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Abstract: Due to various engineering applications, spontaneous bubble movement on the heated
surface has brought huge attention. This work numerically studied the bubble migration driven by
the thermo-capillary force under the temperature gradients perpendicular to the gravity direction.
This problem is constructed in a two-dimensional domain, and the volume of fluid (VOF) method
is adopted to capture the properties of the bubble interface between the vapor and the liquid. One
still vapor bubble is initially positioned at the center of the liquid domain, and the temperature
gradient is applied to two side walls. The results show that the bubble with a size greater than the
capillary length can only oscillate near the initial position even with a larger temperature gradient.
The deformation of the bubble such as spheroid and spherical cap can be found around this regime.
However, the movement of the bubble with a size smaller than the capillary length is significant under
a higher temperature gradient, and it remains a spherical shape. The coefficient of thermo-capillary
force (CTh) is defined within this work, and it is found that a larger Weber number (We) accomplishes
a larger CTh. This work may provide more precise guidance for smart bubble manipulation and
critical heat flux estimation for future nuclear reactor design.

Keywords: bubble; thermal-capillary force; surface tension; volume of fluid (VOF)

1. Introduction

Bubbles and drops can be found everywhere, and they also appear in various applica-
tions in engineering and material processing. To actively manipulate the bubble migration
is essential and with a sound potential. Surface tension has been considered constant in
most cases under the mesoscale, while on the microscale, surface tension as a function of
temperature progressively decreases with increasing temperature, which cannot be ignored.
Due to this temperature gradient, the non-uniform distribution of surface tension causes the
thermocapillary effect. The non-uniform surface tension at the fluid interface contributes
to viscous forces acting on the outer fluid, causing fluid particle motion in the thermal
gradient direction. The bubbles suspended in a temperature gradient fluid will then move
towards a hot zone. Thermo-capillary force can be crucial in the processing of materials in
a reduced gravity environment, such as in a space shuttle as well as in separation processes
for recycling life-sustaining water and oxygen in space travel.

The studies of bubble/droplet migration due to thermo-capillarity can be tracked
back to 1959 by Young et al. [1]. They first derived an analytical solution of the bubble
migration velocity under thermo-capillary and buoyant forces. Balasubramaniam et al.
investigated the bubble movement for a small Marangoni number [2]. They also studied
the bubble migration at reduced gravity with different Marangoni numbers [3,4]. Nas
and Tryggvason showed the numerical simulations of the thermo-capillary motion of
a pair of two- and three-dimensional fully deformable bubbles and drops [5]. Zhang
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et al. numerically investigated the bubble/droplet migration due to thermo-capillary
force under uniform thermal radiation with the level set method [6]. Oliver and DeWitt
demonstrated the analytical solution of surface tension-driven flows for a droplet in a
micro-gravity environment [7]. Ma et al. numerically investigated the bubble migration
driven by the thermo-capillary effect (temperature gradient parallel to the gravity direction)
under variable buoyancy [8]. Haj-Hariri et al. showed the numerical simulations of the 3D
thermo-capillary motion of deformable viscous drops under the influence of a constant
temperature gradient within the liquid medium [9]. Using a finite difference method, Chang
analyzed the effect of bubble deformation while predicting thermo-capillary migration [10].
They found that decreased surface tension contributes to a higher deformation rate at
higher temperatures. Hadland et al. showed the results from the experiments on the
thermo-capillary migration of air bubbles and fluorinert drops in a Dow-Corning silicone
oil aboard a NASA Space Shuttle mission [11]. The capillary-driven force also benefits the
development of high-performance heat transfer devices, such as microscale heat pipes [12].

Other than spontaneously manipulating the bubble movement, bubble behavior is
also important to determine the heat flux. In a nuclear reactor, boiling can be found on
the heating surface of the fuel rods. For safety, knowing the critical heat flux (CHF) of the
fuel rods is vital for designing a nuclear reactor. Bubbles generated on the fuel rods will
depart from the heating surface and migrate into the flow channel under lateral forces such
as wall lubrication, dispersion, thermo-capillarity, etc. It is intuitive to imagine a more
significant void fraction near the heating surface due to the heat and mass transfer. The
CHF will decrease since the conductivity of vapor is smaller than liquid. Understanding
the bubble dynamics near the heated surface is essential to determine the critical heat flux.
Previous research mostly focused on the thermo-capillarity parallel to the gravity direction.
However, this work investigates how a single bubble migrates under the temperature
gradient perpendicular to gravity using the volume of fluid method (VOF). The primary
goal of this work is to get a better understanding of the physics in a thermo-capillary bubble
to pursue more precise critical heat flux estimation in the near future.

