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Abstract: The real-time railway rescheduling problem is a crucial challenge for human operators
since many factors have to be considered during decision making, from the positions and velocities
of the vehicles to the different regulations of the individual railway companies. Thanks to that,
human operators cannot be expected to provide optimal decisions in a particular situation. Based
on the recent successes of multi-agent deep reinforcement learning in challenging control problems,
it seems like a suitable choice for such a domain. Consequently, this paper proposes a multi-agent
deep reinforcement learning-based approach with different state representational choices to solve the
real-time railway rescheduling problem. Furthermore, comparing different methods, the proposed
learning-based approaches outperform their competitions, such as the Monte Carlo tree search
algorithm, which is utilized as a model-based planner, and also other learning-based methods that
utilize different abstractions. The results show that the proposed representation has more significant
generalization potential and provides superior performance.

Keywords: multi-agent deep reinforcement learning; real-time railway rescheduling; Monte Carlo
tree search

1. Introduction
1.1. Motivation

Railway networks can ensure environmentally friendly transportation for both passen-
gers and freight traffic. Due to the climatic targets, an increase in the volume transported
by rail and average speed is desirable. Accordingly, the main objectives of the European
Union are greening the freight transport by doubling rail freight traffic by 2050, boosting
the innovation in the sector and bring the data-based solutions and artificial intelligence in
the fore [1]. The possible data-driven solutions in the field of energy efficiency and their
future are detailed in [2]. In addition, reinforcement learning is also an important part of
artificial intelligence from an optimization point of view, which can also provide a solution
to several challenges in the field of rail transportation, as summarized in [3]. One such
major challenge is how to increase the capacity of the railway lines to achieve these goals.
In urban areas, the number of tracks is limited and not expendable at reasonable costs.
The first possibility to increase the volume is the density of scheduled trains. However, this
method can cause more delays, waiting times, and decreased average speed in disturbing
situations. Despite this, real-time automated rescheduling of trains may help increase the
railway lines’ capacity. Other capacity-raising methods are the expensive automatic train
control (ATC) and automatic train operation (ATO) to minimize driver errors. This method
can help operators to make the right decisions to schedule. This process means reordering
and rescheduling tasks in a perturbed situation based on railway safety regulations— route-
based interlocking rules. Every deviation from the pre-planned conflict-free timetable may
lead to delays, which can cause secondary delays for conflicted trains. In the case of a dis-
turbance, the traffic situation—the perturbed situation—can be solved only with timetable
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modifications, which is a minor change in the pre-planned timetable. Rescheduling and
reordering the trains will cause a new, locally conflict-free solution. The impacts of this
change may lead to other conflicts, especially in a single-track line, which is the root cause of
the secondary delays. The effectiveness of the solution depends on the size of the controlled
area, in which the reordering and rescheduling task is performed. Disruptions are events in
that solutions require additional methods, and the effects are longer, e.g., in case of a colli-
sion with a road vehicle, the reallocation of the rolling stock is needed. The operators cancel
other trains, and the recovery of the pre-planned timetable means several hours or days.
Nowadays, human operators make real-time scheduling based on the traffic ordinance and
their knowledge and experiences. During the decision-making process, human errors may
occur. Therefore, automated decision-making algorithms are needed to efficiently solve the
rescheduling and reordering tasks. Besides the traditional optimization-based solutions
(e.g., mixed integer linear programming or heuristic methods), AI technology may help
railway operators.

Automated rescheduling algorithms may run in the operational control centers (OCC),
where the operators supervise a large remote-controlling area. The efficiency of these
algorithms depends on their run-time and feasibility. The latter means the ability to suit the
railway safety rules and the quality of the railway traffic, handling the connections, punc-
tuality, realizing minimum delays based on the timetable and dwell times. The operators’
decisions affect the exact route and speed of the trains. Consequently, the decision-making
time may be crucial when the operator makes the decision. The execution of the decision
depends on the acceleration and deceleration capabilities of the locos, the limits of the
train controlling systems (ATP, ATC, ATO), and the exact time of the decision. A decision
means a route with a signaling aspect that depends on the free distance before a specified
train and the state of the affected switches straight or diverging. Any other railway safety
rules can influence the decision’s enforceability, such as sliding and side protection. In
a conventional railway dispatching system, the exact location of trains is generally not
known because the interlocking systems ensure safety by the aim of track vacancy sys-
tems. The strict position of a specified train is estimated because the length of a specified
occupation detection section (common name: track circuit) is permanent and generally
more than the length of a specified train. The state of a track circuit can be free or occupied.
The state transition occurs when a train enters with its first axle or leaves it with its last
axle. In a modernized dispatching system—that works together with ETCS L2 or L3 train
controlling system—the exact location of trains is available through the GSM-R network
and the RBC unit within a confidence interval. This paper aims to give a solution in the case
of a conventional dispatching system due to its large number and the slow deployment of
modernized systems.

To find the optimal solution, the first step is to solve a traffic situation without deadlock.
It means that each train has to find conflict-free paths through the controlling area. Conflict-
free means that the routes of each train do not cross at the same time, and each train
reaches its exit point successfully at the end of the simulation. Deadlock means that the
trains cannot move forward. In reality, the signaling equipment—that ensures all safety
functions—prevents route conflicts. Each train has its entry and exit point and a direction.
This property is essential because the switches in the directed graph describe the network.

