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Abstract: The steel rolling process is critical for safety and maintenance because of loading and
thermal operating conditions. Machinery condition monitoring (MCM) increases the system’s safety,
preventing the risk of fire, failure, and rupture. Equipping the mill bearings with sensors allows
monitoring of the system in service and controls the heating of mill components. Fiber optic sensors
detect loading condition, vibration, and irregular heating. In several systems, access to machinery
is rather limited. Therefore, this paper preliminarily investigates how fiber optics can be effectively
embedded within the mill cage to set up a smart manufacturing system. The fiber Bragg gratings
(FBG) technology allows embedding sensors inside the pins of backup bearings and performing
some prognosis and diagnosis activities. The study starts from the rolling mill layout and defines
its accessibility, considering some real industrial cases. Testing of an FBG sensor prototype checks
thermal monitoring capability inside a closed cavity, obtained on the surface of either the fixed pin of
the backup bearing or the stator surrounding the outer ring. Results encourage the development of
the whole prototype of the MCM system to be tested on a real mill cage in full operation.

Keywords: FBG sensors; smart bearing; structural mechatronics; smart manufacturing; industry 4.0

1. Introduction

The steelmaking process looks critical for energy consumption, power losses, envi-
ronmental pollution, and the safety of human operators [1]. The hot rolling mill exploits
a huge amount of energy, while in cold rolling are even critical vibration, friction, and
chattering [2]. Moreover, the risk of fire, due to anomalous heating of mill components and
lubricant, makes the system design rather difficult.

Nowadays, the enabling technologies of smart manufacturing allow mitigating those
problems [3]. They help in reducing mill vibration and material friction, to make higher the
product quality, control the state of lubricant and temperature, and even save energy in
terms of heat, vibration, and water flow control when it is used to keep the temperature of
roll surface as low as possible. Moreover, early detection of failures and damages allows
for applying effective predictive maintenance.

A distributed monitoring system with capillary access to the most hidden parts of the
mill cage may operate those actions and prevent failures. It warns operators about any
incipient faults [4] but even collects data from the machine elements [5]. It usually exploits a
network of distributed sensors, although some machine components, such as bearings, may
play the role of physical nodes of the network, to monitor the whole machinery when they
embed transducers [6,7]. Particularly, mechanical bearings are referred to as “smart” when
sensors monitor “in situ” the overall system behavior [8,9]. They constitute a node of the
distributed monitoring system to enhance the mill connectivity for monitoring, diagnosis,
and prognosis purposes, leading to “machinery condition monitoring” (MCM) [10,11].
Some network services provided by the Internet of Things (IoT) assure that connectivity [12].
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In the literature, wide use of smart bearings to detect vibration, noise, and resonances
is proposed [13], but a relevant part of MCM for safety belongs to the early detection of
temperature changes, especially in the most hidden elements of the rolling mill.

This paper investigates the specific use of smart bearing to detect any anomalous
heating in the rolling mill, through the fiber optics sensors, by monitoring elements of the
mill cage, being deeply embedded and poorly accessible. The mill system architecture is
analyzed. The study proposes access to backup bearings through their supporting and fixed
pins or through the structure of the mill cage, constraining the bearing rings. This choice
depends on the mill layout and its operation in either cold or hot rolling processes. The
investigation then identifies the fiber path inside the rolling mill and sets up the interface
to the bearing ring.

A preliminary experimental validation demonstrates the effectiveness of the fiber
Bragg gratings (FBG) [14] when embedded inside the mill system. An assessment of
sensors specifications includes a preliminary investigation of the fluidic interface exploited
to help the measurement in operation by considering the availability of water and lubricant
oil, respectively, in the mill cage. This preliminary investigation encourages finalizing
the design assessment of this approach for industrial application and for the proposed
implementation of artificial intelligence packages.

2. Materials and Methods

To proceed in the proposed design activity, a first investigation explores the smart
bearing technology, defines the most relevant requirements to be fulfilled, and selects the
most useful technological approach. A second step concerns the analysis of the rolling
mill layout to identify the operational goals and architectural accesses available for the
monitoring system. The focus then moves to the selected fiber optics to identify their
properties and some main design parameters. Finally, a preliminary definition of the
system architecture is proposed. A validation of this study follows and analyses the
performance into a small test bed of FBG sensors to identify some design issues and
potential obstacles and to test the system performance. This activity leads to discussing
some preliminary results.

2.1. The Smart Bearing Technology and Its Application to Rolling Process

The goal of smart bearing is to detect any abnormal operation of the rolling mill
(“out-monitoring”) as well as early identification of any inner faults (“in-monitoring”).
In the steelmaking process, the risk of catastrophic events motivates equipping all the
machinery with an effective condition monitoring system. This is carried out, for instance,
for the electric arc furnace [15]. In rotating machinery, statistics demonstrate that several
faults rise up in bearings, and effective condition monitoring can detect their immediate
consequences and evidence. A fault there nucleated affects the rotor shaft dynamics and its
stability [16–18]. Therefore, monitoring bearings allows for assessing the overall system
health and reliability. The smart bearing needs to be power supplied, either autonomously
or through a light and flexible wire connection, and suitably miniaturized to be embedded
into the machine [19]. Embedding sensors in some systems is rather difficult, but providing
a condition monitoring of the rolling mill promotes the automation of steel production
through some mechatronic manufacturing systems [20–22]. Some obstacles to wireless
telecommunication in the rolling mill actually exist. Therefore, a deep research activity
promotes the development of effective sensor technologies.

