of Semmelweis
University, and it contains the raw image scans with all available views (long-axis and
short-axis cine images) and the corresponding pathologies.

Our algorithm had a recall rate of 90% when the combination of long-axis views was
used as the input. In the case of the combination of long-axis views and short-axis views, we
had a 96% rate. The corresponding F1-scores were 89% and 91%, respectively. High recall is
beneficial, because fewer LVH cases will be left undiagnosed. False positives (predicted as
LVH, yet normal) can be discarded by the experts supervising the examination. In order to
judge the applicability of our method, we established a baseline by measuring the scores of
medical experts. The measurement involved six readers with varying levels of experience.
The measurement was designed to simulate a realistic clinical scenario where the reader has
no clear reference to the real case, but has access to the images of full CMR scans. To make it
more realistic, we included several other diseases in addition to LVH. We included diseases
that appear frequently in clinical practice, and the readers were blinded to the purpose of
the study. There are three main outcomes of the human experiment: (1) the differences
among the scores (F1-score, recall, etc.) of the readers were surprisingly small; (2) recall was
the highest value indicating that the readers had a bias toward having a cardiac disease; (3)
we obtained the baseline values for the scores (F1-score—95%, recall—98%); see Table 2.
High recall was also achieved by our algorithm in the case of the combined long-axis and
short-axis model. Figures 5 and 6 indicate that our algorithm can already be advantageous
in clinical practice even though there is still room for improvement.

We claim that by using a larger dataset, the gap can be bridged and that this method
can be a good candidate to become part of the daily clinical routine during CMR examina-
tions. Our method was limited to only one vendor and clinic center. For creating a more
robust method, the model should be trained on data gathered from different clinic centers
and vendors. Another limitation is the classification of etiologies. The current method
differentiates between two groups, normal (healthy) subjects and hypertrophy. There are
different etiologies for hypertrophy (e.g., HCM, amyloidosis), which can be differentiated
by including late enhancement images. From the dataset, we excluded healthy athletes, but
LVH can be present as a physiological condition in athlete’s heart; therefore, it could be an
interesting topic to differentiate between physiologic and pathologic LVH.

To the best of our knowledge, this is the first paper where a method for automatic
classification of LVH from different CMR images (short-axis, long-axis cine images) was
investigated and compared to medical experts. Future work can focus on the separation of
the etiologies within LVH automatically. Sports-related LVH should be also addressed in
order to create a more complete methodology.
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Appendix A. Standardization

The method for standardizing the long-axis images is based on defining a reference
system relative to a fixed axis. This axis is the Z-axis, which points from the feet to the head
of the patient, running parallel with the bore of the MRI. Each acquired image has a plane,
and it can be described in this coordinate system. The plane is characterized by its normal
vector and its orientation. The orientation is relative to the Z-axis. The images are stored in
dicom files, which contain the orientation and position matrices. The standardization is
achieved by rotation with a proper angle around the axis parallel with the normal vector
and crossing the middle of the image; see Figure A1.

Figure A1. Schematic illustration of the vectors used in the explanation of the standardization process.

First, the algorithm calculates the normal vector of the image from the orientation
matrix. The orientation matrix contains the directions of the left side and the upper side of
the image (~e and ~f ). Therefore, the normal vector is:

~n = ~e × ~f . (A1)

The normal vectors are almost the same for each view. Then, a new reference frame
can be calculated (~p and~q):

~q = ~z ×~n, ~p = ~q ×~n (A2)
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where~z = (0, 0, 1), then ~p,~q are normalized. The orientation is defined as the direction of~e
in the ~p,~q plane:

~d = [~e · ~p,~e ·~q]. (A3)

We can define a reference orientation (~d0), then each image can be compared and
rotated against the reference orientation. To decrease the size of the required rotation
angle, we calculated the average orientation of the images in the dataset per view. Then,
we defined the reference orientations according to the average values. For the sake of
completeness, these values were: LA2 (−0.937, 0.166), LA4 (0.632, 0.032) and LALVOT
(−0.0054, −0.635). The rotation angle (ϕ) is given as follows:

cos ϕ = ~d · ~d0. (A4)

Appendix B. Parameters

Table A1. The hyper-parameters used in the best-preforming model.

Parameter Value

batch size 16
learning rate 0.0005

optimizer AdamW
input shape 150 × 150
max angle 8

Appendix C. Example Images

The following images show examples for different heart conditions: normal, HCM,
amyloidosis, and Anderson–Fabry disease. In each row of pictures, the views from left to
right are the following: short-axis, long-axis 2-chamber, long-axis 4-chamber, and long-axis
3 chambers-view.

Figure A2. Short-axis cine image and long-axis cine images of healthy subject without left ventricu-
lar hypertrophy.

Figure A3. Short-axis cine image and long-axis cine images demonstrate left ventricular hypertrophy
in a patient with hypertrophic cardiomyopathy (HCM). Cine images show marked asymmetrical
septal hypertrophy (white arrows) corresponding with HCM.
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Figure A4. Short-axis cine image and long-axis cine images demonstrate concentric left ventricular
hypertrophy with subtle septal predominance (white arrows), in a patient with Anderson–Fabry
disease.

Figure A5. Short-axis cine image and long-axis cine images show marked, concentric left ventricular
hypertrophy (white arrows) in a patient with cardiac amyloidosis.
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