Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine
Abstract
:1. Introduction
2. Plasma as a Medium for Application in Agriculture and Biomedicine
- Assessing the suitability and effectiveness of various types of electrical discharges for plasma generation, especially at atmospheric pressure.
- Improving the process of generating electrons initiating the production of ions, oxygen and nitrogen radicals and other compounds useful in the processes of water, and soil treatment and in biomedicine.
- Achieving the desired composition of the final gas mixture and a high degree of conversion of harmful compounds by adding admixtures and catalysts (steam, ammonia).
- Minimising energy consumption.
2.1. Agricultural and Soil Protection Problems
- Epidemiological risk and lack of drinking water due to polluted wells and destruction of water treatment plants.
- Lack of simple, sufficient, and cheap drying and decontamination techniques for indoors.
- Severe deterioration of indoor air quality due to the pollution of housing by flood water. Because of inadequate drying and disinfection techniques, infestation by very persistent mould often takes place. A secondary consequence is the rotting odour.
- The presence of difficult-to-decompose sediments transported by flood waters, and chemical and biological pollution (bactericidal risk, secondary infestation by pests).
- Surface water contamination. Furthermore, sapropelic sediments may contribute to secondary oxygen deficiency.
- Risk of bactericidal and chemical soil and crop contamination. Some crops (depending on the flood season and growth phase) could possibly survive, but the dilemma remains whether they can be collected without risk.
2.2. Biomedical and Health Protection Problems
3. Review of Plasma Applications in Agriculture and Medicine
- Immobilisation of biological molecules, cell surface modification to control their behaviour, and improvement of blood adhesion.
- Sterilisation of medical and surgical instruments, especially those made of materials and fabrics not resistant to high temperature.
- Medical diagnostics—fabrication of biosensors based on polymers, and thin amorphous films for medical and biochemical analysis.
3.1. Plasma Applications in Agriculture
- Release of the product from organic compounds and their destruction.
- Dissolving or freezing elements and toxic compounds (heavy metals) in the vitrified product.
- Mass and volume reduction in the process of degassing and decomposition of oxides.
- Resistance of the obtained product to the action of organic compounds, and its good physical properties (hardness, resistance to abrasion, and high temperatures).
3.1.1. Water and Sewage Purification with Ozone and AOPs
3.1.2. Agricultural Soil Treatment and Pest Control
- Type of soil (content of water, organic compounds, consistence, and structure).
- Type of pollutant.
- Treatment technique.
- Geological and atmospheric circumstances [134].
- In soil matrix.
- In vapour phase.
- In non-aqueous phase.
- In groundwater.
- Instantaneous ozone demand phase, when rapid interactions with soil organic matter and metal oxides occur and most of the pollutant-removing processes take place.
- Relatively slow decay stage.
- Direct destruction, volatisation, and etching of cells.
- Decreasing of biofilm adhesivity by decomposition of the polymer matrix.
- Oxidative stress due to the formation of radicals of various active agents (O3, OH, and O) and the influence of hydrogen peroxide, H2O2, or UV radiation during the electrical discharges.
- Nitrogen stress (research results suggest cell damage from reactive nitrogen intermediates, such as nitric oxide, peroxynitrite, nitrous acid, and nitrogen trioxide) [139].
3.1.3. Cold Plasma Applications in Pre-Sowing Seed Treatment
3.2. Plasma Application in Biomedicine
3.2.1. Antimicrobial Applications
3.2.2. Wound Healing
3.2.3. Tumour Treatment
3.2.4. Dentistry Applications
- Tooth bleaching: atmospheric pressure plasma used with OH radicals can erase coffee and alcohol staining from extracted teeth [100,215]. Low-frequency plasma sources in combination with OH can eliminate intrinsic stains [216]. They can also be used for preliminary treatment of deionised water for the target tooth [217].
- Polymerisation: curing composite resin by using plasma. The LTP brush has already been tested for polymerised self-etch adhesives [214].
Dental Science Applications | Source of Plasma/Plasma Devices | Biological Models | References |
---|---|---|---|
Dental canal disinfection | Plasma jet device/He; He/O2 | Human extracted tooth | [225] |
Dental canal disinfection | Plasma jet device/Ar/O2 | Human extracted tooth | [226] |
Improvement of dental structures | Plasma brush/Ar; low pressure plasma device/O2, Ar, N2, and He + N2; HDBD device/Ar; plasma jet device | Human extracted tooth | [227,228,229] |
Biofilm reduction | Kinpen MED® plasma jet/Ar | In vitro (bacteria, lab condition) | [161] |
Biofilm reduction on titanium discs | Three different types of CAP devices: (a) kINPen plasma jet/Ar; (b) HDBD device/Ar; (c) VDBD device/Ar | In vitro (bacteria, lab condition), extracted tooth | [230] |
3.2.5. Veterinary Medicine
4. Summary and Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 2011–2013 Review of the EU Clean Air Policy. Available online: https://ec.europa.eu/environment/air/clean_air/review.htm (accessed on 23 March 2022).
- Halit, E. Environmental Impacts of Technology. In Wiley Encyclopedia of Electrical and Electronics Online; Webster, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- UNECE. Natural Resource Nexuses in the ECE Region; United Nations: Geneva, Switzerland, 2021. [Google Scholar]
- Harrison, R.M. Pollution-Causes, Effects and Control, 3rd ed.; The Royal Society of Chemistry: Cambridge, UK, 1996. [Google Scholar]
- Hipler, R.; Kersten, H.; Schmidt, M.; Schoenbach, K.H. (Eds.) Low Temperature Plasmas. Fundamentals, Technologies and Techniques; Second Revised and Enlarged Edition; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; Volume 1, 945p, ISBN 978-3-527-40673-9. [Google Scholar]
- Attri, P.; Arora, B.; Choi, E.H. Retraction: Utility of plasma: A new road from physics to chemistry. RSC Adv. 2017, 7, 15735. [Google Scholar] [CrossRef] [Green Version]
- Stryczewska, H.D. Supply Systems of Non-Thermal Plasma Reactors. Construction Review with Examples of Applications. Appl. Sci. 2020, 10, 3242. [Google Scholar] [CrossRef]
- Stryczewska, H.D. Plasma Technologies in Energy and Environmental Engineering; Electrotechnical Committee of Polish Academy of Science PAN: Lublin, Poland, 2009; p. 212. ISBN 978-83-7497-070-9. (In Polish) [Google Scholar]
- Penetrante, M.; Schultheis, S.E. (Eds.) Non-thermal Plasma techniques for Pollution Control, Part A: Overview, Fundamentals and Supporting Technologies; NATO ASI Series G: Ecological Science; Springer: Berlin, Germany, 1993; Volume 34, part B. [Google Scholar]
- Jedrzejczyk, T.; Kolacinski, Z.; Koza, D.; Raniszewski, G.; Szymanski, L.; Wiak, S. Plasma recycling of chloroorganic wastes. Open Chem. 2015, 13, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Pawełek, J.; Bergel, T.; Siedlecka, E.; Biń, A.K.; Szatkowska, B.; Muszański, R.M.; Kosiniak, M. Techniczne i ekonomiczne aspekty zastosowania innowacyjnej metody ozonowania do usuwania wybranych farmaceutyków ze ścieków–badania w skali ułamkowo-technologicznej w oczyszczalni ścieków Jaworzno Dąb. Technical and economic aspects of using the innovative ozonation method for removal of selected pharmaceuticals from sewage—Research on a fragmentary-technical scale in the Jaworzno Dąb wastewater treatment plant. Instal 2021, 7, 33–38. (In Polish) [Google Scholar] [CrossRef]
- Zhang, H.; Ma, D.; Qiu, R.; Tang, Y.; Du, C. Non-thermal plasma technology for organic contaminated soil remediation: A review. Chem. Eng. J. 2017, 313, 157–170. [Google Scholar] [CrossRef]
