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Abstract: Community structure is a network characteristic where nodes can be naturally divided
into densely connected groups. Community structures are ubiquitous in social, biological, and
technological networks. Revealing community structure in the network helps in the understanding
of the topological associations and interactions of elements in the network, as well as helping to
mine their potential information. However, this has been proven to be a difficult challenge. On
the one hand, this is because there is no unified definition of the quality of a community; on the
other hand, due to the complexity of the network, it is impossible to traverse all the possibilities
of community partitions to find the best one. Aiming at performing high-accuracy community
detection, an information-theoretic approach AMI-NRL was proposed. The approach first constructs
a community evolution process based on the representation of the target network, then finds the
most stable community structure during the evolution using an average-mutual-information-based
criterion. The experiments show that the approach can effectively detect community structures on
real-world datasets and synthetic datasets.

Keywords: community detection; network representation; average mutual information; network
clustering; information entropy

1. Introduction

A network topology diagram (or network diagram for short) is an abstract repre-
sentation of systems and structures that commonly exist in the real world. In a network
diagram, a node represents an individual or element in the system, and an edge represents
the relationship between individuals or elements. It has been shown that some nodes in the
network are more closely connected to each other than to the other parts of the network,
and therefore these nodes can be regarded as an independent part, called a community [1].
Community structures reflect the local topological features and the relationships between
elements. Thus, detecting communities in a network diagram becomes an indispensable
step in understanding the maintenance and evolution of a network, and this can be applied
to the analysis and prediction of the real-world network systems. For example, constructing
a recommendation system on the basis of the community detection of friend relationship
networks and identifying advertising marketing behaviors and telecom frauds by detecting
abnormal links between communities in a telecommunication network [2].

However, finding the community structure accurately in the network has been proven
to be a difficult task. This is mainly due to two reasons, one being the ambiguity definition
of the pros and cons of a community, and the other being that there are an exponentially
large number of possible community partitions [1]. For the former, although researchers
generally reach a consensus that a community is a cluster of nodes with closer internal
connections than external connections, different researchers use different indexes to define
and measure this closeness, including the well-known modularity. However, these indexes
cannot be accurate in all cases. For example, modularity has a resolution limit problem,
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meaning that in some cases, multiple small communities may be unreasonably identified
as one large community. Moreover, there is an exponentially large number of possible
community partitions for a network, which makes it impossible to find the optimal by
traversing all community partitions under the current computing power. Researchers
are trying to find the best partition in a limited search space through various methods of
transforming a partition, but there is no guarantee of finding the optimal one.

Aiming at these two aspects, a typical community detection algorithm usually includes
two parts: one is a community evaluation index, such as modularity, used to evaluate the
quality of community partition; the other is a certain method, such as top-down split in
GN [3] and LFM algorithms [4], constantly changing the community partition and trying
to obtain the maximum value of the community evaluation index. However, for the former,
the community evaluation indexes used by the existing algorithms are still inaccurate,
which makes the results obtained by these algorithms sets far from ground truth on many
real-world datasets. For the latter, the search space of the algorithm is too large, and thus
the algorithm cannot efficiently find the optimal community, and sometimes even falls into
a local optimum. In recent years, researchers have devoted more attention to studying
how to extract the structural information of networks by means of network representation
learning, as well as the relationship between the vectorial representation and the original
structure of the network. Work in this area includes using community labels to improve
network representation algorithms [5,6], as well as using network representation to improve
the accuracy of community detection [6]. Inspired by these studies, we propose a new
approach, AMI-NRL. The main idea is to simulate the evaluation process of communities
in the real world by network representation learning (NRL) and clustering, then trying to
find the most stable state in the process, under the guidance of the community evaluation
index on the basis of average mutual information (AMI). The stable state will be output as
the result of community detection. Compared with the existing methods, the AMI-NRL
does not measure the quality of static community structure but judges the stability through
the community structure evolution, which gains more accurate results. In addition, by
introducing network representation learning for preprocessing, the search space is greatly
reduced in terms of revealing community structures at multiple granularities, which brings
about higher scalability.

The main contributions of this paper are as follows:

• An average mutual-information-based community evaluation index is proposed,
which is applicable to top-down community evolution processes and bottom-up
community evolution processes. By calculating the average mutual information and
information entropy of adjacent states, the AMI-based community evaluation index
can measure the stability of each state of a community evolution process.