1.2. Related Work

To solve the rerouting/rescheduling problem, one option is to use the alternate graph
method [4–6]. This is a conflict detection and resolution technique with a fixed routes
sub-problem [7]. The alternate-graph method can be implemented in a real-time traffic
management system, called ROMA (railway traffic optimization by means of alternative
graphs) [8] with the aim of branch and bound algorithm to solve the problem. The job
shop scheduling problem also can be solved by the tabu search algorithm [9], where
the delays can be minimized with computing the optimal train sequence. The conflict
prevention strategy (CPS) can be solved by the dynamic impact zone (DIZ) heuristic [10].
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Other solutions can be taken with the aim of a mixed linear integer programming method.
In this case, the solution can be even energy-optimized with decreasing the stops of a
given train in the case of a disturbance [11–14]. This solution can be implemented in an
OpenTrack [15] or Treno [16] simulation. OpenTrack is a real-time railway microscopic
simulator that allows the execution of different traffic scenarios. The program stores the
railway infrastructure, the rolling stock, and the timetable in separate databases. It uses a
directed double vertex graph to describe the infrastructure, in which the edges represent
the track circuits, and nodes are generally signals, switches, etc. It is possible to give orders
to the program during the real-time simulation via the application programming interface
(API), such as stopping a train, decelerating a train or choosing another possible route.
With the aim of this interface, the solution of the MADRL method can execute. Trenissimo is
a synchronous, microscopic, and dispatcher-driven simulator for railway scheduling. This
tool offers a flexible way to solve the traffic management problem based on research and
project-specific data. It is possible to simulate the driver behavior, and different signaling
systems can estimate the secondary delays in the case of disturbance.

In this simulation, interlocking specific attributes can be considered, such as route
setting time and switching time. Computing with the driver performances is also possible.
This problem can also be written as a mixed nonlinear programming problem [17].

The authors of [18] propose an off-line procedure utilizing the microscopic and stochas-
tic simulation for managing disruption considering travel demand and service operation.
The application of the proposed method on the Naples metro line showed improved service
quality. Ref. [19] proposes a neighborhood search algorithm to find intervention strategies
in the case of metro system failures. The results indicated the feasibility of the proposed
method tested on a real-world metro system. For a more comprehensive study on the
matter, see [20], which details the different models and algorithms used for solving the
dispatching and rescheduling tasks.

Besides the above-mentioned methods, artificial-intelligence-based solutions may help
solve complex strategic tasks. For example, it can provide an effective way to solve the re-
ordering and rescheduling problem. It can originate from a tree search procedure. With the
aim of Monte Carlo tree search algorithms, it is possible to find a conflict-free solution in
a fast way [21]. Due to the complexity of the railway infrastructure—properties, safety
regulations, modeled vehicles—a simplified model can be used. The Flatland environment
offers a simple grid model [22] with a multi-agent method. In the case of high-speed
railways, the timetable rescheduling task—if there is disturbance—also can be solved
with this method [23]. Dispatching problems using graph theory with a deep Q-network
(DQN) for rescheduling also can be solved [24]. In some particular cases—e.g., closed
subway systems—the Q-learning algorithm is appropriate to provide an energy-optimal
solution [25].

1.3. Contribution

Our paper proposes a multi-agent deep reinforcement learning (MADRL) based ap-
proach for solving the real-time railway rescheduling problem that utilizes two different
state representations. The first one uses a vector-based concept that contains the occu-
pancy of the railway network concerning the trains traveling to the different exit positions.
The second approach utilizes a 2D grid-world-based representation with a convolutional
neural network (CNN) that requires the same level of strategical decision-making, whose
primary virtue is the more significant potential for generalization. For performance assess-
ment purposes, the well-known Monte Carlo tree search (MCTS) algorithm is implemented
and utilized as a model-based planner to solve the above-mentioned control problem.
Furthermore, the state representation of the novel Flatland [22] environment is interpreted
and implemented for our environment and compared with the proposed grid-world-based
approach to expose its superiority in terms of generalization.

In the real-time railway rescheduling problem, there are a lot of possible optimization
objectives. They are starting from passenger satisfaction through the minimization of devi-
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ating from the timetable to the minimization of the total energy consumption. Nevertheless,
in the real world, the true objective is the composition of several single objectives. In our
model, the main goal is to provide a conflict-free operation with minimized delays, where
the capacity constraint of the infrastructure is a strict limitation. Generally, not just one
possible solution exists—diverse solutions mean different journey times for each passenger
and dissimilar costs for railway operators. The main optimization performances can be
the minimized secondary delay, the minimized cost, the minimized total energy consump-
tion, and the successfully realized connections. In this paper, the objective function is to
minimize the total journey time for each train with the aim of the MADRL methodology.

2. Methodology
2.1. Multi-Agent Deep Reinforcement Learning

Deep reinforcement learning (DRL) is now living its renaissance. Thanks to its tremen-
dous results in several domains, humans have had absolute dominance compared to AI
approaches, such as Atari [26] and the game of GO, which has always been considered
a grand challenge for AI [27]. The core of the approach is that it generates the training
data for itself, interacting with the environment in an online manner. At the same time,
the desired behavior is realized with the help of a scalar feedback value provided by the
environment. The framework that handles the interactions is formulated as a Markov
decision process (MDP).