- Mitsugi, F.; Nagatomo, T.; Takigawa, K.; Sakai, T.; Ikegami, T.; Nagahama, K.; Ebihara, K.; Sung, T.; Teii, S. Properties of soil treated with ozone generated by surface discharge. IEEE Trans. Plasma Sci. 2014, 42, 3706–3711. [Google Scholar] [CrossRef]
- Mitsugi, F.; Ebihara, K.; Aoqui, S.; Stryczewska, H.D. Review of Developments in Application of Ozone in Agriculture. In Proceedings of the 16th High Pressure Low Temperature Plasma Chemistry Symposium HAKONE XVI, Beijing, China, 2–7 September 2018. [Google Scholar]
- Szymański, Ł.; Kolacinski, Z.; Raniszewski, G. Influence of Contaminants on Arc Properties during Treatment of Polluted Soils in Electric Arc Plasma. J. Adv. Oxid. Technol. 2012, 15, 34–40. [Google Scholar]
- Stryczewska, H.D.; Ebihara, K.; Muszański, R. Mobile installations of air, water and soil treatment with ozone. In Proceedings of the 23rd International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil-(AOTs-23), Clearwater Beach, FL, USA, 13–16 November 2017; pp. 43–44. [Google Scholar]
- Yamashita, Y.; Yamashita, T.; Hashimoto, Y.; Ebihara, K.; Mitsugi, F.; Ikegami, T.; Stryczewska, H.D.; Pawłat, J.; Teil, S.; Sung, T.L. Backpack-type ozone-mist sterilization system developed for non-chemical agriculture processes. In Proceedings of the 8th International Conference ELMECO-8 “Electromagnetic Devices and Processes in Environment Protection” joint with 11th Seminar AoS-11 “Applications of Superconductors”, Nałęczów, Poland, 28 September–1 October 2014. [Google Scholar]
- Ebihara, K.; Takayama, M.; Stryczewska, H.D.; Ikegami, T.; Gyoutoku, Y.; Tachibana, M. Wide range concentration control of dielectric barrier discharge generated ozone for soil sterilization. IEEJ Trans. Fundam. Mater. 2006, 126, 963–969. [Google Scholar] [CrossRef] [Green Version]
- Pawłat, J.; Stryczewska, H.D.; Ebihara, K. Sterilization Techniques for Soil Remediation and Agriculture Based on Ozone and AOP. J. Adv. Oxid. Technol. 2010, 13, 138–145. [Google Scholar] [CrossRef]
- Stryczewska, H.D.; Pawłat, J.; Ebihara, K. Non-thermal plasma aided soil decontamination. J. Adv. Oxid. Technol. 2013, 16, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Pawłat, J.; Stryczewska, H.D.; Ebihara, K.; Mitsugi, F.; Sung, T. AOTs and solar energy for air, water and soil treatment. Trans. Mater. Res. Soc. Jpn. 2014, 39, 117–120. [Google Scholar] [CrossRef] [Green Version]
- Machala, Z.; Hensel, K.; Akishev, Y. (Eds.) Plasma for Bio-Decontamination, Medicine and Food Security. In Proceedings of the NATO Advanced Research Workshop on Plasma for Bio-Decontamination, Medicine and Food Security, Demänovská Dolina, Slovakia, 15–18 March 2011; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Domonkos, M.; Tichá, P.; Trejbal, J.; Demo, P. Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. Appl. Sci. 2021, 11, 4809. [Google Scholar] [CrossRef]
- Starek, A.; Pawłat, J.; Chudzik, B.; Kwiatkowski, M.; Terebun, P.; Sagan, A.; Andrejko, D. Evaluation of selected microbial and physicochemical parameters of fresh tomato juice after cold atmospheric pressure plasma treatment during refrigerated storage. Sci. Rep. 2019, 9, 8407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasan, B.G.; Onal-Ulusoy, B.A.; Pawlat, J.; Diatczyk, J.; Sen, Y.S.; Mutlu, M. New and Simple Approach for Decontamination of Food Contact Surfaces with Gliding Arc Discharge Atmospheric Non-Thermal Plasma. Food Bioprocess Technol. 2017, 10, 650–661. [Google Scholar] [CrossRef]
- Hati, S.; Patel, M.; Yadav, D. Food bioprocessing by non-thermal plasma technology. Curr. Opin. Food Sci. 2018, 19, 85–91. [Google Scholar] [CrossRef]
- Yousefi, M.; Mohammadi, M.A.; Zabihzadeh Khajavi, M.; Ehsani, A.; Scholtz, V. Application of Novel Non-Thermal Physical Technologies to Degrade Mycotoxins. J. Fungi 2021, 7, 395. [Google Scholar] [CrossRef]
- Stryczewska, H.D.; Ebihara, K.; Mitsugi, F.; Pawlat, J. Application of non-thermal plasma in agriculture. In Workshop of Application of Advanced Plasma Technologies in CE Agriculture; Slovenian Society for Vacuum Technique (DVTS): Ljubljana, Slovenia, 2017. [Google Scholar]
- Fridman, G.; Ayan, H.; Fridman, A.; Gutsol, A.; Vasilets, V.; Friedman, G.; Shereshevsky, A.; Balasubramanian, M.; Peddinghaus, M.; Brooks, A. Sterilization of Living Human and Animal Tissue by Non-Thermal Atmospheric Pressure Dielectric Barrier Discharge Plasma. In Proceedings of the IEEE 34th International Conference on Plasma Science (ICOPS), Albuquerque, NM, USA, 17–22 June 2007; IEEE: Piscataway, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Kuo, S.P. Air plasma for medical applications. J. Biomed. Sci. Eng. 2012, 5, 481–495. [Google Scholar] [CrossRef] [Green Version]
- Sakudo, A.; Yagyu, Y.; Onodera, T. Disinfection and Sterilization Using Plasma Technology: Fundamentals and Future Perspectives for Biological Applications. Int. J. Mol. Sci. 2019, 20, 5216. [Google Scholar] [CrossRef] [Green Version]
- Michael, K. Adaptive Plasmas for Plasma Medicine. In Proceedings of the 74th Annual Gaseous Electronics Conference Monday–Friday, Huntsville, AL, USA, 4–8 October 2021. [Google Scholar]
- Stoffels, E. “Tissue Processing” with atmospheric plasmas. Contrib. Plasma Physics. 2007, 47, 40–48. [Google Scholar] [CrossRef]
- Lendeckel, D.; Eymann, C.; Emicke, P.; Daeschlein, G.; Darm, K.; O’Neil, S.; Beule, A.G.; von Woedtke, T.; Völker, U.; Weltmann, K.-D.; et al. Proteomic changes of tissue-tolerable plasma treated airway epithelial cells and their relation to wound healing. Proteomic changes of tissue-tolerable plasma treated airway epithelial cells and their relation to wound healing. Biomed Res. Int. 2015, 2015, 506059. [Google Scholar] [CrossRef] [PubMed]
- Hasse, S.; Hahn, O.; Kindler, S.; von Woedtke, T.; Metelmann, H.R.; Masur, K. Atmospheric pressure plasma jet application on human oral mucosa modulates tissue regeneration. Plasma Med. 2014, 4, 117–1129. [Google Scholar] [CrossRef]
- Plasmatis Initiative Group. Declaration of the 1st International Workshop on Plasma Tissue Interactions. GMS Krankenh. Interdiszip 2008, 3, Doc01. [Google Scholar]
- Hammann, A.; Huebner, N.-O.; Bender, C.; Ekkernkamp, A.; Hartmann, B.; Hinz, P.; Kindel, E.; Koban, I.; Koch, S.; Kohlmann, T.; et al. Antiseptic efficacy and tolerance of tissue-tolerable plasma compared with two wound antiseptics on artificially bacterially contaminated eyes from commercially slaughtered pigs. Skin Pharmacol. Physiol. 2010, 23, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Komarzyniec, G.; Stryczewska, H.D.; Muszański, R. Autonomous Water Treatment Installation Energized from PV Panels. J. Adv. Oxid. Technol. 2010, 13, 146–152. [Google Scholar] [CrossRef]
- Stryczewska, H.D.; Komarzyniec, G.K. Properties of Gliding Arc (GA) Reactors Energized from AC/DC/AC Power Converters. In Proceedings of the IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering SIBIRCON-2010, Irkutsk, Russia, 11–15 July 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Krupski, P.; Stryczewska, H.D. A Gliding Arc Microreactor Power Supply System Based on Push-Pull Converter Topology. Appl. Sci. 2020, 10, 3989. [Google Scholar] [CrossRef]
- Krupski, P.; Stryczewska, H.D. GLIDARC reactor power supply with ignition improvement. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 2019, 38, 1274–1284. [Google Scholar] [CrossRef]
- Komarzyniec, G.; Stryczewska, H.D.; Krupski, P. The Influence of the Architecture of the Power System on the Operational Parameters of the Glidarc Plasma Reactor. In Proceedings of the 2019 IEEE Pulsed Power & Plasma Science (PPPS), Orlando, FL, USA, 23–29 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Krupski, P.; Stryczewska, H. The Investigation of The Properties of High-voltage Transformer in Nonthermal Plasma Pulse Power Supply. In Proceedings of the 14th Selected Issues of Electrical Engineering and Electronics (WZEE), Szczecin, Poland, 19–21 November 2018; pp. 1–4. [Google Scholar]