• An information-theoretic approach based on network representation named AMI-NRL
is proposed. This approach combines network representation and the AMI-based
community evaluation index to achieve stable and accurate community detection.

• Experiments were conducted to verify the accuracy and stability of the approach, in com-
parison with typical community detection algorithms on real-world and synthetic datasets.

The rest of this paper is organized as follows: Section 2 summarizes the current
research on community detection. Section 3 introduces and explains in detail the AMI-NRL
approach. Section 4 shows the experiments conducted to verify the effectiveness of the
algorithm. Section 5 concludes the article and provides a prospect of our research.

2. Related Work

The current research on community detection mainly focuses on finding commu-
nity structures from multiple types of networks. Depending on the type of community
structure, they can be divided into overlapping/non-overlapping community detection.
Depending on the type of networks, they can be divided into algorithms for static/dynamic,
directed/undirected, weighted/unweighted networks, etc. [1]. The design of a commu-
nity detection method mainly includes two parts—one is an index to evaluate a given
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community partition, the other is a specific method of community division. The former
evaluates the strengths and weaknesses of a community partition, and the latter finds
the best partition of a network by certain steps or processes according to the guidance of
the former.

In the community evaluation index, the most widely used is Girvan and Newman’s
modularity [3], which is applied in their GN algorithm and the fast Newman algorithm.
Modularity brings about an unprecedented development on static non-overlapping com-
munity detection algorithms, but the resolution limit of it [7] makes traditional modularity-
based approaches unable to obtain ideal community partitions in many cases, and even
sometimes leads to obviously unreasonable results. Besides the modularity method, a
variety of other types of community evaluation indexes have also been proposed for over-
lapping or non-overlapping community detection. The two-layer coding method of Rosvall
et al. [8] transforms the community partitioning problem into an information compression
problem. This method considers that the average coding length of nodes for a random
walking in the network can be used to measure the quality of a partition. The accuracy of
the method is time-dependent, and more iterations will provide more accurate results. By
evaluating the stability of random walks in the network, the stability index [9] proposed
by Lambiotte et al. can also be used to evaluate the quality of community partition. The
hyperparameter t of the stability metric determines on what time scale the index will
measure the random walking, but it is difficult to determine what value t should be chosen
for t in different networks. Unlike the above research, we introduce the average mutual
information (AMI) by the inspiration of information theory and system stability in order to
measure the stability of communities during the evolution process of them, as well as to
propose an AMI-based community evaluation index aiming at obtaining accurate, stable,
and unique results.

In terms of the method of community division, many types of methods have been
successively proposed and coordinated with the community evaluation index in order to
detect communities in networks. The top-down splitting method, for example, the GN
algorithm [3], continuously deletes edges in the network until all edges are deleted, finding
the optimal state as the final result using the community evaluation index. The efficiency
of the GN algorithm is low, due to a large time cost calculating the edge-betweenness
when the network is large. The bottom-up aggregation method initializes the network
that each node is a separated community, and then pairs of communities are continuously
selected to merge until the entire network finally forms a large community; following
this, a community evaluation index is used to search the optimal state as the result in this
process. For example, the FN algorithm [10], the CNM algorithm [11], the fast-unfolding
algorithm (also known as the Louvain algorithm) [12], and the Infomap algorithm [8] are
specific methods for generating community partitions using a bottom-up aggregation idea.
Such types of methods are faster and more efficient, but the accuracy is also low because
the deviation tends to widen from the previous state to next state during the aggregation
process. The label propagation method detects the communities by first labeling some
nodes and propagating labels between nodes by the similarity of two nodes, such as the
COPRA algorithm [13] and the CLPA-GNR algorithm [14]. These types of algorithms are
characterized by high operating efficiency but are less stable. On the basis of the idea of
local optimization, local expansion methods follow the idea starting from multiple nodes
and greedily expand to their neighborhoods until the specified community boundary condi-
tions are reached, thereby obtaining overlapping/non-overlapping community partitions.
Examples are LFM [4] and GCE [15]. This type of method can be effectively applied to
detect overlapping communities, but it is easy for it to fall into local optima due to the
difficulty in dealing with global information in the process of expansion. Heuristic methods
are also used for community detection. Infomap [16] proposed by Rosvall et al. encodes
and compresses the network information and obtains the optimal community partitioning
by simulated annealing. The clone selection algorithms such as CSA-Net [17] can be applied
to detect community structures in complex networks at multiple resolutions. However,
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such algorithms often have multiple adjustable parameters. It is difficult to determine
appropriate parameter values, and it is also easy to obtain trapping in the local optimum.
The random-walking methods obtain structural information such as the closeness of the
connections between nodes (or node correlation) through random walks in the network,
and then are based on this structural information (or the preset community evaluation
index) to detect communities. An example is the community detection algorithm based
on positive and negative links [18] proposed by Su et al. Such a type of method is diffi-
cult to distinguish between the two partitions with similar community structures, which
leads to the failure of finding the best partition. Recently, some motif-based methods have
been proposed that focus on the higher-order structural characteristics of the network,
e.g., EdMot [19] proposed by Pei-Zhen Li et al. Such methods have high efficiency, espe-
cially in large neural networks and collaboration networks, but have a lack of accuracy on
unweighted and undirected networks compared with other methods.

