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Abstract: Power consumption forecasting is a crucial need for power management to achieve sustain-
able energy. The power demand is increasing over time, while the forecasting of power consumption
possesses challenges with nonlinearity patterns and various noise in the datasets. To this end, this
paper proposes the RobustSTL and temporal convolutional network (TCN) model to forecast hourly
power consumption. Through the RobustSTL, instead of standard STL, this decomposition method
can extract time series data despite containing dynamic patterns, various noise, and burstiness. The
trend, seasonality, and remainder components obtained from the decomposition operation can en-
hance prediction accuracy by providing significant information from the dataset. These components
are then used as input for the TCN model applying deep learning for forecasting. TCN employing
dilated causal convolutions and residual blocks to extract long-term data patterns outperforms recur-
rent networks in time series forecasting studies. To assess the proposed model, this paper conducts
a comparison experiment between the proposed model and counterpart models. The result shows
that the proposed model can grasp the rules of historical time series data related to hourly power
consumption. Our proposed model overcomes the counterpart schemes in MAPE, MAE, and RMSE
metrics. Additionally, the proposed model obtains the best results in precision, recall, and F1-score
values. The result also indicates that the predicted data can fit the pattern of the actual data.

Keywords: forecasting; power consumption; RobustSTL; TCN; deep learning

1. Introduction

The issue of world climate change is a concern for various countries in the world.
NOAA’s 2020 Annual Climate Report states that the average rate of temperature increase
of the world’s surface has increased twice every ten years since 1981, compared to every
ten years since 1880. This temperature increase can impact the increased demand for power
consumption by about 2.7% for every 1 ◦C increase [1]. Therefore, power management
possesses a crucial role in planning sustainable power supply policies. The first essential
treatment is to forecast the power consumption of an area. The forecasting of power
consumption can bring significant information to help estimate power demand for planning
in the future. In addition, such forecasting of power consumption assists the powerhouse
in formulating suitable and sustainable operations for electric power systems. A properly
conducted forecasting can ensure that the supply will be able to meet the future demand
for electrical power [2].

The work of power consumption forecasting can be categorized into two schemes, i.e.,
the traditional algorithm such as the autoregressive integrated moving average (ARIMA)
model, and machine learning such as artificial neural networks (ANN). There are many
studies performed that focus on power consumption forecasting at various scales. A com-
parison study of power consumption forecasting was performed during Korea’s highest
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peak demands using various models involving traditional, machine learning, and hybrid
models. The study result shows that machine learning models, such as long short-term
memory (LSTM), and hybrid models, such as seasonal auto-regressive integrated moving
average with exogenous factors (SARIMAX) and LSTM gain greater results over the tradi-
tional model [3]. In [4], the authors proposed a hybrid model for the month-ahead hourly
power demand forecasting for medium industrial consumers. This model employed a
non-linear autoregressive network with exogenous inputs (NARX) and artificial neural
networks (ANN) to forecast daily power demand using timestamp datasets as exogenous
variables and the output of NARX as LSTM-ANN input. Subsequently, a singular spectrum
analysis and linear recurrent formula (SSA-LRF) model was proposed for Indonesian power
forecasting [5]. This model was also combined with fuzzy or ANN frameworks to address
nonlinearity of data. The result indicates that SSA-LRF-ANN is the accurate prediction
model for such a related task.

However, the existing studies in power forecasting encounter issues affecting forecast-
ing accuracy. The main challenges are non-regularity distribution and various noise [6].
Several studies have utilized the STL method to decompose the time series data of power
demands into seasonal, trend, and remainder components [6–8]. Afterward, these compo-
nents are fed to the forecasting model as input. Several approaches have gained accurate
results for power consumption forecasting with dynamic patterns. Nevertheless, they still
need to be enhanced regarding the capture of abrupt changes, burstiness, and high levels
of noise in future demands. Therefore, we propose a hybrid model of the RobustSTL and a
temporal convolutional network (TCN) to forecast single time series data for hourly power
consumption with reliability from interferences such as dynamic patterns, burstiness, and
outliers. To obtain a comprehensive historical data understanding, the proposed model
first decomposes the raw data using the RobustSTL model, instead of the standard STL. Ro-
bustSTL not only captures components such as STL results, but also identifies the residual
spike and white noise in the remainder component [9]. These components then become
input for the TCN. Through TCN, the proposed model can capture and learn the features
of each component’s information, although it has long dependencies [10,11].