2. Governing Equations

Various methodologies have been proposed to model the vapor-liquid two-phase prob-
lems, such as the molecular dynamic (MD) simulation [13], lattice Boltzmann method [14,15],
immersed boundary methods [16], level set (LS) [17] methods, and volume-of-fluid
method [18,19]. The VOF method proposed by Hirt and Nichols in 1981 tracks the interface
between two phases [20], and it has been used widely in studying various two-phase flow
systems. The VOF method is adopted here since the fluid mass can be appropriately con-
served, and it can be applied on a larger scale compared with the LBM and MD methods.
Also, it’s computationally and timely cheap. Therefore, the VOF model is chosen in this
work to characterize the liquid/vapor interface to illustrate the bubble dynamics. In the
VOF model, α is the volume fraction of two phases with subscripts υ and l denoting vapor
and liquid. The volume fractions of the two phases in the VOF model can be defined as:

αυ + αl = 1, (1)

The continuity equation describes the conservation of mass as:{
∂
∂t (αυρυ) +∇·(uαυρυ) = 0,
∂
∂t (αlρl) +∇·(uαlρl) = 0,

(2)

where t is time and u is the average fluid velocity. The momentum equation is expressed as:

∂

∂t
(ρu) +∇·(ρuu) = −∇p +∇·(µ∇u) + ρg + F, (3)
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where p is the pressure, g is the gravitational acceleration, and F is the external force. The
non-dimensional fluid properties of the mixture density ρ, dynamic viscosity µ, specific
heat Cp, and thermal conductivity k can be expressed as:

ρ = ρlαl + ρvαv,
µ = µlαl + µvαv,

Cp = Cplαl + Cpvαv
k = klαl + kvαv

(4)

The conservation of energy is expressed as:

∂

∂t
(
ρCpT

)
+∇·

(
ρuCpT

)
= −∇·(k∇T) + Sh (5)

where T, Cp, k, and Sh are the temperature, the specific heat, the mixture thermal conduc-
tivity, and the heat source, respectively. Brackbill [21] proposed the continuum surface
force (CSF) model, which assumes that surface tension is constant at the same temperature,
where the forces are typical to the two-phase interface. In the CSF model, the surface
tension is considered the source term in the momentum equation in the VOF model. With
the surface tension σ and two radii orthogonal to the interface R1 and R2, the equation for
the pressure drop, p2 − p1, is expressed as:

p2 − p1 = σ

(
1

R1
+

1
R2

)
(6)

In previous research, surface tension σ is considered a constant. However, the surface
tension σ is a function of temperature in this work. Hence, in the momentum equation,
F is the surface tension force between the two phases that are expressed as a volume
force density:

F = σ(T)
αlρlκl∇αl + αυρυκυ∇αυ

1
2 (ρl + ρυ)

, (7)

where κ is the interface curvature denoted as:

κl = −κυ = −∇·
(
∇αl
|∇αl |

)
. (8)

3. Problem Definition and Numerical Method

In Figure 1, the schematic diagram illustrates the problem definition and boundary
conditions in this work. The computational domain is a 0.12 m × 0.04 m rectangle, and
the time step size is chosen as ∆t = 2.5× 10−4 s. One spherical vapor bubble is initially
positioned near the bottom wall at the center region of the liquid. The distance of the
bubble centroid from the bottom wall is Rbubble + 0.005 m. All solid walls are set to the
no-slip boundary conditions. The surface tension is defined as a function of temperature
σ = f (T). The temperature of the left wall is fixed at TL = 373 K, and that of the right wall is
varied from TR = 273 K to 373 K. The computations are performed for two-dimensional,
unsteady, and incompressible flow with no mass change. The governing equations are
solved using the finite volume method performed on ANSYS Fluent 2020 R1. The PISO
scheme is chosen for pressure-velocity coupling. The 2nd order upwind scheme is used for
the conservation of both momentum and energy. The PRESTO! and the Geo-Reconstruct
schemes are adopted for the pressure and the volume fraction interpolation, respectively.
The Courant number is set at 0.25. The solution is converged well below the residuals of
10−5. The numerical simulation settings are listed in Table 1.
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Figure 1. Illustration of the computation model with boundary conditions indicated.

Table 1. Numerical simulation settings.