- Krupski, P.; Stryczewska, H.D.; Komarzyniec, G. The Push-Pull Plasma Power Supply—A Combining Technique for Increased Stability. In Proceedings of the 2019 IEEE Pulsed Power & Plasma Science (PPPS), Orlando, FL, USA, 23–29 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Komarzyniec, G.; Stryczewska, H.D.; Aftyka, M. Reduction of the Conducted Disturbances Generated by the Ignition Systems of Glidarc Plasma Reactors. In Proceedings of the 2019 IEEE Pulsed Power & Plasma Science (PPPS), Orlando, FL, USA, 23–29 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Karl, T. Compton and Irving Langmuir, Electrical Discharges in Gases. Part I. Survey of Fundamental Processes. Rev. Mod. Phys. 1930, 2, 123. [Google Scholar]
- Boulos, M.I.; Fauchais, P.; Pfender, E. Thermal Plasma: Fundamental and Applications; Plenum Press: New York, NY, USA, 1994; Volume 1. [Google Scholar]
- Kanegae, H. Ecofriendly Ozone-Based Wet Processes for Electron Device Fabrication. Mitsubishi Electr. Adv. Tech. Rep. 1999, 86, 2–6. [Google Scholar]
- Lesueur, H.; Czernichowski, A.; Chapelle, J. Apparatus for generation of low temperature plasmas by the formation of gliding arc discharges. Pat. Appl. Fr. Natl. Regist. 1990, 8814932. [Google Scholar]
- Czernichowski, A. Gliding Discharge Reactor for H2S Valorization or Destruction. In Non-Thermal Plasma Techniques for Pollution Control, Part A: Overview, Fundamentals and Supporting Technologies, Proceedings of the NATO Advanced Research Workshop on Non-Thermal Plasma Techniques for Pollution Control, Cambridge, UK, 21–25 September 1992; Penetrante, M., Schultheis, S.E., Eds.; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar] [CrossRef]
- Stryczewska, H.D. New supply system of non-thermal plasma reactor with gliding arc. Arch. Electr. Eng. 1997, 46, 379–399. [Google Scholar]
- Janowski, T.; Stryczewska, H.D. Application of the Third Magnetic Flux Harmonic of Transformer Cores in Plasma Reactors. In Studies in Applied Electromagnetics and Mechanics, Nonlinear Electromagnetic Systems; IOS Press: Amsterdam, The Netherlands, 1996; Volume 10, pp. 31–34. [Google Scholar]
- Janowski, T.; Stryczewska, D.; Mastalarczuk, M.; Yamada, S.; Bessho, K. Performances of medium frequency supplying system for plasma reactor. J. Jpn. Soc. Appl. Electromagn. 1993, 1, 19–22. [Google Scholar]
- Janowski, T.; Stryczewska, H.D. Magnetic Frequency Triplers: Another Way to Supply Ozone Generators. Ozone-Sci. Eng. 1992, 14, 139–152. [Google Scholar] [CrossRef]
- Stryczewska, H.; Janowski, T. Investigation of an Ozone Generation System with Magnetic Frequency Tripler. In Scientific Papers of the Lublin University of Technology; Lublin University of Technology: Lublin, Poland, 1990; pp. 63–69. [Google Scholar]
- Czernichowski, A.; Ranaivosoloarimanana, A.; Janowski, T.; Stryczewska, H.D.; Cojan, M. Chemical Processing of CO2 in a Gliding Arc Reactor Supplied at 50 or 150 Hz. In Proceedings of the International Conference on Electromagnetic Devices and Processes in Environment Protection ELMECO’94, Lublin, Poland, 8–9 September 1994; pp. 11–24. [Google Scholar]
- Janowski, T.; Stryczewska, H.D.; Czerwiński, D.; Bessho, K.; Yamada, S. Model of the plasma reactor supplying system with frequency tripler. In Proceedings of the Third MAGDA Conference, Osaka, Japan, 10–15 April 1994; pp. 219–222. [Google Scholar]
- Janowski, T.; Stryczewska, H.D. An electrical model of an ozone generator for computer simulation. In Proceedings of the Abstracts of International Conference on Modelling and Simulation, Shekou, China, 7–9 November 1988; p. 132. [Google Scholar]
- Franklin, R.N.; Braithwaite, N.S.J. 80 Years of Plasma. Plasma Sources Sci. Technol. 2009, 18, 010201. [Google Scholar] [CrossRef]
- Von Woedtke, T.; Reuter, S.; Masura, K.; Weltmanna, K.D. Plasmas for medicine. Phys. Rep. 2013, 530, 291–320. [Google Scholar] [CrossRef]
- Alekseev, O.; Donovan, K.; Limonnik, V.; Azizkhan-Clifford, J. Nonthermal dielectric barrier discharge (DBD) plasma suppresses herpes simplex virus type 1 (HSV-1) replication in corneal epithelium. Transl. Vis. Sci. Technol. 2014, 3, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daeschlein, G.; Napp, M.; von Podewils, S.; Lutze, S.; Emmert, S.; Lange, A.; Klare, I.; Haase, H.; Gümbel, D.; von Woedtke, T.; et al. In Vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2014, 11, 175–183. [Google Scholar] [CrossRef]
- Ebihara, K.; Sugimoto, S.; Ikegami, T.; Mitsugi, F.; Stryczewska, H.D. Application of gaseous ozone to agricultural soil sterilization. In Proceedings of the sixth International Conference ELEMCO-6 Joint with 9th Seminar Applications of Superconductors AoS-9, Nałęczów, Poland, 24–27 June 2008; Lublin University of Technology: Lublin, Poland, 2008; pp. 11–13, ISBN 978-83-61301-20-2. [Google Scholar]
- Bekeschus, S.; von Woedtke, T.; Emmert, S.; Schmidt, A. Medical gas plasma-stimulated wound healing: Evidence and mechanisms. Redox Biol. 2021, 46, 102116. [Google Scholar] [CrossRef]
- Schmidt, A.; Bekeschus, S.; Wende, K.; Vollmar, B.; von Woedtke, T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp. Dermatol. 2017, 26, 156–162. [Google Scholar] [CrossRef]
- Fridman, G.; Shereshevsky, A.; Peddinghaus, M.; Gutsol, A.; Vasilets, V.; Brooks, A.; Balasubramanian, M.; Friedman, G.; Fridman, A. Bio-Medical Applications of Non-Thermal Atmospheric Pressure Plasma. In Proceedings of the 37th AIAA Plasmadynamics and Lasers Conference, San Francisco, CA, USA, 5–8 June 2006. [Google Scholar]
- Jarosław, D.; Grzegorz, K.; Robert, M.; Henryka, D. Stryczewska, Solar powered ozone installation for water treatment in swimming pools. In Proceedings of the Workshop on Progress in New Methods of Water and Waste Water Cleaning, Gdańsk, Poland, 4–5 July 2011. [Google Scholar]
- Bogle, M.A.; Arndt, K.A.; Dover, J.S. Evaluation of plasma skin regeneration technology in low-energy full-facial rejuvenation. Arch. Dermatol. 2007, 143, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Kilmer, S.; Semchyshyn, N.; Shag, G.; Fitzpatrick, R. A pilot study on the use of a plasma skin regeneration device (Portrait PSR3) in full facial rejuvenation procedures. Lasers Med. Sci. 2007, 22, 101–109. [Google Scholar] [CrossRef]
- Elsaie, M.L.; Kammer, J.N. Evaluation of plasma skin regeneration technology for cutaneous remodeling. J. Cosmet. Dermatol. 2008, 7, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Potter, M.J.; Harrison, R.; Ramsden, A.; Bryan, B.; Andrews, P.; Gault, D. Facial acne and fine lines: Transforming patient outcomes with plasma skin regeneration. Ann. Plast. Surg. 2007, 58, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Weltmann, K.D.; von Woedtke, T. Basic requirements for plasma sources in medicine. Eur. Phys. J. Appl. Phys. 2011, 55, 13807. [Google Scholar] [CrossRef]
- Mączka, T. Technologia Plazmowego Zgazowania Biomasy i Odpadów Organicznych dla Wytwarzania Paliw Płynnych (Technology of Plasma Gasification of Biomass and Organic Waste for the Production of Liquid Fuels); Wydawnictwo Książkowe Instytutu Elektrotechniki: Warszawa, Poland, 2014; ISBN 978-83-61956-32-7. e-ISBN 978-83-61956-33-4. (In Polish) [Google Scholar]
- Szałatkiewicz, J.; Zielono, G.; Obrzut, Ł.; Szałatkiewicz, M. Method of Control for Gasification Reactor in Ecological Technology of Biomass Waste Utilization. In Recent Advances in Systems, Control and Information Technology; Advances in Intelligent Systems and Computing; Szewczyk, R., Kaliczyńska, M., Eds.; Springer: Cham, Germany, 2017; Volume 543, pp. 252–259, SCIT 2016. [Google Scholar] [CrossRef]
- Kong, M.G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J.L. Plasma medicine: An introductory review. New J. Phys. 2009, 11, 115012. [Google Scholar] [CrossRef]
- Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A.B.; Vasilets, V.N.; Fridman, A. Applied plasma medicine. Plasma Process. Polym. 2008, 5, 503–533. [Google Scholar] [CrossRef]
- Moreau, M.; Orange, N.; Feuilloley, M.G.J. Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnol. Adv. 2008, 26, 610–617. [Google Scholar] [CrossRef]