Based on the analysis above, this study focuses on building hourly power consumption
forecasting using a combining model of RobustSTL and TCN. The major contributions of
this study can be summarized below:

1. We propose a forecasting model for single time series data regarding hourly power
consumption utilizing RobustSTL and TCN;

2. The study’s key contribution is the hybrid model of RobustSTL and TCN as the
forecasting model;

3. The proposed model can capture and understand the time series data despite contain-
ing dynamic patterns and burstiness;

4. The experimental stage was performed based on real hourly power consumption and
validated with the existing forecasting models.

This first section organizationally is followed by Section 2 discussing the materials
and methods of this study. Section 3 delivers the experimental results and a discussion of
hourly power consumption forecasting. Afterward, Section 4 presents the conclusion of
this study.

2. Materials and Methods

Figure 1 shows the general architecture of the proposed model in this study. Time
series data regarding hourly power consumption is first decomposed using the RobustSTL.
This decomposition generates three components, i.e., trend, seasonal, and remainder
components. These components are simultaneously carried as input for the TCN model.
The outputs of the TCN model are flattened with the fully connected layer. We can then
obtain the predicted values of power consumption. Through this operation, the model can
obtain a better understanding of data patterns and spatial features to estimate the future
demand of hourly power consumption.
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Figure 1. The general architecture of the proposed method.

2.1. RobustSTL

In this study, we selected RobustSTL proposed by Wen et al. [9], instead of standard
STL, for the decomposition method. STL (Seasonal-Trend decomposition using LOESS) is a
decomposition method utilizing LOESS (locally estimated scatterplot smoothing) to extract
estimates of seasonality, trend, and residual components [12]. RobustSTL decomposition
has reliability with abrupt changes and various noise compared to the existing methods.
In RobustSTL, a residual or remainder component can be further extracted into spike and
noise. This decomposition employs the least absolute deviations (LAD) loss with sparse
regularizations to extract the trend component, non-local seasonal filtering to decompose
the seasonal component, and bilateral filtering to denoise the data. The algorithm summary
of RobustSTL to decompose a series data yt into trend τt, seasonality st, and remainder rt is
shown in Algorithm 1 [9].

Algorithm 1. RobustSTL method summary

Input: yt, parameter configuration
Output: τt, st, rt

Step 1: Denoise the time series data using bilateral filtering, y′t = ∑j∈J wt
jyj

Step 2: Calculate the relative trend, τr
t =

{
0,

∑t
i=2∇τ̂i,

t = 1
t ≥ 2

, y′′ t = y′t − τr
t

Step 3: Calculate the seasonality using non-local seasonal filtering, st = ∑(t′ ,j)∈ϕ wt
(t′ ,j)y

′′
j

Step 4: Adjust the trend, seasonality, and remainder components
τt = τr

t + τ1, st = st − τ1,rt = yt − st − τt

where wt
j and J in Step 2 are the filter weight and the filter window. Additionally,∇τ̂i is the

optimized first-order difference of the trend component and φ is neighborhood parameter.