In multi-agent deep reinforcement learning, the framework changes from MDP to
Markov games (MG), enabling the agents to interact with the shared environment and with
each other. Thanks to that, additional challenges make the training even more difficult.
The most crucial one is non-stationary, where the transition probability function changes.
The utilized approach in our research is the independent learner concept, where the shared
function approximator decides for only one agent at a time. Consequently, the state
representation is composed in a manner where the other agents are handled as part of the
environment from the current self-agent standpoint. Figure 1 shows the training loop for
the MADRL approach. Other MADRL methods exist that decide for all the agents at once.
This is called centralized control. However, centralized MADRL methods cannot be robust
to the change number of agents since they would change the output dimension of the
used function approximator. Furthermore, the increase in the action space size also causes
struggle during the algorithm’s training, which can be clearly observed on the convergence
plots. Consequently, we utilized the independent learner concept, which limits the size
of the action space, supports convergence, and is invariant to the change in the number
of agents.

Agent Environment

State representation
for single agent

Agent Action
(Network branching, or direction choice)

Figure 1. The reinforcement learning training loop.

Deep Q-Network

The utilized DRL algorithm is the value-based deep Q-network (DQN). The DQN
algorithm reached the first significant results that started to spread DRL as a methodology
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that can be used for solving complex sequential decision-making problems [26]. This
approach trains a neural network to predict the state–action value of every action in every
given state as precisely as possible. These values can be considered to be a situation
interpretation since they do not suggest choosing any of the actions directly, just exposing
their worth in the long run. For training purposes, the target value that makes it possible to
calculate the loss function is calculated with the Bellman equation:

Q(st, at; θt) = rt+1 + γ max
a

Q(st+1, at; θ−t ). (1)

where st is the given state in time step t and at is the chosen action in time step t. γ is
the discount factor, θ represents the weights of the neural network, and θ− stands for the
weights of the target neural network. While rt+1 is the reward provided by the environment
in time step t + 1.

2.2. Monte Carlo Tree Search

Monte Carlo tree search has earned the researchers’ consideration thanks to its fasci-
nating results in a wild variety of challenging domains such as real-time strategy games
(RTS) [28], general video game playing (GVGP) [29], and autonomous driving [30]. Com-
pared to other search-based methods such as uninformed approaches, MCTS can mitigate
the required computational needs and provide guarantees that purely heuristic-based
methods cannot. The component that distinguishes MCTS from other methods is the upper
confidence bound for trees (UCT) algorithm proposed by [31] that handles the exploration–
exploitation trade-off inside the tree during the iteration process. The MCTS algorithm
builds the tree-based form of the control problem with the help of the generative model of
the environment; hence it is utilized as a model-based planner. Every iteration during the
building of the tree uses four phases, which are the following:

• Selection: Starting from the current root node, the algorithm recursively selects the
child node on every branch with the highest UCT value until a leaf node occurs.

• Expand: This phase encounters whether the leaf node found during selection is
not terminal and child nodes can be populated from it. In that case, the algorithm
populates the child nodes with the possible actions.

• Simulation: This phase provides the first value assigned to a leaf node. To do so, it
conducts a Monte Carlo rollout from the given leaf node until a terminal state of the
environment encounters and assigns the value of the terminal state to the leaf node.

• Backpropagation: In this final phase, the assigned state-value is backpropagated along
the path traveled during the selection phase from root to leaf.

The above-mentioned UCT algorithm looks as follows:

Xi + 2Cp

√
2 ln Ni

ni
, (2)

where the exploration–exploitation trade-off is controlled via Cp called the temperature
parameter, Ni is the visit count of the parent node, ni is the visit count of the given node,
and Xi is the given node’s average value. Another important advantage of the MCTS
algorithm over its alternatives is that if enough iteration is given, then it can provide the
globally optimal solution [31].

During operating, the algorithm builds a search tree with the help of the four phases.
The depth of the tree, hence the horizon, is determined by the provided number of iterations.
After reaching the iterations, the information gathered inside the tree is utilized in the root
node’s state. A policy has to be chosen beforehand to exploit the knowledge inside the
children of the root node. The utilized policy, in this case, is the robust-child approach that
chooses the action that populates the child node that has the most visit count compared to
the other children. It is also important to mention that one decision only determines the
next step of one train on the network. Consequently, the number of trains in the network
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determines how many layers in the tree belong to the same round where every train gets
its i-th action. For a more comprehensive study on MCTS, see [32].

3. Environment

The description of the railway infrastructure is very complex, and hence it contains
many different data fields, such as length of the section, the radius of the curve, the gradient
of the track section, permitted speed for different train categories, etc. In the case of the
trains—besides length—their acceleration, deceleration capability is essential. To solve
the optimization, we need to select the minimum data required. Another problem is the
decision-making process. Implementing all railway safety rules is hard because they cause
problems since the environment did not learn the false actions. Initially, a directed graph-
based description is used that contains the connections between vertices. A section between
two or three vertices is called a track circuit or block section in the infrastructure. A section
with three vertices is a switch, where the direction selection is possible. Traffic on the
railway switch is direction dependent; only the trains coming from the facing point may
choose the direction. It means that during the decision-making process, the traffic direction
of the train is essential. The authors will present a simplified solution for this problem in
this paper. An origin–destination (OD) matrix shown in Table 1 describes the infrastructure
represented in Figure 2.

Table 1. Origin–destination matrix of the station.