- Haertel, B.; von Woedtke, T.; Weltmann, K.D.; Lindequist, U. Physical plasma—Possible application in wound healing. Biomol. Ther. 2014, 22, 477–490. [Google Scholar] [CrossRef] [Green Version]
- Graves, D.B. Low temperature plasma biomedicine: A tutorial review. Phys. Plasmas 2014, 21, 080901. [Google Scholar] [CrossRef] [Green Version]
- Pawłat, J.; Diatczyk, J.; Komarzyniec, G.; Giżewski, T.; Stryczewska Henryka, D.; Mitsugi, F.; Ebihara, K.; Aoqui, S.; Nakamiya, T. Solar energy for soil conditioning. In Proceedings of the EUROCON—International Conference on Computer as a Tool (EUROCON), 2011 IEEE, Lisbon, Portugal, 27–29 April 2011; pp. 1–4. [Google Scholar]
- Pawłat, J.; Stryczewska, H. Application of Solar Energy in the Processes of Gas, Water and Soil Treatment: W Solar Power [Red:]; Rugescu Radu, D., Ed.; InTech: Rijeka, Croatia, 2012; pp. 105–132. [Google Scholar] [CrossRef] [Green Version]
- Stryczewska, H.; Pawłat, J. Technologies of air, water and soil treatment based on solar energy and advanced oxidation processes. In w: Modern Power Engineering 1; Waldemar, W., Politechnika, L., Eds.; Lublin University of Technology: Lublin, Poland, 2011; pp. 176–197. [Google Scholar]
- Stryczewska, H.D.; Ebihara, K.; Takayama, M.; Gyuotoku, Y.; Tachibana, M. Non-Thermal Plasma-Based Technology for Soil Treatment. Plasma Processes Polym. 2005, 2, 238–245. [Google Scholar] [CrossRef]
- Ebihara, K.; Mitsugi, F.; Ikegami, T.; Nakamura, N.; Hashimoto, Y.; Yamashita, Y.; Baba, S.; Stryczewska, H.D.; Pawlat, J.; Teii, S.; et al. Ozone-mist spray sterilization for pest control in agricultural management. EPJ Appl. Phys. 2013, 61, 24318. [Google Scholar] [CrossRef]
- Von Woedtke, T.; Schmidt, A.; Bekeschus, S.; Wende, K. Introduction to plasma medicine. In Comprehensive Clinical Plasma Medicine; Metelmann, H.M., von Woedtke, T., Weltmann, K.D., Eds.; Springer: Berlin, Germany, 2018; pp. 3–21. [Google Scholar] [CrossRef]
- Daeschlein, G.; Scholz, S.; Emmert, S.; von Podewils, S.; Haase, H.; von Woedtke, T.; Jünger, M. Plasma medicine in dermatology: Basic antimicrobial efficacy testing as prerequisite to clinical plasma therapy. Plasma Med. 2012, 2, 33–69. [Google Scholar] [CrossRef] [Green Version]
- Metelmann, H.R.; Vu, T.T.; Do, H.T.; Le, T.N.B.; Hoang, T.H.A.; Phi, T.T.T.; Luong, T.M.L.; Doan, V.T.; Nguyen, T.T.H.; Nguyen, T.H.M.; et al. Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: A clinical long term observation. Clin. Plasma Med. 2013, 1, 30–35. [Google Scholar] [CrossRef]
- Morfill, G.E.; Shimizu, T.; Steffes, B.; Schmidt, H.U. Nosocomical infections—A new approach towards preventive medicine using plasmas. New J. Phys. 2009, 11, 115019. [Google Scholar] [CrossRef]
- Weltmann, K.D.; Kindel, E.; von Woedtke, T.; Hähnel, M.; Stieber, M.; Brandenburg, R. Atmospheric-pressure plasma sources: Prospective tools for plasma medicine. Pure Appl. Chem. 2010, 82, 1223–1237. [Google Scholar] [CrossRef]
- Weltmann, K.D.; von Woedtke, T. Plasma medicine—Current state of research and medical application. Plasma Phys. Control. Fusion 2017, 59, 014031. [Google Scholar] [CrossRef]
- Emmert, S.; Isbary, G.; Klutschke, F.; Lademann, J.; Westermann, U.; Podmelle, F.; Metelmann, H.R.; Daeschlein, G.; Masur, K.; von Woedtke, T.; et al. Clinical plasma medicine—Position and perspectives. Clin. Plasma Med. 2013, 1, 3–4. [Google Scholar] [CrossRef]
- Ratovitski, E.A.; Cheng, X.; Yan, D.; Sherman, J.H.; Canady, J.; Trink, B.; Keidar, M. Anti-cancer therapies of the 21st century: Novel approach to treat human cancers using cold atmospheric plasma. Plasma Process Polym. 2014, 11, 1128–1137. [Google Scholar] [CrossRef]
- Schlegel, J.; Köritzer, J.; Boxhammer, V. Plasma in cancer treatment. Clin. Plasma Med. 2013, 1, 2–7. [Google Scholar] [CrossRef]
- Graves, D.B. Reactive species from cold atmospheric plasma: Implications for cancer therapy. Plasma Process Polym. 2014, 11, 1120–1127. [Google Scholar] [CrossRef]
- Tanaka, H.; Mizuno, M.; Ishikawa, K.; Kondo, H.; Takeda, K.; Hashizume, H.; Nakamura, K.; Utsumi, F.; Kajiyama, H.; Kano, H.; et al. Plasma with high electron density and plasma-activated medium for cancer treatment. Clin. Plasma Med. 2015, 3, 72–76. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Murphy, A.B.; McLean, K.M.; Kong, M.G.; Ostrikov, K.K. Atmospheric pressure plasmas: Infection control and bacterial responses. Int. J. Antimicrob. Agents 2014, 43, 508–517. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, G.J.; Kim, J.M.; Park, J.K.; Lee, J.K.; Kim, G.C. Tooth bleaching with non-thermal atmospheric pressure plasma. J. Endod. 2009, 35, 587–591. [Google Scholar] [CrossRef]
- Singh, S.; Chandra, R.; Tripathi, S.; Rahman, H.; Tripathi, P.; Jain, A.; Gupta, P. The bright future of dentistry with cold plasma—Review. J. Dent. Med. Sci. 2014, 13, 6–13. [Google Scholar] [CrossRef]
- Agata, P.; Audemar, M.; Pawlat, J.; Canal, C.; Thomann, J.S.; Labay, C.; Wojcik, M.; Kwiatkowski, M.; Terebun, P.; Ginalska, G.; et al. Positive Effect of Cold Atmospheric Nitrogen Plasma on the Behavior of Mesenchymal Stem Cells Cultured on a Bone Scaffold Containing Iron Oxide-Loaded Silica Nanoparticles Catalyst. Int. J. Mol. Sci. 2020, 21, 4738. [Google Scholar] [CrossRef]
- Przekora, A.; Pawlat, J.; Terebun, P.; Duday, D.; Canal, C.; Hermans, S.; Audemar, M.; Labay, C.; Thomann, J.S.; Ginalska, G. The effect of low temperature atmospheric nitrogen plasma on MC3T3-E1 preosteoblast proliferation and differentiation in vitro. J. Phys. D Appl. Phys. 2019, 52, 275401. [Google Scholar] [CrossRef]
- Polak, M.; Winter, J.; Schnabel, U.; Ehlbeck, J.; Weltmann, K.D. Innovative plasma generation in flexible biopsy channels for inner-tube decontamination and medical applications. Plasma Process Polym. 2012, 9, 67–76. [Google Scholar] [CrossRef]
- Kim, S.W.; Park, H.S.; Kim, H.J. 100 KW Steam Plasma Process for Treatment of PCBS (Polychlorinated Biphenyls) Waste. Vacuum 2003, 70, 59–66. [Google Scholar] [CrossRef]
- Cai, X.W.; Du, C.M. Thermal Plasma Treatment of Medical Waste. Plasma Chem. Plasma Process. 2020, 41, 1–46. [Google Scholar] [CrossRef]
- Dors, M.; Kurzyńska, D. Tar Removal by Nanosecond Pulsed Dielectric Barrier Discharge. Appl. Sci. 2020, 10, 991. [Google Scholar] [CrossRef] [Green Version]
- Łukasz, S. (Ed.) Plazmowe technologie w zagospodarowaniu odpadów przemysłowych i komunalnych/Plasma technologies in the management of industrial and municipal waste. In Współczesne Problemy Ochrony Środowiska i Energetyki/Contemporary Problems of Environmental Protection and Energy, Collective Work; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2020; p. 415. ISBN 978-83-950087-8-8. (In Polish) [Google Scholar]
- Baboo, R.A. Study on plasma chemistry for human health & waste management. Int. J. Res. Anal. 2018, 5, 194–197, e-ISSN 2348-1269. [Google Scholar]
- Holub, M.; Brandenburg, R.; Grosch, H.; Weinmann, S.; Hansel, B. Plasma supported odour removal from waste air in water treatment plants: An industrial case study. Aerosol Air Qual. Res. 2014, 14, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Keener, K. The potential of cold plasma for safe and sustainable food production. Trends Biotechnol. 2018, 36, 615–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, N.N.; Schlüter, O.; Cullen, P.J. Cold Plasma in Food and Agriculture: Fundamentals and Applications; Elsevier: London, UK, 2016; 361p, ISBN 9780128014899. [Google Scholar]
- Abdi, S.; Dorranian, D.; Mohammadi, K. Effect of oxygen on decontamination of cumin seeds by atmospheric pressure dielectric barrier discharge plasma. Plasma Med. 2016, 6, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Filatova, I.; Azharonok, V.; Lushkevich, V.; Zhukovsky, A.; Gadzhieva, G.; Spasic, K.; Zickovic, S.; Puac, N.; Lazovic, S.; Malovic, G.; et al. Plasma seeds treatment as a promising technique for seed germination improvement. In Proceedings of the 31st International Conference on Phenomena in Ionized Gases, Granada, Spain, 14–19 July 2013. [Google Scholar]
