A Novel Non-Destructive Technique for Cultural Heritage: Depth Profiling and Elemental Analysis Underneath the Surface with Negative Muons
Abstract
:1. Introduction
2. Muons
2.1. Properties of the Muon and Muon Capture
2.2. Muon Production and Muon Beamlines
2.3. Muon Instrumentation
3. Application to Cultural Heritage Science
3.1. Coinage Debasement
3.2. Elemental Analysis of Bronze Artefacts
3.3. Meteorites
3.4. Organic Materials
3.5. Isotopic Analysis
3.6. Muon Imaging
4. Future Developments and Access
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mantler, M.; Schreiner, M. X-ray Fluorescence Spectrometry in Art and Archaeology; John Wiley & Sons: Hoboken, NJ, USA, 2000; Volume 29, pp. 3–17. [Google Scholar] [CrossRef]
- Schreiner, M.; Melcher, M.; Uhlir, K. Scanning electron microscopy and energy dispersive analysis: Applications in the field of cultural heritage. Anal. Bioanal. Chem. 2006, 387, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Mahnke, H.-E.; Denker, A.; Salomon, J. Accelerators and x-rays in cultural heritage investigations. Comptes Rendus. Phys. 2009, 10, 660–675. [Google Scholar] [CrossRef]
- Giorgi, G. Overview of Mass Spectrometric Based Techniques Applied in the Cultural Heritage Field. In Organic Mass Spectrometry in Art and Archaeology; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 37–74. [Google Scholar] [CrossRef]
- Kardjilov, N.; Festa, G. Neutron Methods for Archaeology and Cultural Heritage; Springer: Cham, Switzerland, 2017; Available online: http://link.springer.com/10.1007/978-3-319-33163-8 (accessed on 6 April 2022).
- Alfeld, M.; Broekaert, J.A.C. Mobile depth profiling and sub-surface imaging techniques for historical paintings—A review. Spectrochim. Acta Part B Atomic Spectrosc. 2013, 88, 211–230. [Google Scholar] [CrossRef]
- Hillier, A.; Paul, D.; Ishida, K. Probing beneath the surface without a scratch—Bulk non-destructive elemental analysis using negative muons. Microchem. J. 2015, 125, 203–207. [Google Scholar] [CrossRef]
- Engfer, R.; Schneuwly, H.; Vuilleumier, J.L.; Walter, H.K.; Zehnder, A. Charge-distribution parameters, isotope shifts, isomer shifts, and magnetic hyperfine constanst from muonic atoms. Atomic Data Nucl. Data Tables 1974, 14, 509–597. [Google Scholar] [CrossRef]
- Measday, D. The nuclear physics of muon capture. Phys. Rep. 2001, 354, 243–409. [Google Scholar] [CrossRef]
- Blundell, S.J.; de Rienzi, R.; Lancaster, T.; Pratt, F.L. Muon Spectroscopy: An Introduction; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Hillier, A.D.; Hampshire, B.; Ishida, K. Depth-Dependent Bulk Elemental Analysis Using Negative Muons. In Handbook of Cultural Heritage Analysis; D’Amico, S., Venuti, V., Eds.; Springer: Cham, Switzerland, 2022; pp. 23–43. [Google Scholar] [CrossRef]
- Fermi, E.; Teller, E. The Capture of Negative Mesotrons in Matter. Phys. Rev. 1947, 72, 399–408. [Google Scholar] [CrossRef]