Since the beginning of this millennium [23], several solutions have been proposed.
Kovacs [24] exploits a wireless and temperature-sensitive capacitor sensor (up to 220 ◦C),
being more effective than thermocouples. Draney [25] introduces an autonomous smart
bearing suitable for harsh environments being able to operate up to 300 ◦C and harvest
thermal energy from the environment through a thermoelectric generator (TEG), even
used in some other applications [26]. It exploits wireless communication to send data. In
the work of [9], a multi-tasking smart bearing is proposed, including two piezoelectric
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vibration sensors, two magneto-electric speed sensors, and two thermocouples. In the work
of [27], the whole sensing unit is designed. A sensor based on a microprocessor monitors
the bearing duty cycles and dynamics. Vibration data in two directions are collected and
preliminarily analyzed. This system sends the monitoring system directly the evidence of
fault detection, in either the shaft or bearings, resorting to the wavelet energy spectrum
technique. In the work of [28], a small strain gauge, for high spatial resolution and low
response time, is applied to rolling contact in the axial roller bearing. A comprehensive
review of the state of the art of the smart bearing technologies and the structure of integrated
sensors and of the parameters to be monitored for the aircraft engine is depicted in the work
of [29]. Choi introduces [30] a cost-effective triboelectric sensor embedded into a roller
bearing based on the triboelectric effect. Zhang [31] proposes a review of the most recent
smart bearing layouts and focuses on some key issues such as signal detection, power
supply, read-out circuits, and bearing arrangement. Zaghari [32] presents an integrated and
self-powered wireless system for high-temperature (above 125 ◦C) environments powered
by a thermoelectric generator for bearing condition monitoring in aircraft application, where
the TEG allows collecting data every 46 s and transmitting every 260 s. Brusa [19] designed
an autonomous configuration based on a vibration energy harvester. The energy conversion
exploits vibration of a flexible structure, with surface-bonded piezoelectric layers, being
excited by some permanent magnets during their rotation. All the above-mentioned
solutions exploit quite suitable access to the monitored system. The ratio between the size
of the sensor and of the machine element is never too low, and environmental conditions
are only seldom critical. In case of the rolling mill, those benefits are very often absent, and
a specific strategy is required.

2.2. The Rolling Mill Architecture and Main Customer Needs

The rolling mill performs either hot or cold material processing, exploiting different
architectures [33,34]. In the hot rolling of steel, the billet is heated approximately up to
900 ◦C, and then it passes through the rolls of the rolling path. This action allows reducing
its thickness in every step of rolling, namely “pass”, with a given surface finish of the rolled
product. Moreover, heating and cooling of the rolled material even cause some geometrical
imperfections in the final product. Their prediction allows for assessing the mill layout
and choosing the most suitable manufacturing technology. In the hot rolling mill, the
working roll in contact with the worked material undergoes a very high temperature,
which requires an adequate cooling action, being provided by water injection, on the roll
surface. Unfortunately, the roll is exposed to several thermal shocks per revolution, leading
to surface cracking and spalling damages [35]. Those effects increase the severity of the
wear process and sometimes excite the thermomechanical fatigue of materials [36], thus
reducing the life of the working roll and even the mean time between failures, or MTBF [37].
If the mean temperature of the roll reaches a defined threshold value, some collateral risks
increase, such as those of combustion of lubricant and of unsafe interaction with human
operators. Those effects motivate thermal monitoring of the rolling mill elements.

In contrast, the cold rolling process offers several advantages. It provides a more
accurate shape of the final product and a smoother and better surface finish. Among
several mill configurations, the Sendzimir mill (Figure 1a) is often exploited for fast material
processing [38]. It includes slender working rolls in contact with rolled material, surrounded
by several back rolls, used to prevent bending and vibration of the work roll to ensure
precise processing and reduce surface defects. A more compact layout of the cluster mill
characterizes the Z-Mill [39], where the crown of back rolls is limited to a few elements,
actively controlled by hydraulic actuators, which allow applying the required forces to
control the work roll deformation [2]. This layout leads to a reduced size of the rolling mill,
but some dynamic problems may arise. During the cold rolling process, the strip is worked
in several passes (up to over ten). In each pass, the work rolling speed changes because of
the thickness reduction in the strip. Consequently, the rotational speed of rolls and back
bearings increases up to five times. This leads to a wide range of frequency of dynamic
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phenomena associated. In this case, continuous monitoring of dynamic behavior helps the
operators in controlling the process and ensures a safe service.
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In the cold rolling process, reaching the best surface finish possible is the main cus-
tomer need. It requires that chatter marks and other defects are absent from the rolled
product or at least reduced to a minimum size, negligible for the related application. To
fulfill this requirement, the rolling mill must work regularly, with moderate mill cage
vibration, small roughness of the working roll surface, and regular pressure distribution.
Preferably, the temperature should not exceed 70 ◦C. Easy detection of any anomalous
heating is therefore required, and this turns out into a need for a fast warning of operators
provided by clear evidence of alert (sound, light, configuration change useful to trap the
operators’ attention).