In recent years, researchers have devoted more attention to studying how to extract
the structural information of networks by means of network representation learning, such
as ComE [6], which constructs the “community detection–community representation–node
representation” closed-loop framework, and MemeRep [20], which uses network repre-
sentation to optimize the modularity density. Although gaining of a better representation
of a network has been extensively studied in the literature, the issue of how to obtain
accurate partitioning by using the representation has not gained much attention, while the
community partitions are straightway obtained by clustering the representation vectors
using methods such as K-means or DBSCAN, which lead to multiple results depending
on the parameters and initialization methods. Our research pays more attention to how to
use the network representation obtained to get a community partition with higher stability
and accuracy. In our approach, a bottom-up community evolution process is generated
using the representation of the target network, so that the most stable state of the pro-
cess can be found as the optimal partition, by the usage of the AMI-based community
evaluation index.

3. The Approach
3.1. Community Evaluation Index Based on Average Mutual Information

The community evaluation index is used to measure the quality of a partition for a
specific network. The approach uses a community evaluation index based on average
mutual information (AMI) to measure the stability of each state of a bottom-up cohesion
or top-down division community evolution process by calculating the average mutual
information and information entropy of adjacent states, which finally leads to the optimal
community partition of such a process.

Definition 1. Community evolution process of top-down division.
In a community evolution process: P = P0, P1, P2, · · · , PN ; each state is a community

partition. If adjacent partitions Pn and Pn+1 satisfy

∀Yj ∈ Pn+1, ∃Xi
(
Xi ∈ Pn → Yj ⊆ Xi

)
(1)

where Xi and Yj denote communities in a partition, n is an integer, and n < N, then community
evolution process P is named a top-down division community evolution process. In other words,
partition Pn+1 comes from Pn where one or several of the communities split into more communities.

Figure 1 shows an example of community evolution process of top-down division.

Definition 2. Community evolution process of bottom-up cohesion.

Correspondingly, if adjacent partitions Pn and Pn+1 satisfy

∀Yj ∈ Pn+1, ∃Xi
(
Xi ∈ Pn → Xi ⊆ Yj

)
(2)
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then community evolution process P is named a community evolution process of bottom-up cohesion.
In other words, partition Pn+1 comes from Pn, where some of the communities merge into one.
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For a partition Pn in a bottom-up cohesion or top-down division community evolution
process, the community evaluation index QPn based on AMI is defined as

QPn = max
(

IPn−1,Pn , IPn ,Pn+1

)
+

1
k · HPn

(3)

where IPn−1,Pn and IPn ,Pn+1 are the AMI value between the partition of current state with
that of the previous state, and that of the next state, respectively. HPn is the entropy of Pn,
and k is the scale factor. Better results can be achieved in our experiments when setting k to
the total number of nodes N of the target network.

The community evaluation index QPn can be used to measure the stability of each
state. This is because when a state has a high AMI-value with its adjacent states and a low
entropy, it is considered instantaneously stable on the category of information theory.