- Daniel, H. Coulomb capture of muons and atomic radius. Z. Physik. A Atomic Nucl. 1979, 291, 29–31. [Google Scholar] [CrossRef]
- Von Egidy, T.; Jakubassa-Amundsen, D.H.; Hartmann, F.J. Calculation of muonic Coulomb-capture probabilities from electron binding energies. Phys. Rev. A 1984, 29, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Schneuwly, H.; Pokrovsky, V.; Ponomarev, L. On coulomb capture ratios of negative mesons in chemical compounds. Nucl. Phys. A 1978, 312, 419–426. Available online: http://inis.iaea.org/search/search.aspx?orig_q=RN:10456796 (accessed on 16 February 2022). [CrossRef]
- Hillier, A.D.; Butcher, K.; Hampshire, B. Isotope analysis of materials using muonic X-ray and gammas. In ISIS Neutron and Muon Source; Science and Technology Facilities Council: Swindon, UK, 2019. [Google Scholar]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Hurtado, S.; León, M.G.; García-Tenorio, R. GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2004, 518, 764–774. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods B 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Kubo, M.K.; Moriyama, H.; Tsuruoka, Y.; Sakamoto, S.; Koseto, E.; Saito, T.; Nishiyama, K. Non-destructive elemental depth-profiling with muonic X-rays. J. Radioanal. Nucl. Chem. Artic. 2008, 278, 777–781. [Google Scholar] [CrossRef]
- Ninomiya, K.; Kubo, M.K.; Nagatomo, T.; Higemoto, W.; Ito, T.U.; Kawamura, N.; Strasser, P.; Shimomura, K.; Miyake, Y.; Suzuki, T.; et al. Nondestructive Elemental Depth-Profiling Analysis by Muonic X-ray Measurement. Anal. Chem. 2015, 87, 4597–4600. [Google Scholar] [CrossRef]
- Particle Data Group; Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Clemenza, M.; Bonesini, M.; Carpinelli, M.; Cremonesi, O.; Fiorini, E.; Gorini, G.; Hillier, A.; Ishida, K.; Menegolli, A.; Mocchiutti, E.; et al. Muonic atom X-ray spectroscopy for non-destructive analysis of archeological samples. J. Radioanal. Nucl. Chem. Artic. 2019, 322, 1357–1363. [Google Scholar] [CrossRef]
- Ninomiya, K.; Nagatomo, T.; Kubo, K.M.; Strasser, P.; Kawamura, N.; Shimomura, K.; Miyake, Y.; Saito, T.; Higemoto, W. Development of elemental analysis by muonic X-ray measurement in J-PARC. J. Phys. Conf. Ser. 2010, 225, 012040. [Google Scholar] [CrossRef]
- Hillier, A.D.; Lord, J.S.; Ishida, K.; Rogers, C. Muons at ISIS. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2018, 377, 20180064. [Google Scholar] [CrossRef] [Green Version]
- Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N.; Hashim, I.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; et al. A Highly intense DC muon source, MuSIC and muon CLFV search. Nucl. Phys. B Proc. Suppl. 2014, 253-255, 206–207. [Google Scholar] [CrossRef]