In the hot rolling process, the geometric tolerances of the final product are different,
but the health of working rolls in operation is a critical issue. As the temperature and
its gradient across the cross-section of roll during system operation are higher, surfaces
and structures suffer thermal stress, which usually leads to severe wear damage and
thermomechanical fatigue [36]. Vibration monitoring is even important since it affects
the product thickness [40]. Moreover, vibration may nucleate the damage to the mill
equipment. It is worth noticing that the hot rolling mill usually includes few rolls, as in
the 2-high and 4-high configurations (Figure 1b), being characterized by bigger and stiffer
working and backup rolls, while in the cold rolling mill, the work roll is slender and smaller.
Therefore, the two typical layouts differ quite a lot, and this is relevant for the access of the
monitoring sensors.

2.3. The Mill Accessibility and Analysis of Monitoring Paths and Technologies

Some previous analyses based on the model-based system engineering [41] identified
the fiber optic sensors [42] and piezoelectric microsensors [43] as the preferred choice for
designing the monitoring system of the rolling mill. Piezoelectric sensors, associated with a
telemetric unit, an energy storage system, and a microelectronic unit for the analysis and
processing of data [29], need to be located in the proximity of monitored elements. This so-
lution looks suitable for back bearings because of their size, while their application to work
and support rolls is more difficult. They include some electronic circuits exposed to the risk
of short-circuiting, especially in a harsh environment. The presence of flammable lubricant
makes the effects of short circuits uncontrolled. The reliability of wireless communication
even needs to be assessed [24,32]. Since the microelectronic units need to be very close to
the monitored elements, in the cold rolling mill, interference, and noise, due to saddles of
back bearings (see Figure 2, part 28) affect the communication.
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Overcoming those limitations is possible by resorting to fiber optic sensors. The fiber
Bragg gratings (FBG) sensors offer many advantages since they are intrinsically passive
elements and can be installed even in hazardous environments. They are insensible to
electromagnetic interference and provide a smooth operation, even at high temperatures.
In addition, the interrogation instrumentation connected to FBG sensors can be installed
even far from sensors, and thus the obstacles to the access of inner elements of the mill are
less effective than in the case of wired MEMS. It is true that FBG is never autonomous in
terms of power supply, and they need a main system emitting and receiving light, but the
length of connection is less critical than in wired devices.

According to current industrial practice, in the rolling mill, the spin speed, lubrication
condition, acoustic emission, load, and vibration amplitude of bearings are often monitored,
as well as vibration and temperature [45]. Those measurements are seldom performed all
simultaneously, i.e., a set of data allowing monitoring of the system in operation is collected
during a duty cycle by measurements discretized in time. The location of the measuring
device is usually quite far from the area of material processing, and some data can only
indirectly monitor the machine condition, as in working rolls and bearings.

Frequency and vibration amplitude detected in the mill bearings reveal the presence
of damages in either the inner or outer raceways and thus allow performing the “in-
monitoring” [46]. Measuring the strip speed, in addition to its damages [47] or the motors’
rotational speed [48], allows for identifying the mean speed of rolls, although the cluster
layout is quite different between rolls. Due to their location, back bearings are suitable to
measure the system dynamics, which allows for predicting some surface defects in the rolled
strip (“out-monitoring”). Temperature monitoring may detect a severe anomaly within the
system and helps in the prognosis of rolls undergoing thermomechanical fatigue [36]. Load
measurement is beneficial in both the cold and hot rolling mills to control the pressure
distribution on the rolled product.

To provide a synthesis, and according to the above-mentioned needs and practices,
respectively, in the cluster mill, the monitoring activity can be performed at back bearings.
Since they hold thin inner rings, poorly suitable for the installation of sensors along their
radial direction, and external rings rotate, the FBG sensors can be installed just by resorting
to their fixed pins. In contrast, in the hot rolling mill, the FBG sensors can be installed
into the outer ring of either supporting or backup bearings when present. In this case,
the inner ring is fixed and is constrained to the mill cage. For temperature monitoring
of working rolls, sensors can be installed inside the roll. It is known that fiber optics
sensors can be embedded in the roll geometry, in close proximity to the surface, and
the interrogation module, together with additional modules required to perform the pre-
analysis and dispatch of signal, can be installed at one end of the roll on their cross-section,
just in front of access exploited by the operators [39].
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Main monitoring activity will include the measurement of pressure applied by rolls
on the rolled product, vibration amplitude of the mill cage, temperature of inner elements,
and spin speed, at least of some rolls. Those measurements are performed every rolling
pass at different speeds. The aim is to detect the mill dynamic behavior in operation at both
the lower and higher frequency range. Particularly, the MCM will detect the chattering
phenomenon, occurring at a higher frequency, usually appearing at some kHz, in cold
rolling (1 to 10 approximately and depending on the mill layout and size).

Those MCM targets often motivate mounting some accelerometers on the mill cage to
measure vibration and some load cells on working rolls. Nevertheless, an additional mea-
surement at bearings should be welcome to prevent failures. The technology of capacitive
MEMS sensors, already tested in this field [49], does not look effective because of the huge
load applied (several MN at least) and of high temperature.

Exploiting the fiber optics technology for direct measurement of the mill cage vibration
and for monitoring load, temperature, and damage in bearings seems promising. Fiber
optics are never affected by problems related to electromagnetic compatibility, while, for
instance, self-sensing piezoelectric sensors [50], which have been already proposed for
monitoring the inner ring vibration in bearings, look poorly compatible with loading
conditions because of their material brittleness. In contrast, fiber optics are free from
ECM, thermal, and loading issues when suitably applied to monitored elements, as is
herein described.