Item Content

Multiphase model VOF explicit
The surface tension force model Continuum Surface Force

Viscous model Laminar
Pressure-velocity coupling PISO

Momentum and energy 2nd order upwind
Volume fraction Geo-Reconstruct

Maximum iteration 100

To ensure numerical stability, the density ratio of liquid to vapor can’t be large in
the VOF method [14]. The working fluid properties used in the simulations are listed in
Table 2. Further comparison between the properties of working fluid and water can be
done based on non-dimensional parameters. The primary non-dimensional parameters are
listed below:

Re =
ρl

√
gyλ0λ0

µl
, Pr =

Cpl

µlkl
, We =

gyλ0
2ρl

σ
, Pe =

Cplλ0

√
gyλ0ρl

kl
, Ja =

Cpl∆T
hlv

.

where λ0 is the capillary length, ρl is the liquid density, gy is the gravity acceleration,
µl is the liquid viscosity, kl is the liquid conductivity, Cpl is the liquid specific heat, σ is
the surface tension, hlv is the latent heat, and the ∆T is the temperature difference. The
calculated non-dimensional settings are Re = 3.85, Pr = 1, We = 1.023, Pe = 3.849, and
Ja = 8× 10−2 to 4. The Jakob number (Ja) of the working fluid in the simulations is larger
than that of real water, which represents a better ability to phase change. The Peclet number
(Pe) of the working fluid is smaller than that of water, representing lower convection. The
Reynolds numbers (Re) in both fluids are chosen in the laminar regime. The Weber numbers
(We), which depend on surface tension, are set close to unity in both fluids. The Prandtl
numbers (Pr) in both fluids are within the same order of magnitude. The parameters
chosen for the working fluid in our simulations are based on previous work [22,23], as
listed in Table 2. The only difference is the surface tension now is chosen according to the
temperature and is in the same order as the previous one.

Table 2. Properties of the working fluid in simulations.

Parameter Liquid Vapor

ρ Density (kg/m3) 2.0× 102 5.0× 100

u Viscosity (Pa·s) 1.0× 10−1 5.0× 10−3

k Thermal conductivity (W/m·K) 4.0× 101 1.0
Cp Specific heat (J/kg·K) 4.0× 102 2.0× 102

hlv Latent heat (J/kg) 1.0× 104

σ Surface tension (N/m) (−0.001 × Temperature + 0.473) × 15
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4. Results and Discussion

This section discusses the model verification and simulation results with varying
temperature gradients and bubble radius sizes.

4.1. Numerical Verification

First, the numerical results of our model are benchmarked against the theoretical
solution for verification. The capillary length Lc is essential for the surface tension effect
and is defined as follows:

Lc =

√
σ

g(ρl − ρv)
= 3.23× 10−2 m (9)

where σ is the surface tension, g is the gravity acceleration, and ρl and ρv represent the
density of liquid and vapor. The theoretical thermos-capillary migration velocity V of a
bubble/drop in a vertical temperature gradient was first given by Young [1]

V =
2
3

[
µγ′RTC −

(
ρ− ρ′

)
gR2(µ + µ′

)](
3µ + 2µ′

)−1, (10)

where R is the bubble radius, Tc = 3T1/(2 + (h′/h)), ρ and ρ′ are the densities and vis-
cosities of fluid outside the bubble, respectively, ρ′ and µ′ are the densities and viscosities
inside the bubble, and γ′ is the temperature coefficient of surface tension. Balasubramaniam
also performed experiments on bubble migration under thermo-capillary force aboard the
NASA Space shuttle in orbit [2]. The thermo-capillary migration velocity of a drop V in
reduced gravity is

V = − 2|∇T∞|σT R
µ(2 + 3α)(2 + β)

, (11)

where∇T∞ is the temperature gradient, σT is the rate of the change of the interfacial tension
with temperature, α is the viscosity ratio of inside and outside the bubble, and β is the
thermal conductivity ratio of inside and outside the bubble. The size of the computational
model is 0.12 m× 0.04 m (See Figure 2). Initially, the vapor bubble with a radius R = 0.005 m
is positioned near the bottom wall. The gradient of temperature between two walls∇T is set
as 833.3 K/m. Using Equation (11), the migration velocity is calculated as V = 0.15625 m/s.
Figure 2 shows the transient bubble position with zero gravity. As time t increases, it is
found that the temperature contour tends to show linear distribution, and the bubble moves
toward the hot (left boundary) wall and remains at the same height under no gravity. Our
simulation result shows that the migration velocity is approximately 0.142 m/s which is
smaller than the theoretical solution, but it falls in the same order which shows a qualitative
agreement. However, Balasubramaniam’s experiment [2] also showed a smaller migration
velocity compared with the theoretical results. According to YGB’s (Young, Goldstein, and
Block) model [1], the deformation of the bubble requires large enough kinetic energy, and
the bubble deformation is not seen with Vreal < VYGB, which is in good agreement.