- Biswas, S.; Gerchow, L.; Luetkens, H.; Prokscha, T.; Antognini, A.; Berger, N.; Cocolios, T.E.; Dressler, R.; Indelicato, P.; Jungmann, K.; et al. Characterization of a Continuous Muon Source for the Non-Destructive and Depth-Selective Elemental Composition Analysis by Muon Induced X- and Gamma-rays. Appl. Sci. 2022, 12, 2541. [Google Scholar] [CrossRef]
- Jenkins, D. Radiation Detection for Nuclear Physics; IOP Publishing: Bristol, UK, 2020. [Google Scholar] [CrossRef]
- Giuntini, L.; Castelli, L.; Massi, M.; Fedi, M.; Czelusniak, C.; Gelli, N.; Liccioli, L.; Giambi, F.; Ruberto, C.; Mazzinghi, A.; et al. Detectors and Cultural Heritage: The INFN-CHNet Experience. Appl. Sci. 2021, 11, 3462. [Google Scholar] [CrossRef]
- Reidy, J.J.; Hutson, R.L.; Daniel, H.; Springer, K. Use of muonic x-rays for nondestructive analysis of bulk samples for low Z constituents. Anal. Chem. 1978, 50, 40–44. [Google Scholar] [CrossRef]
- Köhler, E.; Bergmann, R.; Daniel, H.; Ehrhart, P.; Hartmann, F. Application of muonic X-ray techniques to the elemental analysis of archeological objects. Nucl. Instrum. Methods Phys. Res. 1981, 187, 563–568. [Google Scholar] [CrossRef]
- Daniel, H. Application of X-rays from negative muons. Nucl. Instrum. Methods Phys. Res. 1984, 3, 65–70. [Google Scholar] [CrossRef]
- Moreno-Suárez, A.; Ager, F.; Scrivano, S.; Ortega-Feliu, I.; Gómez-Tubío, B.; Respaldiza, M. First attempt to obtain the bulk composition of ancient silver–copper coins by using XRF and GRT. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atomic 2015, 358, 93–97. [Google Scholar] [CrossRef]
- Hampshire, B.V.; Butcher, K.; Ishida, K.; Green, G.; Paul, D.M.; Hillier, A.D. Using Negative Muons as a Probe for Depth Profiling Silver Roman Coinage. Heritage 2019, 2, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Feliu, I.; Moreno-Suárez, A.; Gómez-Tubío, B.; Ager, F.; Respaldiza, M.; García-Dils, S.; Rodríguez-Gutiérrez, O. A comparative study of PIXE and XRF corrected by Gamma-Ray Transmission for the non-destructive characterization of a gilded roman railing. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atomic 2010, 268, 1920–1923. [Google Scholar] [CrossRef]
- Ninomiya, K.; Kubo, M.K.; Strasser, P.; Nagatomo, T.; Kobayashi, Y.; Ishida, K.; Higemoto, W.; Kawamura, N.; Shimomura, K.; Miyake, Y.; et al. Elemental Analysis of Bronze Artifacts by Muonic X-ray Spectroscopy. JPS Conf. Proc. 2015, 8, 033005. [Google Scholar] [CrossRef] [Green Version]
- Green, G.A.; Ishida, K.; Hampshire, B.V.; Butcher, K.; Pollard, A.; Hillier, A.D. Understanding Roman Gold Coinage Inside Out. J. Archaeol. Sci. 2021, 134, 105470. [Google Scholar] [CrossRef]
- Marcucci, G.; Oliva, P.; Bonesini, M.; Carpinelli, M.; Cremonesi, O.; Depalmas, A.; Di Martino, D.; Fiorini, E.; Gorini, G.; Hillier, A.D.; et al. Muonic Atom X-rays Spectroscopy for elemental characterization of bronze nuragic lamps found in the ‘Tre Navicelle’ Tomb’. J. Archaeom. submitted.