2.4. Proposed System: FBG Sensors Applied to Health Monitoring of Rolling Mill

The monitoring activity can be carried out starting from signals retrieved by the FBG
sensors after a preliminary analysis performed by a unit installed in proximity of the rolling
mill. External actions acting on the optic sensors, such as strain, temperature, and vibration,
cause a variation in the Bragg wavelength [51,52]. The “Bragg gratings” allow setting up
local, intrinsic, and absolute sensors to be operated even with multiplexed signals. The fiber
core is treated to exhibit a periodic modulation of the material refractive index. The local
sensors look like a sequence of mirrors, namely the Bragg gratings. Their refractive index is
intentionally modified. They are distributed along the fiber and are variably spaced to each
other, only partially reflecting the signal injected [53]. The diffractive phenomenon allows
each grating to reflect a signal at a frequency related to spacing. This geometry allows the
detection of any changes in temperature [54], strain, and pressure. The sensor plays the
role of a dielectric mirror, able to reflect a specific frequency of light while transmitting all
of the other ones.

If one analyzes separately several monitoring options, details allow for identifying
some key issues of design. Particularly, measuring the displacement of signal peek in the
dynamic response spectrum measured by the FBG sensor allows detecting the amplitude
of the external agent and tracing its effect. The main parameter is the wavelength reflected
by the Bragg grating, λB, which complies with the Bragg condition:

λB = 2ne f f Λ (1)

where Λ is the grating pitch, being the distance between grating targets, and neff represents
the effective refractive index of the given propagation mode. This is similar to the refractive
one, but it is approximated with negligible error for the wave propagating inside trans-
versely limited media as a function of the refractive index of the core and cladding of the
optical fiber as in [51]:

ne f f = ncladding +

(
1.1428− 0.996

v

)2
∆n (2)

where ∆n = ncore − ncladding and ν is a function of ∆n and of the wavelength λ of light.
Several physical actions applied to the sensor, such as strain, temperature, and pres-

sure, change the Bragg wavelength λB, and the measure of peak shift in the spectrum
allows for calculating the corresponding change in the physical action. Particularly, if X is
the generic physical signal, its influence upon the Bragg wavelength is:
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∆λB =
dλB
dX

∆X = λB

(
1

ne f f

dne f f

dX
+ α

)
∆X (3)

where the first term within brackets represents the normalized sensitivity on the selected
physical agent X (i.e., temperature, pressure, strain . . . ) of the effective refractive index,
while α is a parameter related to the wavelength shift, expressed as a function of the
physical signal X. A typical FBG optical sensor has a physical length of a few millimeters, a
reflected bandwidth lower than 1 nm, and it might achieve the 100% reflection of the peak
luminous intensity [52].

In strain measurement, the Bragg wavelength changes linearly [53], i.e., the propor-
tionality factor denoted as strain sensibility coefficient, Kε, is defined as:

∆λε = Kε∆ε ≈ [0.78λB]∆ε (4)

Since λB is approximately equal to 1550 nm, a typical value of Kε is 1.2 nm·m/mm [54].
Experimental evidence demonstrated that response remains linear with strain, without
hysteresis up to 400 ◦C.

The FBG sensors allow measuring vibration by detecting the frequency of dynamic
excitation through a sort of firm of the working machine in operation, and the amplitude
of dynamic response as the reflected signal exhibits a shift in frequency depending on the
loading condition. Dynamic measuring needs employing a dynamic interrogator, being
capable of sampling the signal typically at 1 kHz and even higher frequency, and thus the
system cost increases. The longitudinal strain of fibers is exploited for this measurement to
assure a suitable sensitivity of the sensor to signal. To make more effective the monitoring
system, in the literature is known the use of vibration sensors, based on a small flexible
structure equipped with fiber optics, to be connected to the monitored structure, which
exploits the forced vibration of a small cantilever (Figure 3) [55].
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A contactless measurement is even performed, by focusing the sensor on a thin
vibrating element, equipped with a small permanent magnet, whose vibration is excited by
the rotating shaft, without direct contact. More in general, a displacement sensor is even
based on a couple of fibers, one transmitting and one receiving light, respectively, which
focus on a target in motion to detect its relative position with respect to the sensor location.

The FBG sensors are even used in monitoring pressure. Measuring pressure lower
than 1 bar is difficult. In contrast, when pressure changes quite fast, these sensors allow
monitoring even a sudden evolution of operating conditions. Pressure is measured through
the Poisson’s effect on the fiber’s material. If the fiber is assumed to be sufficiently long to
avoid any additional local effect of ends, strain is related to pressure applied on the lateral
surface as follows:

ε = ∆P
E (1− 2v)

∆λB = KP∆P
(5)
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where ε is the axial strain of fiber, ∆P is the gradient of pressure in time, E is the Young
modulus of the fiber’s material (typically E ≈ 72 GPa, in silicon composites, or E < 30 GPa
in case of polymeric coating with relevant thickness) and v is the Poisson’s coefficient. The
sensitivity on pressure change is given by ∆λB, and in standard fibers, can be quite low,
although, in the literature, some examples of polymeric coatings can be found leading to a
coefficient KP of up to 34 nm/MPa.