Destination

O
ri

gi
n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 −1 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 −1 0 0 80 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 −60 −80 0 80 50 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 −80 0 0 0 0 70 0 0 0 0 0 0 0 0
7 0 0 0 0 −50 0 0 50 80 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 −50 0 0 0 50 0 0 0 0 0 0 0
9 0 0 0 0 0 0 −80 0 0 0 0 60 0 0 0 0 0 0
10 0 0 0 0 0 −70 0 0 0 0 0 0 80 0 0 0 0 0
11 0 0 0 0 0 0 0 −50 0 0 0 0 50 0 0 0 0 0
12 0 0 0 0 0 0 0 0 −60 0 0 0 0 80 0 0 0 0
13 0 0 0 0 0 0 0 0 0 −80 −50 0 0 60 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 −80 −60 0 0 80 60 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 −80 0 0 0 1 0
16 0 0 0 0 0 0 0 0 0 0 0 0 −60 0 0 0 0 1
17 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

Figure 2. Simplified model of a station.

The OD matrix is a sheet-shaped representation of the infrastructure described by
a directed graph. The nodes represent the limits of the track circuits, which can contain
signals for one or both directions. The positive or negative signs of the cost values show
the direction. Generally, the cost value can vary based on the gradient, maximum allowed
speed, acceleration time, deceleration time, and temporary speed restrictions. In the reality,
it is not constant and can vary depending on the traffic situation. This value cannot be
zero, if there is a connection between two nodes. Zero means no possible route between
signals. Directivity is essential when looking for a solution because the trains also can
run in a positive or negative direction. This solution solves the problem of switches not
finding forbidden nodes. In this paper, the cost value is proportional to the length, gradient
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and maximum allowed speed. The dimension of this value is [seconds]. The acceleration
and deceleration times are zero, trains can run at maximum or zero speed. The direction
is positive toward the entry/exit points C or D, negative otherwise. The model includes
13 track circuits (with sign S)— the value of the entry/exit track circuits is unit—and
18 decision-making points (vertices) represented by (virtual) signals in the reality. One track
circuit may be busy for one train at a given time. Decision-making possibilities are waiting
at the signal, continuing the journey toward one direction, or continuing the journey toward
the second direction (if possible). Based on this model, state representation is possible.

3.1. Anomaly Detection in the Network

In an OCC, time-distance diagrams display the pre-planned timetable and the realized
timetable to operators in real time. Based on the track vacancy data, the supervision system
updates regularly the actual traffic situation in the HMI. The pre-planned schedule is a
graph for each train. Based on the operational data, the information system draws the
realized graph and tries to estimate the future traffic situation. The database of conflicted
zones—single track sections, switching zones, following trains—is static data implemented
in the information system. The pre-planned timetable contains the pre-planned route order
of each train (and other necessary data, such as planned arrival, departure time, etc.). Due
to the actual and planned schedule, the route conflicts appear—well in advance—in the
time–distance diagram in real time. In some cases, a delay of a train does not lead to
route conflict. It is a deviation from the timetable but does not requires rescheduling or
reordering task performed by the dispatcher. If the planned timetable—based on the actual
data—leads to a route conflict, it is a disturbance. It is necessary to alert the dispatcher
visually through the time–distance diagram.

The automatic route setting system (ARS) gives route setting orders based on the
planned data. The interlocking system does not perform the route setting orders—coming
from the ARS—in the case of a conflicted situation to not lead to a traffic violation. The ad-
vanced scheduling systems recognize these situations early and alert the operators.

At this time, the dispatcher may take corrective measures. The operator can reorder
and reschedule the affected trains.

3.2. State Representation

State representation is a crucial aspect of RL since this is the only information that an
agent has for understanding the control problem. Consequently, it has to contain all the
influential features of the domain in a manner that is also straightforward and sufficiently
supports credit assignment. The composition of such solely depends on the researcher’s
intuitions about the environment. Hence, this single component of the abstraction can
profoundly influence the convergence and final performance.

3.2.1. Feature-Based Value Vector Representation

In this concept, every signal is interpreted as a decision-making point for the agent.
The system’s map is composed so that every decision-making point is represented with one
value that can be [0–1] based on their occupancy. As introduced in the methodology section,
an independent learner MADRL approach is applied. Hence from the aspect of the agent in
a given state, it only chooses an action for one train, while the other trains are considered
as part of the environment. For that, the first component of the representation shows
the current self-train position on the occupancy map combined with the goal positions,
which are also represented with simple one-hot codes. With this approach, the position
and direction of the self-train are given. However, in this domain, these two pieces of
information of the other trains also have to be considered. From a strategic standpoint,
it is essential to know which trains travel to the same and the opposite directions with
the current self-train. Consequently, two more occupancy maps are created for the agent.
The first one shows the trains that travel in the same direction, and the second shows the
trains that go to the opposite. For clarity, we composed a loose representation with one-hot
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encoding on purpose, since in our previous endeavors, we experienced that it leads to
better and quicker separation of the state–space, which profoundly affects the convergence
of the utilized algorithm. The state representation is displayed in Figure 3.

Figure 3. The components of the vector-based state representation.