- Henselova, M.; SlovakovA, L.; Martinka, M.; Zahoranova, A. Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 2012, 67, 490–497. [Google Scholar] [CrossRef]
- Tong, J.; He, R.; Zhang, X.; Zhan, R.; Chen, W.; Yang, S. Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of Andrographis paniculata. Plasma Sci. Technol. 2014, 16, 260. [Google Scholar] [CrossRef] [Green Version]
- Kordas, L.; Pusz, W.; Czapka, T.; Kacprzyk, R. The Effect of Low-Temperature Plasma on Fungus Colonization of Winter Wheat Grain and Seed Quality. Pol. J. Environ. Stud. 2015, 4, 433–438. [Google Scholar]
- Lotfy, K.; Al-Harbi, N.A.; El-Raheem, H.A. Cold atmospheric pressure nitrogen plasma jet for enhancement germination of wheat seeds. Plasma Chem. Plasma Process. 2019, 39, 897–912. [Google Scholar] [CrossRef]
- Nishioka, T.; Takai, Y.; Kawaradani, M.; Okada, K.; Tanimoto, H.; Misawa, T.; Kusakari, S. Seed disinfection effect of atmospheric pressure plasma and low-pressure plasma on Rhizoctonia solani. Biocontrol Sci. 2014, 19, 99–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Oh, K.S.; Oh, J.; Seok, D.C.; Kim, S.B.; Yoo, S.J.; Lee, M.J. The biological effects of surface dielectric barrier discharge on seed germination and plant growth with barley. Plasma Process. Polym. 2018, 15, 1600056. [Google Scholar] [CrossRef]
- Sera, B.; Sery, M. Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains. Plasma Sci. Technol. 2018, 20, 044012. [Google Scholar] [CrossRef] [Green Version]
- Sivachandiran, L.; Khacef, A. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: Combined effect of seed and water treatment. RSC Adv. 2017, 7, 1822–1832. [Google Scholar] [CrossRef] [Green Version]
- Thirumdas, R. Exploitation of cold plasma technology for enhancement of seed germination. Agri. Res. Technol. 2018, 13, 1–4. [Google Scholar] [CrossRef]
- Ruan, R.R.; Lei, H.; Chen, P.L.; Deng, S.; Lin, X.; Li, Y.; Wilcke, W.; Fulcher, G. Ozone-Aided Corn Steeping Process. Cereal Chem. 2004, 81, 182–187. [Google Scholar] [CrossRef]
- Chen, Z.; Garcia, G.; Arumugaswami, V.; Wirz, R.E. Cold atmospheric plasma for SARS-CoV-2 inactivation. Phys. Fluids 2020, 32, 111702. [Google Scholar] [CrossRef]
- Muszański, R. Dlaczego OWWO? (Why OWWO?—Highly ozonated degassed water). Wodociągi Pol. Pol. Water Control. 2020, 12, 44–46. (In Polish) [Google Scholar]
- Petitpas, G.; Rollier, J.D.; Darmon, A.; Gonzalez-Aguilar, J.; Metkemeijer, R.; Fulcheri, L. A comparative study of non-thermal plasma assisted reforming technologies. Int. J. Hydrog. Energy 2007, 32, 2848–2867. [Google Scholar] [CrossRef]
- Sobiecka, E.; Kołacinski, Z.; Rincon, J.M.; Szymanski, L.; Olejnik, T.P. Coloured sintered glass-ceramics from hospital incineration fly ash. Mater. Lett. 2019, 252, 35–37. [Google Scholar] [CrossRef]
- Sobiecka, E.; Szymanski, L. Thermal Plasma Vitrification Process as The Effective Technology for Fly Ash and Chromium Rich Sewage Sludge Utilization. J. Chem. Technol. Biotechnol. 2013, 89, 1115–1117. [Google Scholar] [CrossRef]
- Wystalska, K.; Sobik-Szoltysek, J. Sludge from tannery industries. In Industrial and Municipal Sludge, 1st ed.; Prasad, M.N.V., de Campos Favas, P.J., Vithanage, M., Mohan, S.V., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 31–46. [Google Scholar] [CrossRef]
- Thirumdas, R.; Kothakota, A.; Annapure, U.; Siliveru, K.; Blundell, R.; Gatt, R.; Valdramidis, V.P. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018, 77, 21–31. [Google Scholar] [CrossRef]
- Malik, M.A.; Ghaffar, A.; Malik, S.A. Water purification by electrical discharges. Plasma Sources Sci. Technol. 2001, 10, 82–91. [Google Scholar] [CrossRef]
- Jiang, H.J.; Chen, N.; Shen, Z.Q.; Yin, J.; Qiu, Z.G.; Miao, J.; Yang, Z.W.; Shi, D.Y.; Wang, H.R.; Wang, X.W.; et al. Inactivation of Poliovirus by Ozone and the Impact of Ozone on the Viral Genome. Biomed. Environ. Sci. 2019, 32, 324–333. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma-liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Stryczewska, H.D.; Ebihara, K.; Mitsugi, F.; Aoqui, S.; Muszański, R. Plasma Agriculture in Europe. Review of research on agricultural applications of non-thermal plasma. In Proceedings of the First International Conference on Hybrid Agriculture (Hybrid 2016), Kumamoto, Japan, 21–24 October 2016; Sojo University: Kumamoto, Japan, 2016. [Google Scholar]
- Joanna, P. Electrical Discharges in Humid Environments. Generators, Effects, Application; Lublin University of Technology: Lublin, Poland, 2013; ISBN 978-83-63569-37-2. [Google Scholar]
- Ebihara, K.; Mitsugi, F.; Ikegami, T.; Yamashita, Y.; Hashimoto, Y.; Yamashita, T.; Kanazawa, S.; Stryczewska, H.D.; Pawlat, J.; Teii, S.; et al. Sterilization Characteristics of Ozone-mist Spray for Chemical Free Agriculture. Int. J. Plasma Environ. Sci. 2016, 10, 11–15. [Google Scholar] [CrossRef]
- Volkering, F.A.; Breure, M.; Rulkens, W.H. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 1998, 8, 401–417. [Google Scholar] [CrossRef]
- Lim, H.; Choi, H.; Hwang, T.; Kang, J. Characterization of ozone decomposition in a soil slurry: Kinetics and mechanism. Water Res. 2002, 36, 219–229. [Google Scholar] [CrossRef]
- Alcantara-Garduno, M.; Okuda, T.; Tsai, T.; Nishijima, W.; Okada, M. Experimental and mathematical evaluation of trichloroethylene removal from saturated soil using acetic acid with saturated ozone. Sep. Purif. Technol. 2008, 60, 299–307. [Google Scholar] [CrossRef]
- Hsu, M.; Masten, S. The kinetics of the reaction of ozone with phenanthrene in unsaturated soils. Environ. Eng. Sci. 1997, 14, 207–218. [Google Scholar] [CrossRef]
- Barraud, N.; Hassett, D.; Hwang, S.; Rice, S.; Kjelleberg, S.; Webb, J. Involvement of Nitric Oxide in Biofilm Dispersal of Pseudomonas aeruginosa. J. Bacteriol. 2006, 188, 7344–7353. [Google Scholar] [CrossRef] [Green Version]
- Mitsugi, F.; Ebihara, K.; Horibe, N.; Aoqui, S.; Nagahama, K. Practical Soil Treatment in a Greenhouse Using Surface Barrier Discharge Ozone Generator. IEEE Trans. Plasma Sci. 2017, 45, 3082–3088. [Google Scholar] [CrossRef]
- Pauzaite, G.; Malakauskiene, A.; Nauciene, Z.; Zukiene, R.; Filatova, I.; Lyushkevich, V.; Azarko, I.; Mildaziene, V. Changes in Norway spruce germination and growth induced by pre sowing seed treatment with cold plasma and electromagnetic field: Short-term versus long-term effects. Plasma Process Polym. 2018, 15, e1700068. [Google Scholar] [CrossRef]
- Randeniya, L.K.; de Groot, G.J.J.B. Non-Thermal Plasma Treatment of Agricultural Seeds for Stimulation of Germination, Removal of Surface Contamination and Other Benefits: A Review. Plasma Process Polym. 2015, 12, 608–623. [Google Scholar] [CrossRef]
- Da Silva, J.A.T.; Dobránszki, J. Magnetic fields: How is plant growth and development impacted? Protoplasma 2016, 253, 231–248. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jiang, J.F.; Li, J.G.; Shen, M.C.; He, X.; Shao, H.L.; Dong, Y.H. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci. Rep. 2014, 4, 5859. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.I.; Mohsenimehr, S.; Hadian, J.; Ghorbanpour, M.; Shokri, B. Physico-chemical induced modification of seed germination and early development in artichoke (Cynara scolymus L.) using low energy plasma technology. Phys. Plasmas. 2018, 25, 013525. [Google Scholar] [CrossRef]
- Filatova, I.; Lyushkevich, V.; Goncharik, S.; Zhukovsky, A.; Krupenko, N.; Kalatskaja, J. The effect of low-pressure plasma treatment of seeds on the plant resistance to pathogens and crop yields. J. Phys. D Appl. Phys. 2020, 53, 244001. [Google Scholar] [CrossRef]
- Jiang, J.F.; Lu, Y.F.; Li, J.G.; Li, L.; He, X.; Shao, H.L.; Dong, Y.H. Effect of Seed Treatment by Cold Plasma on the Resistance of Tomato to Ralstonia solanacearum (Bacterial Wilt). PLoS ONE 2014, 9, e97753. [Google Scholar] [CrossRef] [Green Version]