It is known that by introducing the temperature sensibility coefficient, KT, Equation
(3) becomes:

∆λT = KT∆T (6)

being linear only within a limited range of temperature values (typically below 100 ◦C).
When a greater temperature range is expected, it is preferred to express the temperature
sensitivity coefficient as a function of the thermal expansion coefficient of fiber, α0, and of
thermo-optic coefficient, β0, as KT = λB (α0 + β0), by resorting to a second-order formula
for β0, which allows describing its sensitivity on temperature [56]. It is worth noticing that
temperature variation of neff deeply depends on the characteristics of the fiber, and even a
small difference in material and production technique can strongly affect those coefficients,
as in [57], where another application of FBG sensors is applied to steelmaking, but limitedly
to the copper plate for melting and cooling.

Equation (3) clearly states that the signal of a single FBG sensor does not distinguish
the contribution induced by strain and by temperature, respectively, to the measured value.
In the case of vibration detection, the temperature variation normally occurs at a frequency
that is largely lower than the vibration frequency. In static or quasi-static analysis, this
becomes a problem since the two sources of strain are coupled. Therefore, it is required to
resort to a measuring system consisting of at least two sensors:(

∆λ1
∆λ2

)
=

[
K1ε K1T
K2ε K2T

](
ε
T

)
= [K]

(
ε
T

)
(7)

where Kiε and KiT are the strain and temperature sensitivity coefficients of the i-th sensor,
respectively. Excluding the special case in which every sensor is sensible only to one of
the two above-mentioned perturbations, two configurations are foreseen. When the mea-
surement of one sensor, at least, is affected only by one of the two physical perturbations,
i.e., one element of matrix K is null, that sensor becomes the reference to uncouple the two
signals composing the system response. When the sensitivities of the two sensors are just
moderately different, and the determinant of matrix K is defined, i.e., not null, a numerical
solution to the above Equation (7) is found. It is worth noticing that using FBG sensors,
whose sensitivities have both non-null values, implies resorting to the second case here
described above. Producing FBG sensors with different sensitivity is possible, for instance,
by exploiting fibers with different diameters spliced together. A technical difficulty arises
in splicing together fibers whose diameter is different. Moreover, even inscribing the FBG
in the fibers’ core is difficult. This type of configuration cannot be applied in embedded
fiber because both sensors would result in being bound to the structure and undergoing
the same strain, and thus matrix K would be singular. Those are the main limitations of the
proposed approach, but a technical solution is available.

Resorting to two FBG sensors, made with different Bragg wavelength λB allows
handling those problems. According to Equation (3), FBG sensors exhibiting different
central wavelengths also have different strain and temperature sensitivity coefficients.
Therefore, inscribing both sensors on the same fiber and using an interrogator capable
of detecting a multitude of wavelengths allow solving Equation (7), provided that all
parameters of sensors are known. To avoid the case of badly conditioned matrix K, a
difference of at least 10% in Bragg wavelength between the two sensors is required [58].
Some suitable values of λB have already been tested in some commercial FBG sensors and
result in 850 and 1300 nm, or 1300 and 1550 nm, respectively. Therefore, the configuration
here described above looks suitable for a coupled measurement without a real problem
of the distinction between monitored physical entities. Moreover, the overall size of



Appl. Sci. 2022, 12, 4186 9 of 18

sensors corresponds to the dimensions of fibers. This allows for embedding sensors in
the mechanical system and sometimes even in the material of components. They look
minimally invasive, and they allow avoiding a significant structural weakening effect.
Finally, the wavelength division multiplexing (WDM) technique allows exploiting several
sensors [59], composing a network applied to the monitored system, and thus the cost and
complexity of the monitoring system are significantly reduced.

3. Results
3.1. Proposed Architecture and Operation of Monitoring System

The application of the above-mentioned monitoring system differs in the case of cold
and hot rolling mills, respectively. The typical layout to be considered in cold rolling is the
cluster mill with multiple rolls (up to 20, usually) (Figure 4). In this case, monitoring the
pressure applied by each bearing of the backup roll on the cage pin is significant to detect
any anomalous loading condition, dynamic response, temperature change, and even local
damage evidence.
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The fiber optic sensor can be deployed along the fixed pin (Figure 5) by eventually
exploiting the lubricant feed channels 60a, 60b, and 60c in Figure 2, or similar since the
massive constitution of the pin allows the creation of some additional channels, even
smaller to embed the fiber optics sensors. The external head 42 (Figure 2) allows locating
the required connections to the interrogator and demodulator devices, as connectors 84 do
for the lubrication system. Exploiting separated channels, being eventually filled by liquid,
reduce the risk of early deterioration of fiber coatings, particularly if lubricant feed channels
were preliminarily selected to guest fiber optics. Measurements are performed at dedicated
locations as 64a and 70 or similar. One sensor can reach the inner ring of the backup bearing
to detect the local pressure along an arc of the circumferential deployment of fiber optic
installed inside the pin, just below the inner ring, as it was even performed in the case of
bearing housing in the work of [62]. Measurement of local temperature can be performed
at a dedicated cavity produced on the pin surface in correspondence to the inner ring.