3.2.2. Image-like Representation

In the second approach, the network layout is modeled as a 2D grid-world, which is
also one-hot encoded based on the cells’ occupancy and the walls that surround the free
path of the network. In the formulation of the channels for the representation, we have the
same concerns as in the feature-based case, notably, that the current decision maker should
be aware of the other agents’ position and direction along with the required exit position.
However, in this case, there is one more. In the feature-based case, the whole network is a
directed graph where it is not allowed to move backward since it is impossible for a train to
do so. Consequently, the actions only provide steps in the right direction. However, in the
grid-world, the possible steps are the four direction. Hence, somehow, the agents have to
be aware of the directed graph nature of the free path in a way that supports generalization.
This problem is solved in the first channel.

• Channel 1: In the first channel, the network’s layout is shown to the agent, where
the walls are represented with ones and the free path with zeros. The directed graph
nature of the network is represented to the agent by putting walls—ones—into the
positions next to the agent, which would mean going in the reverse direction. This
complement is consistent with the representation since there are walls surrounding
the free paths and, thanks to that, supports generalization. Furthermore, it perfectly
provides the necessary information about the directed nature of the problem.

• Channel 2: This channel shows the position of the current decision maker in the
network by setting the particular cell’s value to one, while every other cells’ value is
set to zero.

• Channel 3: This channel shows the goal position of the current decision maker in the
network by setting the particular cell’s value to one, while every other cells’ value is
set to zero.

• Channel 4: This channel shows the position of all the other trains in the network that
travels in the same direction as the current decision maker by setting their cells’ value
to one. While every other cells’ value is set to zero.

• Channel 5: This channel shows the position of all the other trains in the network that
travels in the opposite direction as the current decision-maker by setting their cells’
value to one. While every other cells’ value is set to zero.

An example of the proposed image-like representation is shown in Figure 4.
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Figure 4. The channels of the proposed image-like state representation.

3.2.3. Flatland Global Observation

In the Flatland environment, there are two main approaches for state representation.
In this paper, the image-like version is used for comparability. The utilized channels are
the following.

• Channel 1: The position and the travel direction of the current decision-maker are
shown in this channel.

• Channel 2: The position and travel direction of all other agents in the network are
shown in this channel.

• Channel 3: This channel encodes all the agents’ malfunctions in the network.
• Channel 4: This channel provides information about the speed of all the agents in

the network.
• Channel 5: This channel shows the agents that are ready to depart from a station in

the network.

Not all the channels are used since some do not apply to our version of the control
problem. Consequently, only the first and second channels are used since these represent
the strategic aspect of the problem altogether.

3.3. Action Space

The proper choice of action spaces crucially determines the level of generalization
that can be reached during the training process. Furthermore, it is also essential to choose
the action space in a manner that is consistent with the state representation. The primary
approach is to formulate an action space where the individual actions carry the same
meaning regardless of the given state. Of course, it is not possible in some cases. Still,
if the concept ultimately lacks this virtue, then the agent has to learn the meaning of all the
actions for every state, which is the exact opposite of generalization. This paper utilizes
two different action spaces based on the introduced state representations.

3.3.1. Actions for Vector Based Representation

For the vector-based approach, the action space consists of three actions since, in our
graph, every node has a maximum of two edges in a particular direction. The order between
the actions is based on which one branches from the line that is considered the main one.
Through that, it can be generalized over the network. From a strategic standpoint, the third
action has an essential meaning in the control problem: waiting when a train remains in
the given position. Thanks to that, deadlocks can be avoided.
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3.3.2. Actions for Image-like Representation

In the image-like case, the choice of the action space is straightforward. It is the same
as in any grid-world action for the four directions, complemented with the waiting action.
This action space perfectly satisfies the previous statement about the state-invariant nature
of the actions’ meaning.

3.4. Rewarding Concept

The last part of the abstraction is the rewarding strategy. Its primary role in the whole
training process is to characterize the individual actions on the environment in a given
scenario. Thanks to that, the agent can develop a desired behavior from the performance
measures. Of course, the same difficulties go for the formulation of such a concept as in
the case of the state representation, notably that the idea for such depends solely on the
researcher’s intuition. However, it crucially affects the final performance. Furthermore,
in MADRL, additional responsibility is given to the researchers’ since a trade-off between
cooperation and competitiveness has to be formulated. In our case, the trade-off depends
on the individual performance and whether the control problem is solved without conflicts.
At the same time, the reward is presented for the agents only at the end of the episode.
In every other case, the reward is zero, and it is also zero for every agent if a conflict occurs.
The maximum reward is one, and its first portion is earned when the control problem is
solved. The second portion is earned based on the agents’ individual performance, which
is proportional to the steps taken for arriving into the goal position. Hence, the reward
function looks as follows:

Ri =

{
ri

p + rs if deadlock
0, otherwise

(3)

where ri
p is the i-th train’s performance-based reward calculated by considering the number

of steps used for arriving in the desired position, while rs is the reward component for
solving the given scenario. Ri is the i-th train’s episodic reward.

The minimization of the steps required for reaching the desired exit position is chosen
as the basis of the rewarding concept. Since the number of steps represents the same
meaning as the minimization of the journey time of the trains on the model’s level of
abstraction.

4. Results

In this section, the different solutions are compared to evaluate their performance.
For compatibility, the vector-based MADRL approach is compared with the search-based
solution since their topology is the same. In contrast, the image-like representations are
compared with each other because the number of steps is not representative compared
with the other solutions. However, the basis for the comparison is the same, which is the
number of steps required for solving the test episodes and the success rate that describes the
frequency of solving the episodes without deadlock. The flexibility of the different image-
like representations is demonstrated through training with both the original and mirrored
network versions. Thanks to that, the generalization potential of the representation can
be evaluated. Furthermore, both versions of the grid-world representation are trained to
the different versions of the network separately to clarify the possible performance losses
when they are trained for both simultaneously.