Since the essence of a community is a node set and the essence of a partition is a
set of communities, the AMI value IPa ,Pb between two partitions Pa and Pb (a 6= b) can be
calculated using the AMI formula between sets, namely,

IPa ,Pb = ∑
i

∑
j

ωij · I
(
Xi; Yj

)
(4)

where Xi ∈ Pa, which denotes the ith community in partition Pa; Yj ∈ Pb, which denotes
the jth community in partition Pb. I

(
Xi; Yj

)
denotes the mutual information between

communities Xi and Yj, and ωij denotes the relevancy degree between communities Xi and
Yj, which is defined as

ωij = P
(
Xi, Yj

)
= P

(
Yj
∣∣Xi

)
· P(Xi) (5)

Consider a top-down division community evolution process P = P0, P1, P2, · · · , PN .
Since states of such a process are essentially partitions, there are only three possible cases
for a pair of random communities Xi ∈ Pa, Yj ∈ Pb, a < b:

1. Xi = Yj, which denotes that in partitions Pa and Pb, the member nodes of communities
Xi and Yj are totally the same. Xi and Yj are actually the same community, which
remain unchanged in two states.

2. Yj ⊆ Xi, which denotes that community Yj in partition Pb comes from a splitting
community Xi in partition Pa.

3. Xi ∩Yj = ∅, which denotes that in partitions Pa and Pb, the member nodes of Xi and
Yj are totally different; in other words, the two communities have no relations on the
timeline.

For Case 1, P
(
Yj
∣∣Xj

)
= 1.

For Case 2, P
(
Yj
∣∣Xj

)
=

nYj
nXi

, where nXi and nYj are, respectively, the number of member

nodes of communities Xi and Yj.
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For Case 3, P
(
Yj
∣∣Xj

)
= 0.

From Equations (4) and (5), we can further derive that ωij · I
(
Xi; Yj

)
in Case 3 is 0, but

in Case 1 and 2, the value of I
(
Xi; Yj

)
still needs to be calculated to obtain IPa ,Pb . To achieve

this, we use the following formula:

I
(
Xi; Yj

)
= ∑

a
∑
b

P
(
Xi = a, Yj = b

)
[log2 P

(
Xi = a, Yj = b

)
−
(
log2 P(Xi = a) + log2 P

(
Yj = b

))
]

(6)

where a, b ∈ 0, 1, P
(
Xi = a, Yj = b

)
= P

(
Yj = b

∣∣Xi = a
)
· P(Xi = a). P(Xi = 1) denotes the

probability of taking a random node, and it belongs to community Xi.
Thus, P(Xi = 1) =

nXi
n , where nXi is the number of the member nodes of community

Xi, and n is the total number of nodes of the whole network.
P(Xi = 0) denotes the probability of taking a random node, and it does not belong to

community Xi. Thus, P(Xi = 0) =
n−nXi

n .
P
(
Yj = 1

)
and P

(
Yj = 0

)
can be calculated in a similar way.

P
(
Yj = 1

∣∣Xi = 1
)

denotes the probability of taking a random member node of com-
munity Xi, and it is also a member node of community Yj. Therefore,

P
(
Yj = 1

∣∣Xi = 1
)
=

nYj

nXi

For Case 1 and Case 2, if a node does not belong to community Xi, then it certainly
cannot belong to community Yj. Therefore, P(Yj = 1

∣∣Xi = 0) = 0, P(Yj = 0
∣∣Xi = 0) = 1 .

For a community evolution process of bottom-up cohesion, by inverting its states, it
can be transformed into a top-down division community evolution process. For instance,
if Pbottom−up = {P0, P1, P2, · · · , PN} is a bottom-up cohesion community evolution process,
then Ptop−down = {PN , PN−1, · · · , P2, P1} is its corresponding top-down division commu-
nity evolution process. Thereby, the AMI value of any pair of the adjacent states of it can be
calculated by the method above. Here, we do not go into detail.

After the AMI value of the adjacent partitions, the entropies of each partition also
need to be calculated.

For partition Pa, the entropy HPa of it is defined as

HPa =−∑
i

P(Xi = 0) · log2 P(Xi = 0)−∑
i

P(Xi = 1) · log2 P(Xi = 1) (7)

where Xi denotes the ith community of partition Pa.
Finally, the community evaluation index QPn of each state in the community evolution

process P can be calculated. The state that has the largest QPn is the best partition in the
community evolution process.