Similarly, a double set of fiber optic sensors can be applied to rolls of the hot rolling
mill by resorting to the structure of the vertical positioning system, which directly controls
the outer ring of main bearings (Figure 6). In the case of roller bearings, pressure and
temperature monitored are those closest to the main body of rolls. In addition, optical
measurements assure monitoring of the strip temperature, while some load cells help
in controlling the load applied to the work roll. Eventually, the local measurements
can be applied to several points to have at least some discretized access to pressure and
temperature distributions with the bearing. A similar arrangement could even be conceived
for lubricated bearings and aims at detecting the effect of load on the elastic deformation of
rings to improve the prediction by modeling of the gap inside the bearing layout.
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3.2. Experimental Set-up for Thermal Monitoring

After selecting the smart bearing technology and the most accessible path within the
mill cage, a preliminary design of the monitoring system is performed. A preliminary tech-
nological assessment on a test rig helps in checking the suitability of the proposed approach.
Validation on a real plant is then required, despite the cost and some practical issues related
to the implementation of a full-scale system. Practically speaking, the main issues of this
design include the first characterization of FBG sensors when monitoring pressure and load
applied to bearings, as well as vibration, and then when measuring temperature. In the
latter case, a current discussion in the literature is how the sensor must be located upon the
monitored structure, resorting to a dedicated cavity. Particularly, shaping and filling of the
cavity are additional design issues, as the literature proposes some solutions of operation
in either oil or air. Moreover, the design of FBG sensors for the rolling mill has to take into
account several targets, such as failure detection, predictive maintenance of elements, and
prevention of combustion, with associated automatic alarming action.

Considering the above-mentioned tasks, the literature already demonstrated the
possibility of equipping bearings with FBG sensors for measuring the pressure applied to
its raceways in operation. Particularly, this application is not so far from the case analyzed
in [62], providing a complete demonstration of operation, despite the different sizes and
applications considered. Those demonstrations fit the requirements of the rolling mill.
Therefore, a further discussion about that task seems poorly attractive in this paper. Many
approaches have been inherently developed based on soft computing techniques [64],
multiwavelet denoising [65], and isolation of bearings’ signals in drivers [66].
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In contrast, the measurement of temperature through the FBG sensors looks intrin-
sically a current topic of the literature when applied to steelmaking [67]. Temperature
detection is required to uncouple mechanical from thermal excitation, respectively, as
has been previously discussed. In both the hot and cold rolling mills, the detection of a
temperature higher than 70 ◦C at the two locations selected, i.e., close to the inner ring
in the cluster mill and to the outer ring in the hot rolling mill, may reveal an incipient
condition of failure, and surely an undesired working condition for lubricant. It is sufficient
to need warning operators while a temperature above 100 ◦C activates an alarm.

Moreover, the detection of temperature in warning and alarm conditions, respectively,
must be fast, evident and intuitive for operators, as well as safe for the overall system. Those
motivations lead to exploiting water to fill the cavity where the FBG sensor is recovered,
more than lubricant. A sacrificial layer can even be used to cover the inner surface of
the cavity, being made with a material whose melting point is close to 70 ◦C. It could
emphasize the alarm signal by coloring the water flowing back from that cavity, where
the FBG sensors are monitoring temperature. Therefore, a key issue for the technological
assessment of the monitoring system looks at the design of the cavity and the selection of
material surrounding the fiber.

The FBG sensors assure appreciable linearity of their response in operation. They
are operated in multiplexing mode by inscribing several sensors on the same fiber. A
precise calibration allows exploiting all those benefits. Nevertheless, an open question,
in the case of the cavity embedded in the inner elements of the mill cage, concerns the
effectiveness of measurement. Some preliminary experiments have been performed upon a
set of FBG sensors inscribed on a single-mode fiber, with an outer diameter of cladding
equal to 125, core diameter of 9 µm, and total length of 4 mm. Preliminary characterization
of FBG sensors has been completed by identifying their thermal sensitivity coefficient
through a direct comparison with a thermo-resistor PT-100. The goal of this calibration is
the identification of ∆λB for a given change of temperature, and thus the determination of
KT as the slope coefficient of the characteristic function ∆λB = ∆λB(T).

In this test rig, a Peltier cell, driven by the controller TEC (“Thermo-Electric Con-
troller”) TEC-1091 (Meerstetter Engineering GmbH, Rubigen, Switzerland), imposes the
temperature changes in measurement activity. The controller TEC-1091 has an input volt-
age of 5 to 24 V (DC), output voltage of 0 to ±21 V, and output current of 0 to ±4 A. The
TEC controller regulates the current feeding the Peltier cell through a PID control, whose
feedback acts on the error between the value of temperature defined by the user and that
measured by the PT-100. The thermos-resistor RSPro PT-100 (Platinum) operates within the
range of −50 to +250 ◦C by resorting to a “four wires” configuration, resistance at a melting
point is 100 Ω, sizes are 2 mm (width) and 10 mm (length), while tolerance class is A.

The FBG sensors have been connected to the SmartScan Interrogator (Smart Fibers
Ltd., Bracknell, UK), which operates in dynamic mode. It analyzes up to 4 fibers and a
maximum of 16 FBG sensors through the WDM method (“wavelength division multiplexing
method”). The experimental campaign exploited a single fiber with one sensor during
each test. The main properties of sensor FemtoFiberTech (FemtoFiberTec GmbH, Goslar,
Germany), based on fiber SM1250BI, are the core diameter of 9.8 µm, cladding diameter of
125 µm, coating in polyimide, central wavelength of 1565.07 nm, sensor length of 3.2 mm,
reflectivity of 71.4%, bandwidth at 3 dB 0.47 nm, and signal-to-noise ratio of 25.6 dB. The
communication between interrogator and PC host is assured through the Ethernet and the
software SmartSoft SSI v3.2 (Smart Fibers Ltd., Bracknell, UK).