- Mildaziene, V.; Pauzaite, G.; Malakauskiene, A.; Zukiene, R.; Nauciene, Z.; Filatova, I.; Azharonok, V.; Lyushkevich, V. Response of perennial woody plants to seed treatment by electromagnetic field and low-temperature plasma. Bioelectromagnetics 2016, 37, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Ivankov, A.; Nauciene, Z.; Zukiene, R.; Degutyte-Fomins, L.; Malakauskiene, A.; Kraujalis, P.; Venskutonis, P.R.; Filatova, I.; Lyushkevich, V.; Mildaziene, V. Changes in Growth and Production of Non-Psychotropic Cannabinoids Induced by Pre-Sowing Treatment of Hemp Seeds with Cold Plasma, Vacuum and Electromagnetic Field. Appl. Sci. 2020, 10, 8519. [Google Scholar] [CrossRef]
- Boehm, D.; Canal, C. Application of Plasma Technology in Bioscience and Biomedicine. Appl. Sci. 2021, 11, 7203. [Google Scholar] [CrossRef]
- Rezaei, F.; Vanraes, P.; Nikiforov, A.; Morent, R.; De Geyter, N. Applications of Plasma-Liquid Systems: A Review. Materials 2019, 12, 2751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Choi, K.H.; Kim, Y.; Park, B.J.; Cho, G. Wearable Plasma Pads for Biomedical Applications. Appl. Sci. 2021, 17, 1308. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.W.; Zhou, R.S.; Wang, P.Y.; Xian, Y.B.; Mai-Prochnow, A.; Lu, X.P.; Cullen, P.J.; Ostrikov, K.; Bazaka, K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020, 53, 303001. [Google Scholar] [CrossRef]
- Laroussi, M. Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Trans. Plasma Sci. 1996, 24, 1188–1191. [Google Scholar] [CrossRef]
- Laroussi, M. Sterilization of Liquids Using a Plasma Glow Discharge. U.S. Patent 5,876,663, 2 March 1999. [Google Scholar]
- Laroussi, M. Cold Plasma in Medicine and Healthcare: The New Frontier in Low Temperature Plasma Applications. Front. Phys. 2020, 8, 74. [Google Scholar] [CrossRef]
- Boudam, M.K.; Moisan, M. Synergy effect of heat and UV photons on bacterial-spore inactivation in an N2-O2 plasma-afterglow sterilizer. J. Phys. D Appl. Phys. 2010, 43, 295202. [Google Scholar] [CrossRef]
- Isbary, G.; Morfill, G.; Schmidt, H.U.; Georgi, M.; Ramrath, K.; Heinlin, J.; Karrer, S.; Landthaler, M.; Shimizu, T.; Steffes, B.; et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br. J. Dermatol. 2010, 163, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, M.; Robert, E.; Pesnel, S.; Barbosa, E.; Dozias, S.; Sobilo, J.; Lerondel, S.; Le Pape, A.; Pouvesle, J.M. Antitumor effect of plasma treatment on U87 glioma xenografts: Preliminary results. Plasma Process Polym. 2010, 7, 264–273. [Google Scholar] [CrossRef]
- Laroussi, M. From killing bacteria to destroying cancer cells: Twenty years of plasma medicine. Plasma Process Polym. 2014, 11, 1138–1141. [Google Scholar] [CrossRef]
- Delben, J.A.; Zago, C.E.; Tyhovych, N.; Duarte, S.; Vergani, C.E. Effect of atmospheric pressure cold plasma on pathogenic oral biofilms and in vitro reconstituted oral epithelium. PLoS ONE 2016, 11, e0155427. [Google Scholar] [CrossRef]
- Carreiro, A.F.; Delben, J.A.; Guedes, S.; Silveira, E.J.; Janal, M.N.; Vergani, C.E.; Pushalkar, S.; Duarte, S. Low-temperature plasma on peri-implant-related biofilm and gingival tissue. J. Periodontol. 2019, 90, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Daeschlein, G.; Napp, M.; Lutze, S.; Arnold, A.; von Podewils, S.; Guembel, D.; Jünger, M. Skin and wound decontamination of multidrug-resistant bacteria by cold atmospheric plasma coagulation. Dtsch. Dermatol Ges. 2015, 13, 143–150. [Google Scholar] [CrossRef]
- Shi, X.M.; Xu, G.M.; Zhang, G.J.; Liu, J.R.; Wu, Y.M.; Gao, L.G.; Yang, Y.; Chang, Z.S.; Yao, C.W. Low-temperature plasma promotes fibroblast proliferation in wound healing by ROS-activated NF-κB signaling pathway. Curr. Med. Sci. 2018, 38, 107–114. [Google Scholar] [CrossRef]
- Bunz, O.; Mese, K.; Funk, C.; Wulf, M.; Bailer, S.M.; Piwowarczyk, A.; Ehrhardt, A. Cold atmospheric plasma as antiviral therapy—Effect on human herpes simplex virus type 1. J. Gen. Virol. 2020, 101, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Panariello, B.H.D. Comprehensive biomedical applications of low temperature plasmas. Arch. Biochem. Biophys. 2020, 693, 108560. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Han, L.; Cullen, P.J.; Gilmore, B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017, 123, 308–324. [Google Scholar] [CrossRef] [Green Version]
- Niedzwiedz, I.; Wasko, A.; Pawlat, J.; Polak-Berecka, M. The State of Research on Antimicrobial Activity of Cold Plasma. Pol. J. Microbiol. 2019, 68, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, H.; Miura, T.; Kurita, H.; Takashima, K.; Mizuno, A. Biological evaluation of DNA damage in bacteriophages inactivated by atmospheric pressure cold plasma. Plasma Process Polym. 2010, 7, 301–308. [Google Scholar] [CrossRef]
- Terrier, O.; Essere, B.; Yver, M.; Barthelemy, M.; Bouscambert-Duchamp, M.; Kurtz, P.; VanMechelen, D.; Morfin, F.; Billaud, G.; Ferraris, O.; et al. Cold oxygen plasma technology efficiency against different airborne respiratory viruses. J. Clin. Virol. 2009, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, J.L.; Dumler, K.; Shimizu, T.; Morfill, G.E.; Wolf, A.; Boxhammer, V.; Schlegel, J.; Gansbacher, B.; Anton, M. Effects of cold atmospheric plasmas on adenoviruses in solution. J. Phys. D Appl. Phys. 2011, 44, 505201. [Google Scholar] [CrossRef]
- Klampfl, T.G.; Isbary, G.; Shimizu, T.; Li, Y.F.; Zimmermann, J.L.; Stolz, W.; Schlegel, J.; Morfill, G.E.; Schmidt, H.U. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl. Environ. Microbiol. 2012, 78, 5077–5082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, X.; Liu, D.; Xiang, Q.; Ahn, J.; Chen, S.; Ye, X.; Ding, T. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control. 2017, 75, 83–91. [Google Scholar] [CrossRef]
- Colagar, A.H.; Memariani, H.; Sohbatzadeh, F.; Omran, A.V. Nonthermal atmospheric argon plasma jet effects on Escherichia coli biomacromolecules. Appl. Biochem. Biotechnol. 2013, 171, 1617–1629. [Google Scholar] [CrossRef] [PubMed]
- Ziuzina, D.; Boehm, D.; Patil, S.; Cullen, P.J.; Bourke, P. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors. PLoS ONE 2015, 10, e0138209. [Google Scholar] [CrossRef]
- Alkawareek, M.Y.; Algwari, Q.T.; Gorman, S.P.; Graham, W.G.; O’Connell, D.; Gilmore, B.F. Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms. Fems. Immunol. Med. Microbiol. 2012, 65, SI381–SI384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patange, A.; Boehm, D.; Ziuzina, D.; Cullen, P.J.; Gilmore, B.; Bourke, P. High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. Int. J. Food Microbiol. 2019, 293, 137–145. [Google Scholar] [CrossRef]
- Boxhammer, V.; Li, Y.F.; Köritzer, J.; Shimizu, T.; Maisch, T.; Thomas, H.M.; Schlegel, J.; Morfill, G.E.; Zimmermann, J.L. Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mutat. Res./Genet. Toxicol. Environ. Mutagenes. 2013, 753, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Nishime, T.M.C.; Borges, A.C.; Koga-Ito, C.Y.; Machida, M.; Hein, L.R.O.; Kostov, K.G. Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf. Coat. Technol. 2017, 312, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Colonna, W.; Wan, Z.; Pankaj, S.K.; Keener, K.M. High-voltage atmospheric cold plasma treatment of yeast for spoilage prevention. Plasma Med. 2017, 7, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Tolouie, H.; Mohammadifar, M.A.; Ghomi, H.; Hashemi, M. Cold atmospheric plasma manipulation of proteins in food systems. Crit. Rev. Food Sci. Nutr. 2018, 58, 2583–2597. [Google Scholar] [CrossRef] [Green Version]
- Tolouie, H.; Mohammadifar, M.A.; Ghomi, H.; Yaghoubi, A.S.; Hashemi, M. The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs. Innov. Food Sci. Emerg. Technol. 2018, 47, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Misra, N.N.; Pankaj, S.K.; Segat, A.; Ishikawa, K. Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci. Technol. 2016, 55, 39–47. [Google Scholar] [CrossRef]
- Dubey, S.K.; Parab, S.; Amit, A.; Agrawal, M.; Achalla, V.P.K.; Pal, U.N.; Pandey, M.M.; Kesharwani, P. Cold atmospheric plasma therapy in wound healing. Process Biochem. 2022, 112, 112–123. [Google Scholar] [CrossRef]