- Terada, K.; Ninomiya, K.; Osawa, T.; Tachibana, S.; Miyake, Y.; Kubo, M.K.; Kawamura, N.; Higemoto, W.; Tsuchiyama, A.; Ebihara, M.; et al. A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam. Sci. Rep. 2014, 4, 5072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terada, K.; Sato, A.; Ninomiya, K.; Kawashima, Y.; Shimomura, K.; Yoshida, G.; Kawai, Y.; Osawa, T.; Tachibana, S. Non-destructive elemental analysis of a carbonaceous chondrite with direct current Muon beam at MuSIC. Sci. Rep. 2017, 7, 15478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutson, R.L.; Reidy, J.J.; Springer, K.; Daniel, H.; Knowles, H.B. Tissue Chemical Analysis with Muonic X rays. Radiology 1976, 120, 193–198. [Google Scholar] [CrossRef]
- Hosoi, Y.; Watanabe, Y.; Sugita, R.; Tanaka, Y.; Nagamine, K.; Ono, T.; Sakamoto, K. Non-destructive elemental analysis of vertebral body trabecular bone using muonic X-rays. Br. J. Radiol. 1995, 68, 1325–1331. [Google Scholar] [CrossRef]
- Shimada-Takaura, K.; Ninomiya, K.; Sato, A.; Ueda, N.; Tampo, M.; Takeshita, S.; Umegaki, I.; Miyake, Y.; Takahashi, K. A novel challenge of nondestructive analysis on OGATA Koan’s sealed medicine by muonic X-ray analysis. J. Nat. Med. 2021, 75, 532–539. [Google Scholar] [CrossRef]
- Cuchí-Oterino, J.A.; Penanes, P.A.; Martín-Gil, J.; Moldovan, M.; Aragón, I.A.; Martín-Ramos, P. Mineral provenance of Roman lead objects from the Cinca River basin (Huesca, Spain). J. Archaeol. Sci. Rep. 2021, 37, 102979. [Google Scholar] [CrossRef]
- Baker, J.; Stos, S.; Waight, T. Lead isotope analysis of archaeological metals by multiple-collector inductively coupled PLASMA mass spectrometry. Archaeometry 2006, 48, 45–56. [Google Scholar] [CrossRef]
- Ninomiya, K.; Kudo, T.; Strasser, P.; Terada, K.; Kawai, Y.; Tampo, M.; Miyake, Y.; Shinohara, A.; Kubo, K.M. Development of non-destructive isotopic analysis methods using muon beams and their application to the analysis of lead. J. Radioanal. Nucl. Chem. Artic. 2019, 320, 801–805. [Google Scholar] [CrossRef] [Green Version]
- Backenstoss, G.; Charalambus, S.; Daniel, H.; Hamilton, W.; Lynen, U.; Von Der Malsburg, C.; Poelz, G.; Povel, H. Nuclear γ-rays following muon capture. Nucl. Phys. A 1971, 162, 541–551. [Google Scholar] [CrossRef]
- Kessler, D.; McKee, R.J.; Hargrove, C.K.; Hincks, E.P.; Anderson, H.L. Muonic X rays and capture γ rays in 89Y. Can. J. Phys. 1970, 48, 3029–3037. [Google Scholar] [CrossRef]
- Kessler, D.; Mes, H.; Thompson, A.C.; Anderson, H.L.; Dixit, M.S.; Hargrove, C.K.; McKee, R.J. Munonic x rays in lead isotopes. Phys. Rev. C 1975, 11, 1719. [Google Scholar] [CrossRef]
- Anderson, H.L.; Hargrove, C.K.; Hincks, E.P.; McAndrew, J.D.; McKee, R.J.; Barton, R.D.; Kessler, D. Precise Measurement of the Muonic X Rays in the Lead Isotopes. Phys. Rev. 1969, 187, 1565–1596. [Google Scholar] [CrossRef]
- IAEA. Live Chart of Nuclides. Available online: https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html (accessed on 11 January 2022).