4.2. Bubble Sizes from R = 0.01 m to 0.05 m

Since the capillary length is found at R = 3.23× 10−2 m, two groups of bubbles will be
categorized for discussion. The bubble sizes of the first group are chosen from R = 0.01 m
to 0.05 m, i.e., R = 0.01 m, 0.015 m, 0.025 m, 0.035 m, and 0.05 m. The temperature of the
right wall TR is ranged from 273 K to 373 K with a constant left wall temperature TL = 373 K.
The effects of the temperature gradient, bubble radius, and bubble shape will be discussed
as follow.

4.2.1. Effect of Temperature Gradients

Figure 3a–f show the bubble migration under gravity for bubble sizes of R = 0.01 m,
0.015 m, 0.025 m, 0.035 m, and 0.05 m under various temperature gradients of 0 K, 20 K,
40 K, 60 K, 80 K, and 100 K, respectively. Since the temperature gradient is applied to the
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direction perpendicular to the gravitational force, we are only interested in the bubble
movement in the x-direction. The x-axis represents the centroid bubble position, and the
y-axis represents the time. The surface tension is more significant in a lower temperature
than higher temperature, hence, a net force on the vapor bubble is induced to move the
bubble. If there is no temperature difference ∆T = 0 K, as shown in Figure 3a, the bubbles
with different sizes almost stay near the center (x = 0.06 m). With a larger temperature
gradient, it is much easier for the vapor bubble to reach the left wall in a shorter time. It
is also noted that the bubble with a smaller size arrives at the left wall much faster than a
larger bubble under the same temperature gradient. The bubble with a radius of 0.05 m
only oscillates around its initial position, which is the center of the domain. We believe that
the bubbles oscillate because of the Kelvin–Helmholtz instability. The Kelvin–Helmholtz
instability is due to the perturbation of the velocity field, and the larger bubble will induce
larger perturbation and hence larger oscillation.
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4.2.2. Effect of Bubble sizes

Figure 4a–e show the centroid positions of the bubbles with different radii. When the
temperature of the right wall decreases, the bubble tends to move toward the left wall,
as shown in Figure 4a–d. With a radius R = 0.01 m or 0.015 m, the bubble tends to move
faster to the left wall, except for no temperature gradient applied. The medium-sized
bubble with a radius R = 0.025 m or 0.035 m tends to move gradually towards the left wall,
and the biggest bubble, R = 0.05 m, prefers to stay near the center, as shown in Figure 4e.
Therefore, the bubble size plays a significant role in the migration dynamics. Furthermore,
a smaller bubble does not change its shape, so its migration velocity is faster. However, a
larger bubble changes its shape from sphere to spheroid or spherical cap, reducing its flow
velocity and moving slowly.
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4.2.3. Bubble Shape Deformation and Rising Velocity

The vapor bubbles can be classified into three different shapes: sphere, spheroid, and
spherical cap. The bubble is spherical when its inertial force is much lower than surface
tension or viscous force. As bubble size increases, velocity rises since the larger bubble
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will induce larger buoyancy and hence higher oscillation. The shape of the bubble is
transforming the drop from a sphere into oblate spheroid shapes. Due to the resistance
in the liquid medium, when bubbles are large enough, they tend to have flat and often
curved bases, breaking up the curve of the bubble shape. This is known as the spherical
cap. Figure 5 shows the rising velocity and bubble shape for different bubble radii. The
computational domain of Figure 5 is 0.12 m × 0.3 m to perform a better picture of the
bubble rising. When the bubble size R is 0.01 m and 0.015 m, the bubble shape remains
spherical. The bubble shows a spheroid shape with a radius R = 0.025 m. The bubble shape
can be found in a spherical cap with a radius R = 0.035 m and 0.05 m. It is noted that
the deformation of the bubble occurs near the capillary length (R < Lc ≈ 3.23× 10−2 m).
Figure 6 shows both our simulation results (in red lines) and previous experiment work (in
black lines) [24]. Since the fluid properties in the two works are different, the magnitudes
of bubble size and velocity are different, as expected. However, our numerical work shows
a similar trend to experiment one qualitatively.
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4.3. Bubble Sizes from R = 0.0045–0.01 m

In this section, the bubble size is decreased to R = 0.0045 m to 0.01 m. The bubble
sizes are R = 0.0045 m, 0.005 m, 0.006 m, 0.007 m, 0.008 m, and 0.01 m, respectively. The
temperature of the right wall TR is ranged from 273 K to 373 K, and the left wall remains
the same as TL = 373 K. The effects of the temperature gradient, bubble radius, and shape
are discussed as follows.