- Graves, D.B. Mechanisms of plasma medicine: Coupling plasma physics, biochemistry, and biology. IEEE Trans. Radiat. Plasma Med. Sci. 2017, 1, 281–292. [Google Scholar] [CrossRef]
- Gorain, B.; Choudhury, H.; Pandey, M.; Kesharwani, P.; Abeer, M.M.; Tekade, R.K.; Hussain, Z. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. Biomed. Pharmacother. 2018, 104, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.Y.; Lin, Z.H.; Cheng, Y.P.; Chiu, H.Y.; Yeh, N.L.; Wu, T.K.; Wu, J.S. Wound healing in streptozotocin-induced diabetic rats using atmospheric-pressure argon plasma jet. Sci. Rep. 2018, 8, 12214. [Google Scholar] [CrossRef] [PubMed]
- Nasruddin, Y.; Nakajima, K.; Mukai, H.S.E.; Nur Rahayu, M.; Ishijima, T.; Enomoto, H.; Uesugi, Y.; Sugama, J.; Nakatani, T. Cold plasma on full-thickness cutaneous wound accelerates healing through promoting inflammation, re-epithelialization and wound contraction. Clin. Plasma Med. 2014, 2, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef]
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, 265sr6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szili, E.J.; Hong, S.H.; Oh, J.S.; Gaur, N.; Short, R.D. Tracking the penetration of plasma reactive species in tissue models. Trends Biotechnol. 2018, 36, 594–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agren, M.S.; Taplin, C.J.; Woessner, J.F.; Eaglstein, W.H.; Mertz, P.M. Collagenase in wound healing: Effect of wound age and type. J. Investig. Dermatol. 1992, 99, 709–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zehtabchi, S.; Tan, A.; Yadav, K.; Badawy, A.; Lucchesi, M. The impact of wound age on the infection rate of simple lacerations repaired in the emergency department. Injury 2012, 43, 1793–1798. [Google Scholar] [CrossRef] [PubMed]
- Beyene, R.T.; Derryberry, S.L.; Barbul, A. The effect of comorbidities on wound healing. Surg. Clin. 2020, 100, 695–705. [Google Scholar] [CrossRef]
- Nahid, M.A.; Griffin, J.M.; Lustik, M.B.; Hayes, J.J.; Fong, K.S.K.; Horseman, T.S.; Menguito, M.; Snesrud, E.C.; Barnhill, J.C.; Washington, M.A. A longitudinal evaluation of the bacterial pathogens colonizing chronic non-healing wound sites at a United States military treatment facility in the pacific region. Infect. Drug Resist. 2021, 14, 1–10. [Google Scholar] [CrossRef]
- Hirst, A.M.; Frame, F.M.; Arya, M.; Maitland, N.J.; O’Connell, D. Low temperature plasmas as emerging cancer therapeutics: The state of play and thoughts for the future. Tumor Biol. 2016, 37, 7021–7031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, K.; Liu, F.; Fan, J.; Sun, D.L.; Liu, C.; Lyon, C.J.; Bernard, D.W.; Li, Y.; Yokoi, K.; Katz, M.H.; et al. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 2017, 1, 0021. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.J.; Cheng, Y.; An, T.T.; Gao, H.J.; Wang, K.; Zhou, Q.; Hu, Y.P.; Song, Y.; Ding, C.M.; Peng, F.; et al. Detection of EGFR mutations in plasma circulating tumour DNA as a selection criterion for first-line gefitinib treatment in patients with advanced lung adenocarcinoma (BENEFIT): A phase 2, single-arm, multicentre clinical trial. Lancet Resp. Med. 2018, 6, 681–690. [Google Scholar] [CrossRef]
- Iijima, Y.; Hirotsu, Y.; Amemiya, K.; Ooka, Y.; Mochizuki, H.; Oyama, T.; Nakagomi, T.; Uchida, Y.; Kobayashi, Y.; Tsutsui, T.; et al. Very early response of circulating tumour-derived DNA in plasma predicts efficacy of nivolumab treatment in patients with non-small cell lung cancer. Eur. J. Cancer 2017, 86, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Privat-Maldonado, A.; Bengtson, C.; Razzokov, J.; Smits, E.; Bogaerts, A. Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments. Cancers 2019, 11, 1920. [Google Scholar] [CrossRef] [Green Version]
- Hirst, A.M.; Simms, M.S.; Mann, V.M.; Maitland, N.J.; O’Connell, D.; Frame, F.M. Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells. Br. J. Cancer. 2015, 112, 1536–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, E.H.; Uhm, H.S.; Kaushik, N.K. Plasma bioscience and its application to medicine. AAPPS Bull. 2021, 31, 10. [Google Scholar] [CrossRef]
- Kaushik, N.K.; Uhm, H.S.; Choi, E.H. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells. Appl. Phys. Lett. 2012, 100, 084102. [Google Scholar] [CrossRef]
- Panngom, K.; Baik, K.Y.; Ryu, Y.H.; Uhm, H.S.; Choi, E.H. Differential responses of cancer cell lines to non-thermal plasma from dielectric barrier discharge. Curr. Appl. Phys. 2013, 13, S6–S11. [Google Scholar] [CrossRef]
- Lata, S.; Chakravorty, S.; Mitra, T.; Pradhan, P.K.; Mohanty, S.; Patel, P.; Jha, E.; Panda, P.K.; Verma, S.K.; Suar, M. Aurora Borealis in dentistry: The applications of cold plasma in biomedicine. Mater. Today Bio 2022, 13, 100200. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.; Krishnamraju, P.V.; Shankar, T.; Gowd, S. Nonthermal plasma in dentistry: An update. J. Int. Soc. Prev. Community Dent. 2017, 7, 71–75. [Google Scholar] [CrossRef]
- Cha, S.; Park, Y.S. Plasma in dentistry. Clin. Plasma Med. 2014, 2, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Gherardi, M.; Tonini, R.; Colombo, V. Plasma in dentistry: Brief history and current status. Trends Biotechnol. 2018, 36, 583–585. [Google Scholar] [CrossRef]
- Borges, A.C.; Kostov, K.G.; Pessoa, R.S.; de Abreu, G.M.A.; Lima, G.D.G.; Figueira, L.W.; Koga-Ito, C.Y. Applications of Cold Atmospheric Pressure Plasma in Dentistry. Appl. Sci. 2021, 11, 1975. [Google Scholar] [CrossRef]
- Sung, S.J.; Huh, J.B.; Yun, M.J.; Chang, B.M.W.; Jeong, C.M.; Jeon, Y.C. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments. J. Adv. Prosthodont. 2013, 5, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Sladek, R.E.J.; Stoffels, E.; Walraven, R.; Tielbeek, P.J.A.; Koolhoven, R.A. Plasma treatment of dental cavities: A feasibility study. IEEE Trans. Plasma Sci. 2004, 32, 1540–1543. [Google Scholar] [CrossRef]
- Vandana, B.L. From distant stars to dental chairs: An update on plasma needle. Int. J. Dent. Sci. Res. 2014, 2, 19–20. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, K.; Ye, G.; Liang, Y.; Pan, H.; Wang, G.; Zhao, Y.; Pan, J.; Zhang, J.; Fang, J. Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal Enterococcus faecalis biofilm in vitro. J. Endod. 2015, 41, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Sun, K.; Liang, Y.; Sun, P.; Yang, X.; Wang, J.; Zhang, J.; Zhu, W.; Fang, J.; Becker, K.H. Cold plasma therapy of a tooth root canal infected with enterococcus faecalis biofilms in vitro. J. Endod. 2013, 39, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Nam, S.H.; Mohamed, A.A.H.; Kim, G.C.; Lee, J.K. Atmospheric pressure plasma jet composed of three electrodes: Application to tooth bleaching. Plasma Process. Polym. 2010, 7, 274–280. [Google Scholar] [CrossRef]
- Park, J.K.; Nam, S.H.; Kwon, H.C.; Mohamed, A.A.H.; Lee, J.K.; Kim, G.C. Feasibility of nonthermal atmospheric pressure plasma for intracoronal bleaching. Int. Endod. J. 2011, 44, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Koo, I.G.; Choi, M.Y.; Jung, J.C.; Eldali, F.; Lee, J.K.; Collins, G.J. Correlated electrical and optical studies of hybrid argon gas-water plasmas and their application to tooth whitening. Plasma Process. Polym. 2012, 9, 339–345. [Google Scholar] [CrossRef]
- Rapuano, B.E.; Singh, H.; Boskey, A.L.; Doty, S.B.; MacDonald, D.E. Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy: Evidence for enhanced osteoinductive properties. J. Cell. Biochem. 2013, 114, 1917–1927. [Google Scholar] [CrossRef] [Green Version]
- Giro, G.; Tovar, N.; Witek, L.; Marin, C.; Silva, N.R.F.; Bonfante, E.A.; Coelho, P.G. Osseointegration assessment of chairside argon-based nonthermal plasma-treated Ca-P coated dental implants. J. Biomed. Mater. Res. 2013, 101A, 98–103. [Google Scholar] [CrossRef]