2.2. TCN

The convolutional neural network (CNN) has outstanding results for tasks in two
dimensions, i.e., image processing. It is adopted in one dimension for the time series task.
However, the main drawback of the basic architecture of CNN is that it is difficult to gain
crucial information in long-term time series data. Thus, Bai et al., proposed TCN as an
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enhancement of convolutional and recurrent networks due to being able to memorize
sequence data with long relationships accurately [13]. TCN is capable of memorizing more
historical data than a standard sequence of neural networks by widening the receptive field
size [14]. A TCN model consists of residual blocks including dilated causal convolutional
neural networks, residual connection, and others as shown in Figure 2.
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A residual block in the TCN model contains some basic layers, i.e., dilated causal con-
volutions, weight normalization, the rectified linear unit (ReLU) as activation function, and
spatial dropout as regularization. Here, the causal convolution term refers to a convolution
process obtaining output t by convolving elements from inputs at step t and the previous
periods. Let us assume to predict output yt, we need elements x0, . . . , xt from the previous
layer as input.

Afterward, dilated causal convolution is proposed to address the drawback of long-
term dependency in causal convolutional neural networks. The dilated causal convolution
exponentially enlarges the receptive fields to memorize the long historical information
without adding other parameters [15]. The dilated causal convolution steps up the filter in
input sequences and skips a certain point with a fixed stride. This convolution has tasks
identical to the pooling concept but the input and output channel width in this convolution
remains the same size. Figure 3 shows the dilated causal convolution process with dilation
factors d of 1, 2, and 4 and filter size of k = 3. The blue and red colors refer to the original
time series, while the yellow color denotes the padding. This dilated causal convolution
can be formulated with Equation (1).

F(x) = ∑k−1
l=0 h(l) f (x− d.l), (1)

where f (*) denotes the input of the dilated causal convolution and h(l) refers to the filter
length k. Additionally, d refers to the dilation factor, x-d.l denotes the past direction of
element x, and F(*) is the output of this process.
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Figure 3. Dilated causal convolution process.

Weight normalization is applied in the TCN model after the dilated causal convolution
process to speed up and make the training process robust. ReLU activation function placed
after weight normalization can enhance the sparsity of TCN and avoid strong dependency
among parameters [16]. Afterward, the spatial dropout is added to avoid overfitting
the network model. In addition, 1 × 1 convolution operation, as shown in Figure 2, is
incorporated as the residual connection to adjust the channel width of the input and output
layer which may have different sizes. Specifically, a residual connection is integrated to the
output of TCN to prevent gradient attenuation. The input x is combined with the output of
TCN formulated in Equation (2):

O = Activation(x + F(x)). (2)

Subsequently, the output of the residual block from multiple layers is considered for
the input of the next residual block.

2.3. Evaluation Metrics

We introduce several evaluation metrics, i.e., mean absolute percentage error (MAPE),
mean absolute error (MAE), and root mean square error (RMSE), to evaluate the proposed
model’s performance in the experimental stage as shown in Equations (3)–(5) below:

MAPE =
100%

n ∑n
t=1

∣∣∣∣ xt − xt

xt

∣∣∣∣, (3)

MAE =
1
n∑n

t=1|xt − xt|, (4)

RMSE =
1
n∑n

t=1(xt − xt)
2
, (5)

where xt and xt are actual values and predicted values, while n is the number of observed data.
We also propose a confusion matrix as the evaluation metric as shown in Figure 4, but

we initially cluster the actual values and the predicted values using the Fuzzy c-means
(FCM) algorithm. The FCM clustering algorithm assembles a set of data into m clusters
where each data point in the dataset corresponds to each cluster at a certain degree [17].
The higher degree of a data point to a specific cluster denotes the corresponding cluster of
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that data point. Here, we take (9) as the number of clusters for the actual values and the
predicted values.
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After clustering the actual data and predicted data, we evaluate them utilizing a
confusion matrix. The confusion matrix is shown in a table to describe and display the
performance of a classification task. The dimension of the confusion matrix is two, where
one dimension refers to the actual data and another dimension refers to the predicted
data [18]. Through this method, we can evaluate the proposed model using precision, recall,
and F1-score. Precision denotes accuracy as the ratio of the correctly classified cluster to the
total data predicted, while recall refers to the ratio of the correctly classified cluster to the
total number of data actually belonging to the related cluster, and the F1-score represents
the equilibrium of the precision and recall. The values of precision, recall, and F1-score can
be calculated using Equations (6)–(8):

precision =
TP

TP + FP
, (6)

recall =
TP

TP + FN
, (7)

F1score =
2× precision× recall

precision + recall
, (8)

where TP (true positive) is all the diagonal values in the confusion matrix corresponding to
each cluster. FP (false positive) refers to the sum of values of the corresponding column
besides TP values of a cluster, and FN (false negative) denotes the sum of the values of the
corresponding rows besides TP values of a cluster.