3.2. Basic Process of the Approach

The basic idea of AMI-NRL is to form a community evolution process using the
representation of the nodes and then to select the most stable partition in process as the
final result. The following steps show the basic process of the approach:

1. Random walks through out the network, recording the passing nodes to obtain the
node sequences.

2. Obtaining the vectorial representation of each node by inputting these sequences into
the Word2vec model.

3. Cluster these vectors with aggregation hierarchical clustering, regarding the clusters
as communities, in order to form a bottom-up cohesion community evolution process
P = {P0, P1, P2, · · · , PN}

4. Calculating the AMI value IPn ,Pn+1 of each two adjacent partitions, as well as the
entropy HPn of each partition.
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5. Calculating the QPn value of each partition and selecting the partition Pa with largest
QPn to output as the result partition.

Steps 1 and 2 are used to obtain the representation of each node of the network using
Deepwalk [21]. We conducted experiments on a number of different network representation
learning methods, including Deepwalk [21], Node2Vec [22], Walklets [23], NMFADMM [24],
NetMF [25], GLEE [26], RandNE [27], BoostNE [28], and GraRep [29]. By comparing the
results of applying them to our approach, we finally selected Deepwalk because of its
clearer and more stable boundaries in its clustering results on multiple real-world datasets.

In Step 1, a random walk iteration of R times is designed. According to our experi-
ments, better results can be achieved in our experiments when setting R from 10 to 25. In
each iteration, each node of the network is correspondingly set as the starting point of the
random walker. Then, it randomly moves to its neighboring nodes equiprobably. After
L− 1 moves, it generates N node sequences with length L. In our experiments, we found
that for larger networks, larger L values were needed to be set. Step 1 finally generates
R · N node sequences with length L.

In Step 2, the sequences are input into the Skip-gram model, which is a two-layer
neural network used in Word2vec. In the training phase, a specific node is input at one
time, and the model is required to output the predict nodes accurately within its window,
that is, the context of the input node. After multiple iterations, a weight matrix from the
input layer to the hidden layer can be learned. Each row of the weight matrix represents
the weight of each node in the input layer corresponding to the neurons in the hidden layer.
This is a vectorial representation of the node. A good result can be obtained by setting the
context window size to 7 and the number of hidden-layer neurons to 50.

After obtaining the representation of the nodes, Step 3 performs an agglomerative
hierarchical clustering on them to construct a bottom-up cohesion community evolution
process. While clustering, Euclidean distance and Ward’s method [30] are used to calculate
the distance between vectors and between clusters, respectively. The hierarchical clustering
will produce a dendrogram. Each layer of the dendrogram naturally corresponds to a
community partition. In adjacent layers, there will be a pair of communities merged into
one. A bottom-up cohesion community evolution process can be generated in this way.

Finally, in Steps 4 and 5, by using the community evaluation index based on AMI, the
QPn value of each partition of the process is calculated. The partition Pa with largest QPn

value is selected as the result of community detection.
The pseudo code of the implemented approach is shown in Algorithm 1:

Algorithm 1 AMI-NRL

Input: The original network G(E, V);
Output: The optimal partition of network G(E, V);
1: for i = 0 to R do
2: for j = 0 to N do
3: Perform a random walk of length L started with node j;
4: Save random walk sequence into list_seq;
5: end for
6: end for
7: model←Word2Vec(list_seq, size=neurons_size, window=window_size);
8: embeddings← model.get_embeddings();
9: Perform an aggregation hierarchical clustering with embeddings;
10: Save each state of the aggregation hierarchical clustering into list_partition;
11: for i = 2 to N do
12: list_AMI[i]← average mutual information of list_partition[i], list_partition [i+1];
13: end for
14: for i = 2 to N do
15: entropy_i← entropy of list_partition[i];
16: Calculate community evaluation index Q using max(list_AMI[i-1], list_AMI[i]) and entropy_i;
17: if Q > max_Q then
18: max_Q ← Q ;
19: opt_i ← i ;
20: end if
21: end for
22: return list_partition[opt_i]
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4. Experiments

This section shows the implementation of the approach and experimentally verifies its
accuracy. Three real-world networks of different sizes and LFR synthetic networks were
selected for the experiments. These datasets and corresponding parameters are specifically
described in Table 1. Since these four datasets involved ground-truth labels, we used the
number of communities (CN) and normalized mutual information (NMI) as evaluation
indicators and compared them with other community detection algorithms in order to
evaluate the accuracy of the approach.