- Koban, I.; Duske, K.; Jablonowski, L.; Schroder, K.; Nebe, B.; Sietmann, R.; Weltmann, K.D.; Hubner, N.O.; Kramer, A.; Kocher, T. Atmospheric plasma enhances wettability and osteoblast spreading on dentin in vitro: Proof-of-principle. Plasma Process. Polym. 2011, 8, 975–982. [Google Scholar] [CrossRef]
- Miletic, M.; Mojsilovic, S.; Okicorevic, I.; Maletic, D.; Puac, N.; Lazovic, S.; Malovic, G.; Milenkovic, P.; Lj Petrovic, Z.; Bugarski, D. Effects of non-thermal atmospheric plasma on human periodontal ligament mesenchymal stem cells. J. Phys. D Appl. Phys. 2013, 46, 345401. [Google Scholar] [CrossRef]
- Nima, G.; Harth-Chu, E.; Hiers, R.D.; Pecorari, V.G.A.; Dyer, D.W.; Khajotia, S.S.; Giannini, M.; Florez, F.L.E. Antibacterial efficacy of non-thermal atmospheric plasma against Streptococcus mutans biofilm grown on the surfaces of restorative resin composites. Sci. Rep. 2021, 11, 23800. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.; Verma, S.K.; Panda, P.K.; Pramanik, N.; Jha, E.; Suar, M. Molecular insight to size and dose-dependent cellular toxicity exhibited by a green synthesized bioceramic nanohybrid with macrophages for dental applications. Toxicol. Res. 2018, 7, 959–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, H.; Ohshima, T.; Tsubota, Y.; Yamaguchi, H.; Jayawardena, J.A.; Nishimura, Y. Microbicidal activities of low frequency atmospheric pressure plasma jets on oral pathogens. Dent. Mater. J. 2011, 30, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Chen, M.T.; Gorur, A.; Schaudinn, C.; Jaramillo, D.E.; Costerton, J.W.; Sedghizadeh, P.P.; Vernier, P.T.; Gundersen, M.A. Nanosecond pulsed plasma dental probe. Plasma Process. Polym. 2009, 6, 479–483. [Google Scholar] [CrossRef]
- Armand, A.; Khani, M.; Asnaashari, M.; AliAhmadi, A.; Shokri, B. Comparison study of root canal disinfection by cold plasma jet and photodynamic therapy. Photodiagn. Photodyn. Ther. 2019, 26, 327–333. [Google Scholar] [CrossRef]
- Dong, X.; Chen, M.; Wang, Y.; Yu, Q. A mechanistic study of plasma treatment effects on demineralized dentin surfaces for improved adhesive/dentin interface bonding. Clin. Plasma Med. 2014, 2, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Yavirach, P.; Chaijareenont, P.; Boonyawan, D.; Pattamapun, K.; Tunma, S.; Takahashi, H.; Arksornnukit, M. Effects of plasma treatment on the shear bond strength between fiber reinforced composite posts and resin composite for core build-up. Dent. Mater. J. 2009, 28, 686–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Guo, J.; Zhou, X.; Liu, Z.; Wang, C.; Wang, K.; Zhang, J.; Wang, Z. A novel cold atmospheric pressure air plasma jet for peri-implantitis treatment: An in vitro study. Dent. Mater. J. 2018, 37, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koban, I.; Holtfreter, B.; Hübner, N.O.; Matthes, R.; Sietmann, R.; Kindel, E.; Weltmann, K.D.; Welk, A.; Kramer, A.; Kocher, T. Antimicrobial efficacy of nonthermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro—Proof of principle experiment. J. Clin. Periodontol. 2011, 38, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Cold Plasma Is a Hot New Tool in Veterinary Medicine | Tufts Now. Available online: https://now.tufts.edu/articles/cold-plasma-hot-new-tool-veterinary-medicine (accessed on 14 April 2022).
- Lee, J.; Moon, H.; Ku, B.; Lee, K.; Hwang, C.Y.; Baek, S.J. Anticancer Effects of Cold Atmospheric Plasma in Canine Osteosarcoma Cells. Int. J. Mol. Sci. 2020, 21, 4556. [Google Scholar] [CrossRef]
- Van den Broek, A.; Miller, W.; Griffin, C.; Campbell, K. Muller and Kirk’s Small Animal Dermatology. Vet. Dermatol. 2013, 24, 559. [Google Scholar] [CrossRef]
- Bourely, C.; Cazeau, G.; Jarrige, N.; Leblond, A.; Madec, J.Y.; Haenni, M.; Gay, E. Antimicrobial resistance patterns of bacteria isolated from dogs with otitis. Epidemiol. Infect. 2019, 147, e121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.J.; Hwang, C.Y.; Kang, J.H.; Baek, S.J.; Hyun, J.E. In Vitro antimicrobial activity of cold atmospheric microwave plasma against bacteria causing canine skin and ear infections. Vet. Dermatol. 2021, 32, 462-e126. [Google Scholar] [CrossRef] [PubMed]
- Nitsch, A.; Napiletzki, K.; Stope, M.B. Non-invasive physical plasma (NIPP) treatment of a hedgehog with head injury: A novel therapy in veterinary medicine. Vet. Rec. Case Rep. 2022, e343. [Google Scholar] [CrossRef]
- Nolff, M.C.; Winter, S.; Reese, S.; Meyer-Lindenberg, A. Comparison of polyhexanide, cold atmospheric plasma and saline in the treatment of canine bite wounds. J. Small Anim. Pract. 2019, 60, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Martines, E.; Brun, P.; Cavazzana, R.; Cordaro, L.; Zuin, M.; Martinello, T.; Gomiero, C.; Perazzi, A.; Melotti, L.; Maccatrozzo, L.; et al. Wound healing improvement in large animals using an indirect helium plasma treatment. Clin Plasma Med. 2020, 17–18, 100095. [Google Scholar] [CrossRef]
- Martines, E.; Zuin, M.; Cavazzana, R.; Gazza, E.; Serianni, G.; Spagnolo, S.; Spolaore, M.; Leonardi, A.; Deligianni, V.; Brun, P.; et al. A novel plasma source for sterilization of living tissues. New J. Phys. 2009, 11, 115014. [Google Scholar] [CrossRef]
Plasma Properties | Thermal Plasma | Non-Thermal Plasma |
---|---|---|
State | Thermodynamic equilibrium | Kinetic equilibrium |
Electron density, 1/m3 | 1021 < ne < 1023 | 1020 < ne < 1021 |
Pressure, Pa | 105 < p < 107 | 10−1 < p < 105 |
Electron temperature, eV | 1 < Te < 10 | 0.2 < Te < 2 |
Gas temperature, eV | Tg = Te | 0.025 < Tg < 0.5 |
Current, A | 50 < I < 104 | 0.01 < I < 50 |
Ionisation | Saha | uncertain |
Kind of Discharge | Main Applications | Power Supply |
---|---|---|
Dielectric barrier discharges DBDs | Ozone synthesis, methane conversion, sterilisation, biomedicine and agriculture | AC voltage of mains and increased frequency |
DBDs with dielectric/ferroelectric packing | Decomposition of SOx and NOx, VOCs conversion | DC, pulse power (PP) and AC |
Corona discharges (CDs) Barrier corona discharge (BCD) | Sterilisation, disinfection, medical applications | PP and DC |
Atmospheric pressure plasma jet APPJ, Plasma needles (PNs) | Medical applications, tissue engineering | High-frequency AC and PP |
Surface discharges (SDs) | Neutralisation of nitrogen oxides and volatile organic substances | Increased and high-frequency AC |
Thermal arc discharges (ADs) Microwave discharges (MWDs) Plasmatrons Plasma torches (PTs) | Chemical syntheses, melting, welding, surface treatment, waste incineration and vitrification | DC and AC voltage radio and microwave frequency |
Gliding arc discharges GADs | Toxic gas neutralisation, SOx and NOx treatment, and biomedical and agricultural applications | DC, PP and AC PS |
No. | Plant | Insect | Percentage Sterilisation Rate/Treatment Parameters |
---|---|---|---|
1 | Tobacco | Green-peach aphid | 80–90%—O3 concentration: 86 g/m3; flow rate: 1 litre of O2 per minute; O3 solubility: 5 ppm; spraying time: 10 s |
2 | Tobacco | Green caterpillar | 50%—treatment parameters like in No. 1; spraying time: 20 s |
3 | Canadagoldenrod | Red goldenrod aphid | 95–100%—treatment parameters same as in No. 1 |
4 | Orange | Black citrus aphid | 100%—treatment parameters same as in No. 1 |
5 | Green tea | Plant lice | 100%—ozone gas; 90%—ozone–mist spray: treatment parameters same as in No. 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stryczewska, H.D.; Boiko, O. Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. Appl. Sci. 2022, 12, 4405. https://doi.org/10.3390/app12094405
Stryczewska HD, Boiko O. Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. Applied Sciences. 2022; 12(9):4405. https://doi.org/10.3390/app12094405
Chicago/Turabian StyleStryczewska, Henryka Danuta, and Oleksandr Boiko. 2022. "Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine" Applied Sciences 12, no. 9: 4405. https://doi.org/10.3390/app12094405
APA StyleStryczewska, H. D., & Boiko, O. (2022). Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. Applied Sciences, 12(9), 4405. https://doi.org/10.3390/app12094405