3. Results and Discussion
3.1. Data Preparation

The dataset in this study is single time series data for the hourly power consumption
of Turkey obtained in Kaggle [19]. This data represents the overall consumption of electrical
power in the country. We took the dataset from November 2019 until April 2020 to conduct
the experiment. The hourly power consumption in this study was taken for 24 h each day
for 6 months. We divided the dataset into 80% for the training process and 20% for the
testing process. Before we conducted the experiments, we set the configurations of the
RobustSTL and TCN models. We set the length of the seasonality period in the RobustSTL
to 24 h, because the hourly power demand for 24 h repeats somewhat in a similar pattern.
For the parameter setting in the TCN model, we take only one residual block for the TCN
model. Since the input sequence does not have high dimensionality, we set dilation factor
d = 1, 2, 3, and 4, kernel size of k = 3, and the filter number of 64. In our proposed model,
the power consumption yt at hour t can be forecast by referencing the data sequence of
previous data such yt−1, yt−2, and yt−3. Furthermore, we compare the proposed model
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and counterpart models. MAPE, MAE, RMSE, and the confusion matrix are utilized as
evaluation metrics.

3.2. Experimental Results

The time series data input for hourly power consumption is initially decomposed by
the RobustSTL method to obtain three components. The decomposition results are shown
in Figure 5. The figure consists of four parts, i.e., original dataset of power consumption,
trend component, seasonality component, and residual component. The x-axis denotes the
period of the data, and the y-axis denotes the power consumption value in GWh (Gigawatt
Hour). These trend, seasonality, and residual components become the input data for the
TCN.
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Then, Table 1 and Figure 6 show the comparison results of hourly power consumption
prediction between the proposed model and the counterpart models in MAPE, MAE, and
RMSE metrics.

Table 1. The results of comparison between the proposed model and counterpart models.

Model MAPE (%) MAE RMSE

LSTM 3.56 0.93 1.37
GRU 3.51 0.94 1.29

STL-GRU 2.34 0.66 0.88
RobustSTL-CNN 1.95 0.58 0.85

The proposed model 1.89 0.55 0.81
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Figure 6. Evaluation results of the proposed model and counterpart models.

In the comparison, we present LSTM and GRU (gated recurrent units) as the single
model, and STL-GRU and RobustSTL-CNN as the hybrid model. In [20], the authors
proposed LSTM as a machine learning approach in time series stock data forecasting.
The proposed approach, LSTM, outperforms the traditional algorithms in empirical re-
sults. GRU was proven to achieve satisfactory accuracy in primary energy consumption
forecasting over other methods [21]. A combination of recurrent neural networks and de-
composition methods utilizing GRU and STL in short-term power consumption forecasting
was proposed [7]. This model obtains good prediction accuracy capturing both local and
global information of the data. A hybrid model of CNN and STL, instead of RobustSTL,
introduced in [22] also is adopted here.

Based on Table 1 above, the proposed model has the lowest value of MAPE (1.95),
while the other models mostly have a value of more than 2.00. The proposed model also
has the lowest value of MAE and RMSE (0.58 and 0.85), while the other models gain values
more than the proposed model values in these metrics. The lowest values in MAPE, MAE,
and RMSE metrics indicate the best results because they have lower errors between the
predicted and actual values. We can see in Table 1 that models with the hybrid approach
outperform the single models in MAPE, MAE, and RMSE metrics. In the single models,
GRU is better than LSTM in MAPE and RMSE metrics. LSTM only outperforms GRU in
the MAE metric, by a small margin of 0.1. The best model after the proposed model is
RobustSTL-CNN. The difference between the proposed model and RobustSTL-CNN in
MAPE, MAE, and RMSE metrics is 0.06%, 0.03, and 0.04. Although the difference values
are not huge, they are crucial for evaluation of the big dataset taken in this study.