- Ninomiya, K.; Kubo, M.K.; Strasser, P.; Shinohara, A.; Tampo, M.; Kawamura, N.; Miyake, Y. Isotope Identification of Lead by Muon Induced X-ray and Gamma-ray Measurements. JPS Conf. Proc. 2018, 21, 011043. [Google Scholar] [CrossRef] [Green Version]
- Hillier, A.; Ishida, K.; Seller, P.; Veale, M.C.; Wilson, M.D. Element Specific Imaging Using Muonic X-rays. JPS Conf. Proc. 2018, 21, 011042. [Google Scholar] [CrossRef] [Green Version]
- Yabu, G.; Katsuragawa, M.; Tampo, M.; Hamada, K.; Harayama, A.; Miyake, Y.; Oshita, S.; Saito, S.; Sato, G.; Takahashi, T.; et al. Imaging of Muonic X-ray of Light Elements with a CdTe Double-Sided Strip Detector. JPS Conf. Proc. 2018, 21, 011044. [Google Scholar] [CrossRef] [Green Version]
Sample | Element | Muonic X-ray Measurement [wt.%] | X-ray Fluorescence [wt.%] |
---|---|---|---|
Tempo-Tsuho (Edo) | Cu Sn Pb | 77.7 ± 1.6 12.5 ± 1.5 9.8 ± 1.5 | 77.77 ± 0.01 14.45 ± 0.54 7.79 ± 0.16 |
Tempo-Tshuo (Mito) | Cu Sn Pb | 69.0 ± 1.9 9.9 ± 1.3 21.1 ± 2.6 | 73.64 ± 0.01 12.18 ± 0.41 14.17 ± 0.12 |
XRF | μXES—40 MeV/c | μXES—18 MeV/c | |||||||
---|---|---|---|---|---|---|---|---|---|
Coin | Mean Au [wt.%] | Mean Ag [wt.%] | Mean Cu [wt.%] | Au [wt.%] | Ag [wt.%] | Cu [wt.%] | Au [wt.%] | Ag [wt.%] | Cu [wt.%] |
Tiberius [AD 14–37] | 99.73 (0.1)% | 0.27 (0.01)% | - | >99% | <1% | - | >99% | <1% | - |
Hadrian [AD 134–138] | 99.55 (0.1)% | 0.45 (0.01)% | - | >99% | <1% | - | >99% | <1% | - |
Julian II [AD 361–363] | 95.58 (0.3)% | 4.18 (0.03)% | 0.24 (0.02)% | 96 (1)% | 4 (1)% | - | 96 (1)% | 4 (1)% | - |
Element and (Transition) | Energy (keV) | Murchison (Counts) | Allende (Counts) |
---|---|---|---|
Calcium Ca–(Mα) | 55 | n.d. | 53 ± 23 |
Magnesium Mg–(Lα) | 56 | 896 ± 66 | 183 ± 23 |
Aluminum Al–(Lα) | 66 | 10,796 ± 130 | 136 ± 30 |
Carbon C–(Kα) | 75 | 626 ± 52 | 6 ± 27 |
Silicon Si–(Lα) | 76 | 824 ± 58 | 175 ± 32 |
Iron Fe–(Mα) | 94 | 1319 ± 63 | 265 ± 39 |
Oxygen O–(Kα) | 133 | 4785 ± 111 | 800 ± 38 |
Potassium K–(Lα) | 140 | n.d. | 94 ± 27 |
Calcium Ca–(Lα) | 156 | 213 ± 41 | 83 ± 28 |
Aluminum Al–(Kα) | 346 | 9542 ± 100 | 359 ± 27 |
Silicon S–(Kα) | 516 | 121 ± 33 | 11 ± 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cataldo, M.; Clemenza, M.; Ishida, K.; Hillier, A.D. A Novel Non-Destructive Technique for Cultural Heritage: Depth Profiling and Elemental Analysis Underneath the Surface with Negative Muons. Appl. Sci. 2022, 12, 4237. https://doi.org/10.3390/app12094237
Cataldo M, Clemenza M, Ishida K, Hillier AD. A Novel Non-Destructive Technique for Cultural Heritage: Depth Profiling and Elemental Analysis Underneath the Surface with Negative Muons. Applied Sciences. 2022; 12(9):4237. https://doi.org/10.3390/app12094237
Chicago/Turabian StyleCataldo, Matteo, Massimiliano Clemenza, Katsuiko Ishida, and Adrian D. Hillier. 2022. "A Novel Non-Destructive Technique for Cultural Heritage: Depth Profiling and Elemental Analysis Underneath the Surface with Negative Muons" Applied Sciences 12, no. 9: 4237. https://doi.org/10.3390/app12094237
APA StyleCataldo, M., Clemenza, M., Ishida, K., & Hillier, A. D. (2022). A Novel Non-Destructive Technique for Cultural Heritage: Depth Profiling and Elemental Analysis Underneath the Surface with Negative Muons. Applied Sciences, 12(9), 4237. https://doi.org/10.3390/app12094237