The sampling frequency of 2.5 kHz allows reaching a compromise condition between
the need of retrieving as many data as possible and the limitation of the frequency range
induced by a high number of samples. That frequency allows for detecting signals within
the range of 40 nm. The interrogator is aimed at detecting the amplitude of the reflected
component of the signal within the frequency range defined. Wavelength stability is assured
within ±5 pm, within the temperature range −10 to +80 ◦C, optical connectors FC/APC
with a diameter of 2.5 mm of bushing.
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The Peltier cell used in testing is TEC1-12706 with a maximum current of 3 A, maxi-
mum voltage of 8.6 V, maximum power of 20 W, maximum difference in temperature of
66 ◦C, sizes 23 × 23 × 3.6 mm, and weight of 26 g.

3.3. Effect of the Fixing Typology on the Temperature Response of the Sensor

Some tests have been carried out to investigate several design issues, looking critical
in the case of the rolling mill layout. The first one focuses on the constraints applied to fiber
optic sensors. The FBG sensor has been fixed in direct contact with the warm surface of
the Peltier cell, by means of a bolted device, with four bolts and a sheet of metal and never
loaded above 1 Nm (tightening torque). This configuration might replicate the geometry of
the hot rolling mill depicted in Figure 6, for instance (Figure 7a).
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Direct contact under pressure reveals several drawbacks. During tests, some samples
of fiber were broken because of pressure imposed by bolts on their imperfect location inside
the room created in correspondence of surfaces. Despite the possibility of uncoupling
the two signals of temperature and pressure, respectively, as it was mentioned above, the
strong constraint applied to fiber along the lateral direction, inhibiting the Poisson effect
from working properly under temperature changes, introduced an error of up 100% on the
determination of KT, for a given increment of bolt loading of 20%. Particularly, on a set of
10 samples, tests demonstrated that for ∆T = 20 ◦C, ∆λB varies from 0.24 nm (at 0.6 Nm) to
0.35 nm (at 0.8 Nm), and then 0.49 nm (at 1 Nm). Moreover, comparing the temperature
imposed by the cell and that measured by the FBG sensor, being in simultaneous contact
with the supporting plate and the surface of the Peltier cell, it was realized that a significant
time delay occurs to find the two values of temperatures superposed (up to 550 s). The FBG
sensor is simultaneously in contact with the supporting plate and the hot surface of the
Peltier cell, and thus a sort of average value of temperature is measured until that thermal
equilibrium is established. This might reduce the promptness of the measuring system if
some transient effects are monitored.

That evidence confirms the need for a cavity to surround the fiber to have a faster
thermal equilibrium assessment. This solution was already tested in [57], with a cavity of
10 × 10 mm and a depth of 3 mm, creating a bubble of air around the fiber. In that case,
the monitored process is aluminum solidification in a sand mold. A stainless steel tube
encased the optical fiber to allow it to survive both mechanical and thermal conditions,
as it demonstrated reaching 700 ◦C without failures. The efficiency of air bubbles in
the present case has been tested, with very poor results. Nevertheless, filling the cavity
with demineralized water allowed reaching better results (Figure 7b). To perform this
experiment, a specific device has been built up in thermoplastic resin and through 3D
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printing. The FBG sensor can cross a central room filled with liquid, being water in this
test, in contact with the hot surface to be monitored through some holes produced on the
lateral surfaces. A final set of tests has been performed to characterize the FBG sensor in
thermal measurement, located in the new holding system depicted in Figure 7c.

3.4. Thermal Response and Sensibility Tests

Tests investigated the range of temperatures of 30 to 70 ◦C, considering that the
material of the 3D-printed device exhibits a melting point at 75 ◦C. This property, in real
operation, might help in visualizing the effect of temperature since the melt thermoplastic
resin adds white color to water and, thus, the operator can receive an additional visual
warning of the risk of excessive heating. The use of water might even help in perceiving
the achievement of 100 ◦C as soon as it starts boiling. The cooling water jets applied to
rolls, for instance, assures the availability of water at room temperature.

The temperature has been increased by a rate of 0.02 ◦C/s. Ten tests allowed extracting
the main properties of the FBG sensor as follows:

{λi} = KT{Ti}+ a (8)

i.e., a linear regression based on the minimum squares method allowed finding the relation
between measurement and temperature, considering parameter ‘a’ the wavelength at 0 ◦C.

To validate the numerical approach, the determination coefficient R2 is defined as:

R2 =
∑n

i=1

(
λ̃i − λ

)2

∑n
i=1
(
λi − λ

)2 (9)

has been calculated by comparing measured values λi, their average value λ, and values λ̃i
obtained by the linear regression.

The uncertainties related to experimental parameters required resorting to the Monte
Carlo method [68,69] to check the reliability of numerical values extracted by the linear
regression. Both the temperature and wavelength signals are subject to measurement errors
due to the sensitivity of the measuring instruments. In particular, the uncertainty of the
measuring equipment was used to define the standard deviation (s) of the temperature
signal, s(Ti) = 0.01 ◦C, and wavelength signal, s(λi) = 8 × 10−4 nm. In order to evaluate the
standard deviation of the linear regression coefficients, s(KT) and s(a), using a Monte Carlo
simulation, 5000 runs were carried out for each test, randomly varying each of the measured
values within the uncertainty interval (represented by plus or minus one standard deviation
from the experimentally measured value), according to a uniform distribution. The five
thousand linear correlation values thus obtained were used to evaluate the standard
deviation of both linear regression coefficients, obtaining s(KT) = 1 × 10−5 nm/◦C and
s(a) = 1× 10−3 nm. Therefore, for each test, the temperature sensibility coefficient KT can be
considered correct up to the fourth decimal place, while the parameter ‘a’ can be considered
certain up to the second.