4.1. Training

In the training phase, every solution is treated in the same way. Notably, they have
the same number of episodes to learn the control problem correctly. Every episode starts
from a randomized initial state where the four trains are arbitrarily placed in the network
and then assigned to a direction. Then the agents receive a fixed amount of steps to deliver
all the trains to their exit points without any deadlocks. If an invalid action during this
process causes a conflict or drives the agent into a wall, then the action is not executed,
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and the episodes will not be terminated. In our experience, we observed that this approach
supports the training since it enables the agent to collect additional information in a possibly
complex situation, making the memory pool more balanced.

Thanks to the topological differences, only the image-like representations are worth
comparing in terms of the convergence of the algorithms. During the training process, all
four approaches use the same random seeds, network structure, and hyperparameters for
comparability. Figure 5 shows the convergence of both representations. Representation-
I stands for the state representation proposed by this paper, while Representation-II is
the state representation formulated based on the Flatland global observation. The M
letter determines whether the mirrored or the original network is utilized exclusively
during training.

0 2000 4000 6000 8000 10000 12000
Episodes

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Representation-I
Representation-I-mirrored
Representation-II
Representation-II-mirrored

Figure 5. Convergence of the MADRL agent during the training of either the mirrored or the
original network.

All the convergence graphs in Figure 5 suggest that despite a small difference in stabil-
ity and presumed final performance for the benefit of the proposed state representation,
the different approaches can learn how to solve a single network.

However, training is conducted when the agents have to learn to solve the control
problem in both the original and the mirrored network. In this training process, not just
the initial positions of the trains are randomized, but the network layout itself. Figure 6
shows the convergence of the two image-like representations for the case where the control
problem has to be solved in both network layouts. In this case, the difference between
the proposed and the Flatland representation is significant and predicts a significant dis-
crepancy in the performance. Nevertheless, the proposed state representation sustains the
characteristics of the previous case where only one network layout has to be learned, which
shows the generalization potential in advance.
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Figure 6. Convergence of the MADRL agent during the training of both networks simultaneously.

4.2. Comparison of MCTS and Vector-Based MADRL

In the first part of the evaluation process, both the vector-based MADRL and the
MCTS approaches are compared since these solutions share the same topology, which
is the pledge of representativeness. The trains’ initial positions are randomly generated
during evaluation. Of course, the random seeds are fixed for all one thousand episodes
for both solutions to ensure comparability. The performance of the different solutions is
measured based on the number of steps required for solving the test episodes. Figure 7
shows the results of the comparison. Both the MADRL and MCTS algorithms solve all the
episodes without any deadlocks, but the MADRL approach requires fewer steps, which is
demonstrated by the higher frequencies in the left and middle portions of Figure 7. Hence
it provides better performance compared to MCTS. The reason for that is that the quality of
the MCTS results is crucially affected by provided planning time. In that regard, a trade-off
has to be made to mitigate the necessary computation time for making a single decision.
Consequently, the core performance difference between the two solutions is the MCTS
algorithm’s tremendous need for computational resources, which cannot be provided while
real-time applicability is required. Furthermore, a straightforward formulation enables the
absolute exploitation of the MADRL method’s potential.
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Figure 7. Comparison of the vector-based MADRL and MCTS solutions.
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4.3. Comparison of the Image-like Representations

The image-like representations are compared in the same manner as mentioned above.
Hence on the same one thousand episodes with the same random seeds, consequently on
the same test episodes. However, the evaluation is divided into three parts. In the first
part, the versions trained for only the original network are evaluated. The performance in
terms of the number of steps used for solving the test episodes is shown in Figure 8. The
proposed representation and the Flatland global observation reach a success rate higher
than 90%. Still, our approach, trained with the same parameters, solves 6% more test
episodes without deadlock than the Flatland global observation. Furthermore, by checking
the left and middle areas of Figure 8, it can be seen that our approach utilizes fever steps
on average, hence providing a better solution for the control problem overall.
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Figure 8. Comparison of the different solutions for the original network.

The second part compares the versions trained for the mirrored network layout.
The characteristics of the results are nearly the same as the previous one. The comparison
is shown in Figure 9. Both solutions provide success rates above 90%, but our approach
outperforms the Flatland global observation with approximately 2%, thus utilizing fewer
steps for solving the test episodes. In the case of the image-like representation, the perfor-
mance difference is not that significant when the agents only have to learn one network
during the entire training process. However, the source definitely, through the additional
channels in the proposed state representation that enable a better understanding of the
control problem for the agents, has an improved performance.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 26 49

Fr
eq

ue
nc

y 
[%

]

Number of steps

Representation-I-M Representation-II-M

Figure 9. Comparison of the different solutions for the mirrored network.