4.3.1. Effect of Temperature Gradients

Figure 7a–f show the movement of the centroid position of the bubble in the x-direction
with a radius from R = 0.0045–0.01 m under different temperature gradients, 0 K, 20 K, 40 K,
60 K, 80 K, and 100 K, respectively. It is found that the bubble stays at the center under the
uniform temperature, as shown in Figure 7a. Once the temperature difference ∆T between
the two walls increases, the vapor bubble starts to migrate slowly towards the hotter side,
as shown in Figure 7b–d. Compared with the first group (R = 0.01 m to 0.05 m), it takes
more time for smaller bubbles to reach the left wall. At a higher temperature gradient,
∆T = 80–100 K, it is much easier for the bubble to arrive at the left wall in a shorter time, as
shown in Figure 7e–f.
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4.3.2. Effect of Bubble Sizes

Figure 8 shows the transient bubble centroid position in the x-axis with varying bubble
radius from 0.0045 m to 0.01 m. In Figure 8a, when the bubble radius R is 0.0045 m, the
centroid position of the bubble does not move for the cases of ∆T = 0 and 20 K. With a
larger ∆T > 40 K, the bubble moves faster. Figure 8b–f show that the vapor bubbles remain
at the center in the x–direction when ∆T = 0 K. Once the temperature difference ∆T
between two walls increases, the bubbles start to move toward the left wall. It is shown in
Figure 8 that the bubble with a larger size can reach the left wall faster than a smaller one.
It is because the bubble with a larger size will encounter a larger temperature difference
and hence higher surface thermal capillary force. Therefore, it reaches the left wall faster.
Compared with the first group of larger bubbles (R = 0.01 m to 0.05 m), the bubbles with
smaller radii remain spherical in shape for all sizes of bubbles from 0.0045 m to 0.01 m.
Figure 9 shows the transient state bubble with radius R = 0.006 m and ∆T = 40 K at different
time instants in (a) velocity field, (b) temperature field, and (c) pressure field.
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4.4. Force Analysis

In fluid mechanics, it is important to correlate parameters to meaningful dimensionless
numbers. It is well known that the drag force is one of the four primary forces acting on an
object moving through a fluid. In this way, the physics can be observed and discussed on
a scaled-down model, e.g., an airfoil model in the wind tunnel, as long as the Re number
is kept the same. In this work, we are goanna plot CTh against the Weber number (We)
because this information might be helpful for future development of the correlation of CTh
as a function of the We number.

The drag coefficient of CD is defined as

CD =
FD

1
2 ρlV2 A

(12)

where FD is the drag force, ρl is the density of the liquid, V is the velocity, and A is the
reference area. CD can be represented as a function of dimensionless parameters such as
Reynolds number, Froude number, Mach number, and surface roughness. That is

CD = f (shape, Re, Fr, Ma, . . .). (13)

In this work, we are interested in finding the relationship between the coefficient of
lateral force (CTh) and the Weber number since the thermo-capillary force is dominant in
this system. Weber number is defined as:

We =
2ρlV2R

σ
, (14)
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where R is the bubble radius, and σ is the surface tension. Hence, to determine the lateral
force acting on the vapor bubble, the following assumptions have been made: (1) there is
no phase change between the liquid and vapor, and (2) the dominant forces applied to the
bubble in the x-direction are the drag force and thermo-capillary force (lubrication force
due to the wall is neglected).