The single model of LSTM and GRU basically obtains a good result. However, the
hybrid model utilizing decomposition can increase forecasting accuracy, especially in the
proposed model. Figure 7 shows the comparison between actual values and predicted
values using the proposed model to see the real illustration. The predicted values overall
can follow the actual values containing the dynamic pattern and burstiness. The dynamic
pattern instance can be seen in the time series data after 21 March 2020. The maximum
values of power consumption on 17–21 March 2020 each 24 h always exceeded 37 GWh,
but the maximum values in the next days did not reach 37 GWh. The burstiness instance is
shown in the red box in Figure 7. There are some points having higher values than common
values over a short period. However, the proposed model can overcome the issues above
through the predicted values having similarities with the real values.
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Moreover, we also present the evaluation using another perspective, i.e., the classifica-
tion method. After we obtained the clustering result between the actual data and predicted
data, we grouped them into nine clusters. The confusion matrix is used to evaluate the
experimental result, and the confusion matrix of the proposed model’s prediction results
in each instance is shown in Figure 8. We can see that the total of TP values is 619, or 86%
of all the data. We then take Cluster 1 as an instance where TP, TN, FP, and FN are 238,
455, 11, and 16. There are 16 points that should be classified in Cluster 1, but it is classified
otherwise. It denotes only 6% of the points that have the incorrect class. For Cluster 5,
the TP, TN, FP, and FN values are 70, 698, 26, and 66. There are 26 points that should be
classified in Cluster 5, but it is classified otherwise. A total of 27% of the points have an
incorrect class in Cluster 5. Since we obtained all the confusion matrices of the counterpart
models, we could calculate precision, recall, and F1-score. These values are presented in
Table 2. Through this table, we can compare the evaluation results between the models.
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Table 2. Precision, recall, and F1-score of the proposed model and counterpart models.

Model Precision Recall F1-Score

LSTM 0.65 0.64 0.64
GRU 0.61 0.63 0.62

STL-GRU 0.60 0.61 0.60
RobustSTL-CNN 0.63 0.62 0.62

The proposed model 0.70 0.70 0.70

In these evaluation metrics, the best result is achieved by a model with the highest
values of precision, recall, and F1-score. Based on Table 2, The proposed model remains
the best model. It achieves the highest values with precision, recall, and F1-scores of 0.70.
The counterpart models mostly have values for precision, recall, and F1-score metrics
below 0.70. The proposed model is followed by the LSTM model as the best model in the
classification evaluation of clustering data between the actual values and the predicted
values. The gap values between the LSTM and the proposed model’s precision, recall, and
F1-score metrics are 0.05, 0.06, and 0.06. It also shows that only the proposed model reaches
these metric values above 0.70. Furthermore, these highest values denote the reliability of
the proposed method compared to counterpart models.

4. Conclusions

Power consumption forecasting plays a vital role in describing future demands on
power management to help plan sustainable policies. The main issues in hourly power con-
sumption forecasting are the dynamic and intricate patterns. In addition, some burstiness
and noise arises in the traffic. The decomposition operation can enhance the understanding
of the time series relationship. The hybrid model of RobustSTL decomposition and the
TCN model as the means of forecasting indicates excellent results compared to counterpart
models. The proposed model obtains optimal accuracy with the lowest value of MAPE,
MAE, and RMSE in hourly power consumption forecasting which outperforms the other
models. The proposed model also achieves the best values in precision, recall, and F1-score
metrics. Moreover, the proposed model can learn the noise and burstiness of the time series
dataset to understand the data pattern.
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