Tests lead to evaluate main parameters varying within a narrow range of values,
since KT = 0.01207 to 0.01272 (nm/◦C) with a = 1564.913 to 1564.960 (nm), R2 = 0.9979 to
0.9997, λ0 = 1565.292 to 1565.326 (nm). The average value of KT is 0.01232 nm/◦C with
variance σ2 = 3.661× 10−8 (pm/◦C)2. This result demonstrates the suitable reliability of that
identification. It can be noticed that the interrogator can measure changes in temperature
corresponding to ∆λmin = 0.0008 nm. Therefore, the minimum change of temperature to be
detected is ∆Tmin = 0.0008/KT = 0.065 ◦C, i.e., 100 times the precision of the controller TEC
equipped with thermocouple PT-100. The correspondence between the regression function
and experimental results has been checked as well as the linearity of the dynamic behavior
of the FBG sensor (Figure 8).
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4. Discussion

The health monitoring of the rolling mill includes a careful measurement of vibration
and temperature in service, despite the difficulty of access to the mill cage and to bearings,
in particular. Therefore, in a preliminary step, this investigation analyzed the layout of the
rolling mill, and some possibilities have been found:

• In the cold rolling mill, the fixed pins of backup bearings are suitable to host the fiber
optics sensors to monitor the temperature of the inner rings of bearings;

• In the hot rolling mill, the system constraining the outer rings of bearings allows access
to the fiber optics sensors.

A second step has been focusing on the sensors’ technology:

• The FBG sensors look suitable for this application, although the assembling system
may be critical for measurement. Particularly, the FBG sensor suffers the effect of
pressure and/or of structural deformation.

A third level of details includes some recommendations for the assembly:

• Creating a cavity where the sensor measures temperature allows uncoupling of the
effect of pressure and of temperature, respectively;

• Thermal measurement may benefit from filling the cavity with either a liquid or gas.
In principle, this material might consist of air bubbles, but the performance in terms of
promptness and uniformity of temperature is poorly evident. Demineralized water
allows surrounding the fiber and transferring heat quite fast and uniformly, although
the use of water must be verified for all industrial layouts currently used.

Materials selection might consider some properties of the monitoring system as de-
tectability of temperature:

• If the system must never be operated above 70 ◦C, a sacrificial layer made of thermo-
plastic resin, whose melting point is around 75 ◦C, deposed on the surface of the cavity,
might help in warning the operators when the maximum temperature is reached. In
principle, above 100 ◦C boiling could add an intuitive alarm, provided that no other
problems are foreseen.

The operation of the FBG sensors looks feasible and practical after a preliminary
calibration of the monitoring system. As it was demonstrated in the previous section, by
experiment, reliable identification of the main parameters useful for the measurement
activity is assured, despite the number of steps that require an accurate implementation.
The sensitivity of the FBG sensor looks even better than in other technologies.
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The harsh environment significantly affects the monitoring system behavior, in general,
but the FBG sensors allow reaching a high temperature, are remotely controlled, look
suitable to access the inner parts of the mill cage, and do not suffer the interaction with
electric and magnetic fields.

The cost of FBG sensors is never negligible because of the number of elements compos-
ing the monitoring system. Nevertheless, the technological benefits of fiber optics and the
availability of a reliable monitoring system combined with the overall cost of the mill may
allow considering this solution feasible for a real smart manufacturing implementation.
It is true that only a systematic approach, such as the model-based systems engineering
used in the case of aircrafts, for instance [70], will allow the development of the whole
monitoring system, and the heterogeneous simulation tools [71] nowadays available will
allow for integrating the network of distributed sensors within the mill cage elements.

5. Conclusions

The steelmaking process is surely expensive in terms of power consumption, energy
dissipation, and pollution and requires a drastic reduction in waste, energy, and material.
It requires a very high safety assurance for the operators against the risk of injuries.

In this study, a contribution to smart manufacturing based on process monitoring has
been proposed. The literature often focuses on monitoring either the rolled product by
some contactless measurements or on the system control through some actuators (motors,
hydraulic actuators, etc.). Bearings are seldom the target of monitoring if they resort to
mechanical components based on either rolling elements or fluid film.

The first matter of discussion is the location of distributed sensors to be applied to the
mill elements to detect damage, vibration, and heating phenomena. Considering the layout
of hot and cold rolling mills mostly used, some solutions have been analyzed to overcome
several difficulties in accessing the inner parts of the mill cage. The FBG sensors look highly
compliant with the limitations of the mill layout. Particularly, they allow measuring the
temperature of structural components as bearings very precisely and uncoupling some
other effects such as those induced by electric and magnetic fields. Nevertheless, some
practical issues have been circumstantiated, such as the need for a cavity for locating the
fiber optic close to the monitored surface to avoid direct pressure on thermal sensors. Filling
the cavity with a liquid helps in making uniform and easily detectable temperature. A
preliminary experimental demonstration confirmed the suitable performance of the FBG
sensors in such an embedded environment.

The next step requires a direct implementation of a working rolling mill to check all the
technological issues related, i.e., the large size of the mill system, the harsh environmental
conditions, and the superposition of physical noise and interferences in service.
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