Table 1. Main properties of datasets and experimental parameters.

Dataset Node# Edge# CN Length Iterations Dimensions

Karate Club 34 78 2 50 10 10
Dolphins 62 159 2 50 10 10
Polbooks 105 441 3 50 10 10
Polblogs 1490 19,090 2 100 10 10
LFR Benchmark 2000 Variable * 4 100 10 10

# Here Node# and Edge# denotes the numbers of nodes and edges of the network respectively; * Number of edges
of LFR networks are variable according to the parameters.

4.1. Datasets and Experimental Parameters

The datasets used in the experiment include the Karate Club [31], Dolphins [32],
Polbooks, Polblogs [33], and LFR benchmark [34]. In the first four are real-world datasets,
the last one generates synthetic networks with given parameters.

Table 1 lists the main properties of datasets, as well as the experimental parameters
including random-walk length, number of iterations, and dimensions of vectors.

4.2. Benchmarks

To verify the accuracy of the algorithm, we considered both the number of communities
(CN) and normalized mutual information (NMI).

NMI evaluates the difference between two partitions on the basis of information
theory; therefore, it can be used as an index aiming at evaluating the accuracy of community
detection, which is introduced in [35].

The formula of NMI is shown as follows:

NMI =
−2 ∑CA

i=1 ∑CB
j=1 Cij· log

( Cij ·N
Ci· ·C·j

)
∑CA

i=1 Ci·· log
(

Ci·
N

)
+ ∑CB

j=1 C·j· log
(C·j

N

) (8)

where CA and CB are the number of communities of partitions A and B, respectively. C is a
confusion matrix that indicates the number of nodes that belong to a pair of communities
at the same time. Specifically, Cij denotes the number of nodes simultaneously belonging
to community i in partition A and community j in partition B. Ci· and C·j denote the sum
of all elements of a row and a column, respectively, in matrix C. CA and CB denote the
number of communities of partitions A and B, respectively. NMI measures the similarity of
two community partitions; it is equal to 1 if the two partitions are identical, and it is close
to 0 if they are quite dissimilar.

4.3. Results

This section shows the results of applying AMI-NRL to the networks, compared
with community detection algorithms including GN [3], FN [9], Louvain [12], IE [36], and
EdMot [19].
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4.3.1. Karate Club

This approach can output stable community detection results on the Karate Club
dataset, as shown in Figure 2 and Table 2. It was exactly the same as the labeled partition.
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Table 2. Results of AMI-NRL and the other community detection algorithms on Karate Club.

CN NMI

Labeled partition 2 /
AMI-NRL 2 1.00
GN 5 0.58
FN 2 0.84
Louvain 2 0.84
IE 2 0.84
EdMot 2 0.59

The bold numbers emphasize the best experimental results compared with the labeled partition.

4.3.2. Dolphins

The results on the Dolphins dataset, as shown in Figure 3 and Table 3, had a difference
of 0 to 1 point from the labeled partition when running multiple times. The difference node
was Node 39, which had two edges connected correspondingly to two communities, and
therefore we hold the opinion that it is reasonable no matter which community the node
belongs to.
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Table 3. Results of AMI-NRL and the other community detection algorithms on Dolphins.

CN NMI

Labeled partition 2 /
AMI-NRL 2 0.96
GN 5 0.55
FN 3 0.65
Louvain 2 0.65
IE 2 0.89
EdMot 5 0.51
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4.3.3. Polbooks

Table 4 and Figure 4 show the results on the Polbooks dataset. The result differs from
the labeled partition by 16 nodes: 0, 4, 6, 18, 28, 46, 48, 52, 58, 64, 65, 67, 68, 76, 77, and 85.

Table 4. Results of AMI-NRL and the other community detection algorithms on Polbooks.

CN NMI

Labeled partition 3 /
AMI-NRL 3 0.58
GN 5 0.56
FN 3 0.57
Louvain 3 0.55
IE 2 0.55
EdMot 5 0.5
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Table 5 shows the result of the link analysis on these nodes, taking into account the
edges inside communities and between communities in both community detection results
and labeled partitions. As shown in Table 5, nodes 0, 4, 6, 18, 28, 46, 48, 58, 64, 65, 76, and 77
had a greater number of edges inside communities than the labeled partition; nodes 52, 67,
and 68 had the same internal and external edges as that of the labeled partition. Only node
85 had one more internal edge than the labeled partition. Therefore, we hold the opinion
that the AMI-NRL achieves a better result on the Polbooks than the labeled partition.