ΣFx = FD + FLa =
1
2

CDρV2 A + Cth∇σA = max. (15)

This is the force balance equation in the x-direction, where the CD represents the drag
coefficient, V is the bubble velocity, A is the projection area, and CTh is the lateral force
coefficient due to the thermo-capillary force, and ∇σ is the surface tension gradient. For
a two-dimensional problem, the bubble mass is ρπR2, and the projection area is 2 R. By
substituting the above quantities into the force balance Equation (15), the coefficient of
lateral force CTh is then derived as:

CTh =
FLa
∇σA

=
max − FD
∇σA

=
max − 1

2 CDρV2 A
∇σA

. (16)

Figure 10 shows the relationship between the thermo-capillary coefficient (CTh) and
the Weber number (We). The bubble sizes range from R = 0.0045 m− 0.03 m, which are
smaller than the Capillary length. The Weber numbers then fall between 10−4 − 100. It
is found that as the bubble radius increases, the Weber number increases. Since a larger
bubble size induces a higher drag force, the surface tension effect is not significant. In
addition, the thermo-capillary coefficient is large due to a large thermo-capillary force.
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Figure 10. Relation between thermo-capillary coefficient (CTh) and the Weber number (We).

For bubble sizes in the range of 0.0045 m < R ≤ 0.007 m, Figure 11 shows the thermo-
capillary coefficient (CTh) vs. the Weber number (We) for R = 0.0045 m. It is noted that both
the Weber number and thermo-capillary coefficient increase when ∆T increases.
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For bubble sizes in the range of 0.008 m ≤ R <0.01 m, Figure 12 shows the thermo-
capillary coefficient (CTh) vs. the Weber number (We) for R = 0.008 m. It is found that
the temperature difference ∆T does not affect the Weber number much. However, the
thermo-capillary coefficient decreases when ∆T increases except for ∆T = 20 K.
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Also, for the bubble sizes in the range of 0.01 m ≤ R ≤ 0.03 m, the temperature
difference ∆T does not change the Weber number much (all around ~1). Figure 13 shows
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the thermo-capillary coefficient (CTh) vs. the Weber number (We) for R = 0.03 m. When
∆T = 20− 60 K, both the Weber number and thermo-capillary coefficient increase when
∆T increases. For a larger ∆T = 80 K & 100 K, both Weber number and thermo-capillary
coefficient decrease when ∆T increases.
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5. Conclusions

In this work, the thermo-capillary effect and related dynamics of vapor bubble mi-
gration under different temperature gradients, bubble sizes, and bubble shapes have been
studied using VOF numerical modeling.

1. The simulation based on the volume-of-fluid method and temperature-dependent
surface tension has been carried out. The results have been compared with theo-
retical and experimental studies, which demonstrates qualitative agreement. The
corresponding dynamics have been qualitatively captured.

2. The bubble shape deforms with the sizes larger than the capillary length, and the
bubble shapes remain spherical with the sizes smaller than the capillary length.

3. For the first group of bubble sizes from R = 0.01 m to 0.05 m, the bubble with radius
R = 0.05 m remains near the center of the domain even under the temperature gradient
∆T = 100 K. The bubble with size R = 0.01 m can reach the left wall in a shorter time.

4. For the second group of bubble sizes from R = 0.0045 m to 0.01 m, the larger size
bubble can arrive at the left wall faster compared with the smaller size bubble.

5. Coefficient of thermo-capillary force (CTh) is defined. It is found that as the bubble
radius increases, the Weber number increases since a larger bubble size induces a
higher drag force and the surface tension effect is not significant. Also, the thermo-
capillary coefficient increases due to a large thermo-capillary force.

It is verified that this approach can be used to investigate the thermo-capillary effect
and provide more physical insights into bubble migration dynamics. In addition, it can
provide sound guidance for precise critical heat flux estimation and direction of accurate
manipulation of bubble migration which is of great importance in various engineering
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applications. In the future, we will extend our work to study thermo-capillary bubble
migration, including solid surface wettability [25].
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Abbreviations

Cp specific heat
[
J·kg−1·K−1

]
F external force

[
kg·m·s−2]

g gravitational acceleration

hlυ latent heat of evaporation
[
J·kg−1

]
Ja Jakob number [–]
k thermal conductivity

[
W·m−1·K−1

]
p pressure [Pa]
Pe Peclet number [–]
Pr Prandtl number [−]
R1, R2 radii of curvature [m]
Re Reynolds number [−]
Sh heat source

[
W·m−3]

Lc capillary length [m]
T temperature [K]
t time [s]
V velocity

[
m·s−1]

Cth thermal-capillary coefficient
CD drag coefficient
We Weber number [−]
Greek symbols
α volume fraction [−]
∆p pressure drop [Pa]
κ interface curvature

[
m−1]

µ dynamic viscosity [Pa·s]
ρ density

[
kg·m−3]

σ surface tension
[
N·m−1]

Subscripts
l liquid phase
I interface
υ vapor phase
sat saturated condition
uns unsaturated condition
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