In the third part, the algorithms trained simultaneously for both network layouts
are compared. The evaluation procedure is the same as in the previous cases. The per-
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formance discrepancy should be significant based on the convergence plot introduced
above. The result is shown in Figure 10. Comparing the characteristics of the proposed
method that trained for both network layouts, it can be seen that it nearly reaches the same
performance as in the case when exclusively trained for only one network type, which
clearly demonstrates the potential for generalization. In the meantime, the Flatland global
observation suffers a remarkable performance discrepancy compared to the cases when
only trained for a sole network type. Compared to each other, the proposed representation
maintains the success rate above 90%, while the other solutions struggle at approximately
60%. Moreover, when it solves the given test episodes, it utilizes a greater number of steps,
thus providing an inferior performance compared to the proposed representation’s results.
When the agents are trained for both the mirrored and the original network, the perfor-
mance improvement of the proposed representation arises from the additional channel that
clearly defines the network architecture. With this channel, the agent can understand the
concept of the free path, and thanks to that, it can generalize through different layouts.
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Figure 10. Comparison of the different solutions for both networks.

4.4. Understanding of the Results

The vector-based state representation shows excellent results; however, a trained
model with this approach cannot be used for solving any other networks since it does
not know anything about the network layout. It just learns the given one correctly, hence
does not carry the potential for generalization. Still, the network infrastructure in the real
world does not change too often. Consequently, the generalization potential is not the
only aspect in the assessment since the safe and efficient control always carries significant
value. Furthermore, if the particular network has changed, it can be easily retrained with
the new layout. In the meantime, the MCTS algorithm is considered a general solution for
such a problem. Still, more extensive network architectures will clearly lack the required
computational needs, which prevents the algorithm from the real-time operation. On the
contrary, the image-like representations significantly support generalization. The first
component comes from the action space. Still, as the results showed, the Flatland global
observation is not sufficient when learning more networks at once, not to mention further
generalization tests, such as operating on a totally unknown network. In the meantime,
the proposed method successfully solved the control problem on both network layouts
simultaneously. The sole and most important reason for that is the layout channel in the
representation, whose existence enables the agent to understand the concept of the free
path. Through that, it does not overfit a single network but learns which paths can be used
or not. Furthermore, the goal channel also allows learning how to navigate the network
flexibly. With all these advances, the proposed network architecture, in theory, can be
capable of solving any network layout. However, this approach also has limitations that
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arise from the fact that the image’s height and width predetermine the size of the network
that can be represented in the given grid-world.

5. Conclusions

This paper presents three environment representation methods and three different
solutions for solving the real-time railway rescheduling problem. The first is a MADRL-
based approach with a vector-based stat representation compared with the MCTS algorithm
utilized as a model-based planner. The comparison shows that both methods can solve all
the test episodes without deadlock. However, the MCTS algorithm, thanks to its compu-
tational requirements, reaches weaker performance compared to MADRL. Unfortunately,
the vector-based state representation does not carry significant generalization potential,
mainly because it lacks understanding of the network layout concept. The action space
that can be utilized in such a formulation of the control problem also brings difficulty in
reaching suitable generalization. It requires learning the meaning of the actions in the
different positions individually.

Consequently, an image-like representation is proposed that enables the agent to
navigate on a layout to tackle these issues, not just to learn a particular network architecture,
but to understand which paths can or cannot be used while driving a train from a given
position to its desired exit point. A comparison is made between the interpretation of
the Flatland global observation and the proposed state representation to demonstrate this
potential. The results show that a channel that carries information about the network layout
is necessary for acceptable generalization. However, this concept also has its limitations,
notably that the network architectures size that can be used for learning and testing also is
bounded by the frame size of the image used for training. We would like to focus on other
limitations of the proposed representation in our future endeavors. Firstly, it cannot handle
a sequence of connected networks, which would be an essential virtue. There are many
lines where elementary networks are connected and have to be handled simultaneously
to consider the neighboring networks. One can wonder that representing them in one
picture is not advisable since the information density of the image would be more than
worse. Secondly, it is also vital to further improve the complexity of the environment in
terms of the dynamics of the trains to compare the results in measures, such as delays
energy efficiency, that is meaningful for the railway industry. Thanks to the enormous
safety concerns, testing and validating the performance of methods applied in the railway
industry is crucial. Consequently, we are currently gathering data through a partnership
with the Hungarian State Railways to further test and validate our solution in real-world
networks and scenarios. In the following, we detail the possible workflow of our system
that we would like to test in our further endeavors. The MADRL solution determines the
exact route of each train. The new rescheduled/rerouted solution is available at the end of
the algorithm. It determines the new conflict-free solution with the new route orders of
each train. The first step to realizing the decision is to modify the planned timetable of each
train in the time–distance diagram. In this case, the newly planned timetable contains the
modified routes and the delays caused by the disturbance. The ARS system can perform
the route setting orders in the next step. The transformation into the scheduling system is
fast due to the advanced information systems (which means seconds). The transformation
into the scheduling system is fast due to the advanced information systems (which means
seconds). The exact route setting order from an OCC realizes the switching process and
controls the signals. The average time of the realization of each route setting order is
between 5 s and 30 s, depending on the number of points operated.
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ATC Automatic Train Control
ATO Automatic Train Operation
OCC Operation Control Centers
ETCS European Train Controlling System
RBC Radio Block Center
ARS Automated Route Setting System
ATP Automatic Train Protection
ROMA Railway Traffic Optimization by Means of Alternative Graphs
DIZ Dynamic Impact Zone
CPS Conflict Prevent Strategy
DQN Deep Q-Network
DRL Deep Reinforcement Learning
MADRL Multi-Agent Deep Reinforcement Learning
MDP Markov Decision Process
MG Markov Games
MCTS Monte Carlo Tree Search
GVGP General Video Game Playing
RTS Real-Time Strategy
UCT Upper Confidence Bound for Trees
OD Origin Destination
CNN Convolutional Neural Network

References
1. European Commission. Sustainable and Smart Mobility Strategy—Putting European Transport on Track for the Future. 2021.