Table 5. Link analysis of the result and the labeled community partition on Polbooks.

Labeled Partition AMI-NRL

Node Internal Links External Links Internal Links External Links
0 2 4 6 0
4 3 5 5 3
6 4 7 11 0
18 1 2 3 0
28 1 2 2 1
46 0 4 1 3
48 0 4 4 0
52 3 2 3 2
58 5 8 7 6
64 5 4 7 2
65 4 3 7 0
67 4 2 4 2
68 3 1 3 1
76 0 13 11 2
77 2 5 5 2
85 3 2 2 3
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4.3.4. Polblogs

Table 6 and Figure 5 show the results on the Polblogs dataset. Note that the isolated
nodes without any edges linked to the main part of the networks were removed before
community detection.

Table 6. Results of AMI-NRL and the other community detection algorithms on Polblogs.

CN NMI

Labeled partition 2 /
AMI-NRL 2 0.72
FN 11 0.52
Louvain 4 0.63
EdMot 6 0.58
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4.3.5. LFR Benchmark

The LFR benchmark is a type of artificially generated network proposed by Andrea
Lancichinetti et al. in [33]. Compared to GN benchmark networks, LFR networks can
simulate real-world networks more accurately in terms of its scale-free feature on degree
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distribution and community size. By altering multiple parameters, users can determine
characteristics of the network such as network size, community size, average node degree,
and community mixing degree. Table 7 shows the parameters used in the experiments.

Table 7. Parameters of the datasets generated by LFR benchmark.

Node#
(n)

Average
Degree (k)

Max
Degree
(maxk)

Mixing
Parameter

(mu)

Community Scale
(minc, maxc) CN

1 2000 15 50 0.1 200∼1000 4
2 2000 15 50 0.2 200∼1000 4
3 2000 15 50 0.3 200∼1000 4

The key parameter of the LFR reference network is the parameter µ (mu). This
parameter controls the mixing degree of a single community with other communities. The
higher the mixing degree is set at, the more edges will be generated to connect different
communities. This results in a higher average externality of the network, which makes it
more difficult for a community detection algorithm to distinguish the community structure.
The results of running AMI-NRL on LFR networks and the comparison with the other
community detection algorithms are shown in Figure 6 and Tables 8 and 9.
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Table 8. Results of AMI-NRL community detection on LFR benchmark datasets.

Mixing Parameter (mu) CN Labeled CN Result NMI

1 0.1 4 4 1
2 0.2 4 4 1
3 0.3 4 4 0.99

Table 9. Result comparison of AMI-NRL and the other community detection algorithms on LFR
benchmark (mu = 0.3).

CN NMI

Labeled partition 4 /
AMI-NRL 4 0.99
FN 8 0.63
Louvain 5 0.76
EdMot 5 0.82

5. Conclusions

In this paper, we raise the idea of detecting communities in the network on the basis
of stability. Following this idea, a community evaluation index based on average mutual
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information was used to find the most stable state in a community evolution process. The
stability of each state of the process was measured by calculating the average mutual
information of adjacent states and their information entropy. On the basis of this index, we
proposed AMI-NRL. In this approach, the network is transformed into vectors through
network representation learning. Then, agglomerative hierarchical clustering is performed
on these vectors to simulate a real-world evolution process of communities. Finally, the
optimal community partition can be found through the process by finding the peak value
of the community evaluation index. Experiments on real-world and synthetic networks
show that the approach is accurate and stable for the detection of communities.

In experiments, we also found that the ground truth of some datasets was not neces-
sarily the most reasonable community partition. By comparing the labeled partition of the
Polbooks dataset and the partition obtained by AMI-NRL, we found that the community
structure obtained by the latter was more closely connected within the community, while
the connection between communities was sparser. In other words, its community structure
was more explicit. In future research, we will analyze this issue in depth and try to propose
a more accurate and reasonable community evaluation model.

Due to the definition of AMI and the limitations of agglomerative hierarchical cluster-
ing, the current approach is limited to non-overlapping community detection in undirected
and unweighted networks. We will continue to expand our research to more types of
networks, as well as the detection of overlapping communities.
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