Available online: https://transport.ec.europa.eu/system/files/2021-04/2021-mobility-strategy-and-action-plan.pdf (accessed
on 7 January 2022).

2. De Martinis, V.; Corman, F. Data-driven perspectives for energy efficient operations in railway systems: Current practices and
future opportunities. Transp. Res. Part C Emerg. Technol. 2018, 95, 679–697. [CrossRef]

3. Parvez Farazi, N.; Zou, B.; Ahamed, T.; Barua, L. Deep reinforcement learning in transportation research: A review. Transp. Res.
Interdiscip. Perspect. 2021, 11, 100425. [CrossRef]

4. Hansen, I.A.; Pachl, J. Railway Timetabling and Operations; Eurailpress, DVV Media Group GmbH: Hamburg, Germany, 2008;
pp. 155–173.

5. D’Ariano, A.; Albrecht, T. Running time re-optimization during real-time timetable perturbations. WIT Trans. State Art Sci. Eng.
2010, 40, 147–156. [CrossRef]

6. Tan, Y.; Xu, W.; Jiang, Z.; Wang, Z.; Sun, B. Inserting extra train services on high-speed railway. Period. Polytech. Transp. Eng. 2021,
49, 16–24. [CrossRef]

7. Mascis, A.; Pacciarelli, D. Job-shop scheduling with blocking and no-wait constraints. Eur. J. Oper. Res. 2002, 143, 498–517.
[CrossRef]

8. D’Ariano, A.; Corman, F.; Pacciarelli, D.; Pranzo, M. Reordering and local rerouting strategies to manage train traffic in real time.
Transp. Sci. 2008, 42, 405–419. [CrossRef]

https://transport.ec.europa.eu/system/files/2021-04/2021-mobility-strategy-and-action-plan.pdf
http://doi.org/10.1016/j.trc.2018.08.008
http://dx.doi.org/10.1016/j.trip.2021.100425
http://dx.doi.org/10.2495/978-1-84564
http://dx.doi.org/10.3311/PPtr.12920
http://dx.doi.org/10.1016/S0377-2217(01)00338-1
http://dx.doi.org/10.1287/trsc.1080.0247


Appl. Sci. 2022, 12, 4465 17 of 17

9. Corman, F.; D’Ariano, A.; Pacciarelli, D.; Pranzo, M. A tabu search algorithm for rerouting trains during rail operations. Transp.
Res. Part B Methodol. 2010, 44, 175–192. [CrossRef]

10. Van Thielen, S.; Corman, F.; Vansteenwegen, P. Towards a conflict prevention strategy applicable for real-time railway traffic
management. J. Rail Transp. Plan. Manag. 2019, 11, 100139. [CrossRef]

11. Krasemann, J.T. Computational decision-support for railway traffic management and associated configuration challenges: An
experimental study. J. Rail Transp. Plan. Manag. 2015, 5, 95–109. [CrossRef]

12. Pellegrini, P.; Marlière, G.; Pesenti, R.; Rodriguez, J. RECIFE-MILP: An Effective MILP-Based Heuristic for the Real-Time Railway
Traffic Management Problem. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2609–2619. [CrossRef]

13. Zhu, Y.; Goverde, R.M. Railway timetable rescheduling with flexible stopping and flexible short-turning during disruptions.
Transp. Res. Part B Methodol. 2019, 123, 149–181. [CrossRef]

14. Lindenmaier, L.; Lövétei, I.F.; Lukács, G.; Aradi, S. Infrastructure Modeling and Optimization to Solve Real-time Railway Traffic
Management Problems. Period. Polytech. Transp. Eng. 2021, 49, 270–282. [CrossRef]

15. Pellegrini, P.; Marlière, G.; Rodriguez, J. A detailed analysis of the actual impact of real-time railway traffic management
optimization. J. Rail Transp. Plan. Manag. 2016, 6, 13–31. [CrossRef]

16. Medeossi, G.; Nash, A. Reducing Delays on High-Density Railway Lines: London–Shenfield Case Study. Transp. Res. Rec. 2020,
2674, 193–205. [CrossRef]

17. Luan, X.; Wang, Y.; De Schutter, B.; Meng, L.; Lodewijks, G.; Corman, F. Integration of real-time traffic management and train
control for rail networks—Part 1: Optimization problems and solution approaches. Transp. Res. Part B Methodol. 2018, 115, 41–71.
[CrossRef]

18. D’Acierno, L.; Placido, A.; Botte, M.; Gallo, M.; Montella, B. Defining robust recovery solutions for preserving service quality
during rail/metro systems failure. Int. J. Supply Oper. Manag. 2016, 3, 1351–1372.

19. Botte, M.; Di Salvo, C.; Placido, A.; Montella, B.; D’Acierno, L. A Neighbourhood Search Algorithm for determining optimal
intervention strategies in the case of metro system failures. Int. J. Transp. Dev. Integr. 2016, 1, 63–73. [CrossRef]

20. Botte, M.; D’Acierno, L. Dispatching and rescheduling tasks and their interactions with travel demand and the energy domain:
Models and algorithms. Urban Rail Transit 2018, 4, 163–197. [CrossRef]
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